光学系统中视场的计算

合集下载

全视场畸变值计算公式

全视场畸变值计算公式

全视场畸变值计算公式
畸变(distortion)也称为失真,是由于光阑球差的影响,不同视场的主光线通过光学系统后与高斯像面的交点高度不等于理想像高,两者之差就是畸变。

因此畸变只改变轴外物点在理想面上成像位置,使像的形状产生失真,但不影响像的清晰度。

畸变有正负之分。

如图a所示,一垂直于光轴的正方形平面物体,当镜头具有正畸变时,如图b所示,称为枕型畸变;当镜头具有负畸变时,如图c所示,称为桶型畸变。

如何利用镜头畸变的参数来计算测量误差?
若相机芯片为2/3’(对角线为11mm,像元尺寸为3.45um),某镜头光学畸变率为dist=0.05%,有y=5.5mm,则
Δy=dist*y/100=0.05%x5.5mm/100=2.75µm。

故此畸变导致像发生了2.75µm的偏移,小于一个像素。

光学仪器的视场角检测标准

光学仪器的视场角检测标准

光学仪器的视场角检测标准一、视场角定义视场角是指光学仪器在一定距离下所能观察到的视野范围。

它是由仪器镜头的光学特性和仪器本身的设计参数所决定的。

视场角通常用角度来表示,它反映了光学仪器在水平方向上能够观察到的范围大小。

二、视场角检测标准对于光学仪器的视场角检测,主要涉及以下方面:1. 仪器精度视场角的检测精度对于光学仪器的性能评估具有重要意义。

一般而言,检测精度应优于±0.1度,以保证仪器的可靠性和稳定性。

在检测过程中,应采用高精度的激光干涉仪或光学测量系统进行测量,以获得准确的数据。

2. 测试环境视场角的测试环境应满足一定的条件,以确保测试结果的准确性。

测试环境应包括:安静、无尘、温度稳定、湿度适中等因素。

同时,测试场地应具备足够的空间和光照条件,以保证光学仪器的正常运作。

3. 测试方法视场角的测试方法一般包括以下步骤:(1)将光学仪器放置在测试台上,调整仪器位置使其镜头对准测试台上的标定板;(2)通过控制台操作,使标定板上的激光束依次经过仪器镜头的各个角度,并记录下激光束在镜头不同角度的位置;(3)根据记录的数据,计算出仪器的视场角大小;(4)将测试结果与参考标准进行比较,以确定仪器是否符合设计要求。

4. 参考标准在进行视场角检测时,需要参考一定的标准。

通常情况下,参考标准为国家标准或行业标准。

这些标准规定了光学仪器视场角测试的环境条件、测试方法、数据处理等方面内容。

在实际检测过程中,应根据具体的仪器类型和设计要求选择相应的参考标准。

三、结论光学仪器的视场角检测是评估其性能和质量的重要环节。

通过对视场角的准确测量和比较,可以判断出光学仪器的设计是否符合要求,以及其在实际应用中的性能表现。

因此,建立完善的检测标准和采用合适的测试方法对于保证光学仪器的质量和性能具有重要意义。

同时,随着技术的不断发展和进步,视场角检测技术也将不断改进和完善,为光学仪器的发展和应用提供更为准确和可靠的依据。

大视场光学系统设计

大视场光学系统设计

大视场光学系统设计
大视场光学系统是指适用于视角范围广泛的摄影、遥感、医学成像等应用场合的光学系统。

它可以提供高质量的图像,同时在更大的范围内保持较好的光学性能。

下面将介绍大视场光学系统的设计原理和常用的优化方法。

设计原理
大视场光学系统的设计需要考虑以下几个方面的因素:
1.镜头参数的选择:为了满足大视场的要求,需要选择较大的视角和宽广的视场。

镜头类型也需要根据具体应用场合进行选择。

2.光学元件的设计:光学元件的设计应该针对大视场进行优化。

对于非球面透镜,合理设计会显著提高光学性能。

3.光线追迹技术:为保证大视场光学系统的高质量,需要使用光线追迹技术进行优化,识别并排除光线传递过程中产生的像点附近的偏移或畸变。

常用优化方法
1.大覆盖距离:实际上,大覆盖距离优化是一个基于不同光学环节的设计指标。

在实际设计中,我们需要将不同部分的优化结合在一起,如减小曲面像点偏移等。

2.光学元件选材:选择正确的光学元件材料是保证大视场光学系统高分辨成像及色彩保真度的前提。

需要在选择合适材料的同时,充分考虑镜头的成像质量及相机结构因素。

3.非球面透镜设计:非球面透镜的设计是一项关键的方法,这种方法可以显著减少透镜产生的色差及像差,从而达到提高大视场成像质量的目的。

总之,大视场光学系统设计需要考虑多种因素,包括镜头参数的选择、光学元件的设计,以及光线追迹技术等等。

准确的设计和优化方法是保证大视场光学系统高质量成像的关键。

光学系统

光学系统

第一节 理想光学系统与共线成像理论
理想光学系统理论在1841年由高斯提出,1893年阿 贝发展了理想光学系统理论。 理想光学系统理论——高斯光学 对于实际使用的共轴光学系统,由于系统的对称 性,共轴理想光学系统所成的像还有以下性质: (1)位于光轴上的物点对应的共轭像点也必然位 于光轴上;位于过光轴的某一个截面内的物点对应 的共轭像点必位于该平面的共轭像面内;过光轴的 任意截面成像性质都是一样的。因此可以用过光轴 的截面代表一个共轴系统。
共轴理想光学系统所成像的性质
(2)垂直与光轴的平面物所成的共轭平面像的几何 形状完全与物相似,也就是说在整个物平面上无论 哪一部分,物和像的大小比例等于常数。像和物的 大小之比称为“放大率”,对于共轴理想光学系统 来说,垂直于光轴的同一平面上的各个部分具有相 同的放大率。 (3)一个光学系统,如果已知两对共轭面的位置和 放大率;一对共轭面的位置和放大率以及轴上的两 对共轭点的位置,则其它一切物点的像点都可以根 据这些已知的共轭面和共轭点来表示。

第一节 理想光学系统与共线成像理论
理想光学系统——像与物是完全相似的
这种“共线成像”理论的初始几何定义可归纳为:
第一节 理想光学系统与共线成像理论
理想光学系统——像与物是完全相似的 物空间 像空间 点 共轭点 直线 共轭直线 直线上的点 共轭直线上的共轭点 任一平面 一共轭平面
同样:物空间中每一同心光束在像空间中均有一共轭 同心光束与之对应。 简单的说:物空间的任一点、线、面都有与之相共轭 的点、线、面存在,且是唯一的。
第二节 理想光学系统的基点与基面
这些已知的共轭面和共轭点为共轴光学系统的 “基面”和“基点”。 基点就是一些特殊的点,基面就是一些特殊的面。 正是这些特殊的点与面的存在,从而使理想光学系 统的特性有了充分体现,只有掌握了这些基点基面 的特性,才能够分析计算理想光学系统。 基点:物方焦点,像方焦点;物方主点,像方主 点;物方节点,像方节点。 基面:物方主面,像方主面;物方焦面,像方焦 面。

工程光学 第六章 光线的光路计算及像差理论

工程光学 第六章 光线的光路计算及像差理论
f'h1/u'k
第二节 光线的光路计算
2、轴外点近轴光线 (又称第二近轴光线) ➢是对轴外点而言的, ➢一般要对五个视场: 0.3, 0.5, 0.707,0.85, 1 的物点
分别进行近轴光线光路计算,以求出不同视场的主 光线与理想像面的交点高度,即理想像高y’k。
第二节 光线的光路计算
(二)远轴光线的光路计算 1、轴上点远轴光线 ➢ 轴上点远轴光线的光路计算的初始数据是L1,
第一节 概 述
一、基本概念
除平面反射镜成像之外,没有像差的光学系统是不 存在的。
实践表明: 完全消除像差也是不可能的,且没有必要的。
第一节 概 述
二、像差计算的谱线选择
计算和校正像差时的谱线选择主要取决于光能接收 器的光谱特性。
基本原则是: ➢ 对光能接收器的最灵敏的谱线校正单色像差, ➢ 对接收器所能接收的波段范围两边缘附近的谱
➢同一光学介质对不同的色光有不同的折射率 ➢白光进入光学系统后,由于折射率不同而有不同的
光程, ➢这样就导致了不同色光成像的大小和位置也不相同
第一节 概 述
一、基本概念
(5)这种不同色光的成像差异称为色差。
色差有两种:位置色差、倍率色差
第一节 概 述
一、基本概念
➢以上讨论是基于几何光学的, ➢上述七种像差称为几何像差。
第一节 概 述
二、像差计算的谱线选择
1、目视光学系统
目视光学系统的接收器是人的眼晴。只对波长在 380—760nm范围内的波段有响应,其中最灵敏的 波长555nm,
目视光学系统:
➢一般选择靠近此灵敏波长的D光(589.3nm)或e光 (546.1nm)校正单色像差。 因e光比D光更接近于 555nm,故用e光校正单色像差更为合适,

应用光学习题解答

应用光学习题解答

应用光学习题解答一、简答题1、几何光学的基本定律及其内容是什么?答:几何光学的基本定律是直线传播定律、独立传播定律、反射定律和折射定律。

直线传播定律:光线在均匀透明介质中按直线传播。

独立传播定律:不同光源的光在通过介质某点时互不影响。

反射定律:反射光线位于入射面内;反射角等于入射角;折射定律:折射光线位于入射面内;入射角和折射角正弦之比,对两种一定的介质来说,是一个和入射角无关的常数2111sin sin I n I n =。

2、 理想光学系统的基点和基面有哪些?答:理想光学系统的基点包括物方焦点、像方焦点;物方主点、像方主点;物方节点、像方节点。

基面包括:物方焦平面、像方焦平面;物方主平面、像方主平面;物方节平面、像方节平面。

3、什么是光学系统的孔径光阑和视场光阑?答:孔径光阑是限制轴上物点成像光束立体角的光阑。

视场光阑是限制物平面上或物空间中成像范围的光阑。

4、常见非正常眼有哪两种?如何校正常见非正常眼?答:常见非正常眼包括近视眼和远视眼。

近视眼是将其近点校正到明视距离,可以用负透镜进行校正;远视眼是将其远点校正到无限远,可以用正透镜进行校正。

5、光学系统极限分辨角为多大?采取什么途径可以提高极限分辨角? 答:衍射决定的极限分辨角为Dλσ61.0=。

可见其与波长和孔径有关。

减小波长和增大孔径可以提高光学系统的分辨率。

6、什么是共轴光学系统、光学系统物空间、像空间?答:光学系统以一条公共轴线通过系统各表面的曲率中心,该轴线称为光轴,这样的系统称为共轴光学系统。

物体所在的空间称为物空间,像所在的空间称为像空间。

7、如何确定光学系统的视场光阑?答:将系统中除孔径光阑以外的所有光阑对其前面所有的光学零件成像到物空间。

这些像中,孔径对入瞳中心张角最小的一个像所对应的光阑即为光学系统的视场光阑。

8、成像光学系统有哪两种色差?试说明它们的成因?答:有位置色差(或轴向色差)和放大率色差(或垂轴色差)两种。

光学课程设计-望远镜系统结构参数设计


03
望远镜系统的设计流程
确定设计目标
望远镜系统的功能需求
望远镜系统的性能指标
望远镜系统的成本预算
望远镜系统的设计周期
望远镜系统的设计团队 和分工
望远镜系统的设计评审 和验收标准
选择合适的镜片材型:增透膜、反 射膜、偏振膜等
考虑因素:折射率、色 散、反射率、透射率等

定期保养
清洁镜片:使用专业清洁 剂和软布擦拭镜片,避免 刮伤
检查螺丝:检查所有螺丝 是否松动,如有松动及时 拧紧
调整焦距:定期调整望远 镜的焦距,确保清晰度
更换电池:定期更换望远 镜的电池,确保望远镜的 正常运行
存放环境:将望远镜存放 在干燥、通风的环境中, 避免潮湿和灰尘影响望远 镜的性能
感谢观看
望远镜系统通过调整物镜和目镜的距离, 实现对焦和放大功能
望远镜系统还可以通过调整物镜和目镜 的角度,实现对焦和放大功能的优化
02
望远镜系统的主要参数
焦距
焦距的作用:决定望远镜的 放大倍数和成像质量
焦距的定义:望远镜系统中, 从物镜到目镜的距离
焦距的选择:根据观测目标、 观测距离和观测环境等因素
进行选择
汇报人:
环境保护
监测大气污染:观测大气中的污染物浓度和分布 监测水质污染:观测水体中的污染物浓度和分布 监测土壤污染:观测土壤中的污染物浓度和分布 监测生物多样性:观测生物多样性的变化和保护情况
远程教育
远程教学:通 过望远镜系统 进行远程教学, 实现教育资源
的共享
远程会议:通 过望远镜系统 进行远程会议, 提高沟通效率
镜片形状:球面、非球 面、柱面等
镜片数量:单镜片、双 镜片、多镜片等
镜片安装方式:固定、 可调、自动等

10倍望远镜光学系统设计(普罗型)

10倍望远镜光学系统设计(普罗型)10倍望远镜光学系统设计(普罗型)摘要⽬前国内⽣产望远镜的⼚家(公司)较多,产品⼤部分销于国外,⽽对产品的性能精度要求越来越⾼,为适应社会要求,为使学⽣初步掌握光学仪器设计过程,光学系统是在透镜的基础上,以不同的组合来实现的,深⼊研究了正负透镜的成像规律和组合光路的成像特性,才能更好的研究复杂的光学系统,为⾼科技普及于民打下坚实基础。

进⼊⼆⼗⼀世纪,科学技术飞速发展,对应⽤软件的开发和使⽤,成为社会发展的重要途径。

本课题研究的主体是10倍普罗型望远镜光学系统。

普罗棱镜⼜叫直⾓棱镜,是传统的经典设计,⽐较常见的设计是由两个完全相同的直⾓棱镜构成,优点是形状简单,容易加⼯和装配,缺点是相对屋脊棱镜,重量和体积较⼤。

设计出10倍普罗型望远镜的技术指标:放⼤率10* D/f'=1:6 视场2w =5°正像视度调节范围±5折光度. 分别计算出物镜、⽬镜的焦距,出瞳、⼊瞳的直径,视场光阑的直径,⽬镜的视场⾓,瞳距,⽬镜⼝径,⽬镜的视度调节范围。

将所得数据输⼊ZEMAX软件实现像差的校正与平衡。

最终设计出合格望远镜,画出零件图。

关键词:光学系统设计;望远镜;透镜成像;像差T en times the optical telescopes system design(porro)AbstractThe current domestic production of a telescope of the manufacturer said that most of the foreign product to sell, with the product and higher accuracy, in order to adapt to society, to prepare students to master optical instrument for the preliminary design process 。

光学系统的光阑与光束限制(第四章)

光学系统的光阑与光束限制(第四章)第四章光学系统的光阑与光束限制一、填空题I级I级1空1、在光学系统中,对光束起限制作用的光学元件通称为[1]。

光阑2、限制轴上物点成像光束大小的光阑称为[1]。

孔径光阑3、孔径光阑经过前面的光学系统在物空间所成的像称为[1]。

入射光瞳4、孔径光阑经过后面的光学系统在像空间所成的像称为[1]。

出射光瞳5、一般安置在物平面或像平面上,以限制成像范围的光阑称为[1]。

视场光阑6、视场光阑经其前面的光学系统所成的像称为[1]。

入射窗7、视场光阑经过后面的光学系统所成的像称为[1]。

出射窗8、轴外点发出的充满入瞳的光束受到透镜通光口径的限制,而部分被遮拦的现象称为[1]。

渐晕9、孔径光阑位于光学系统像方焦面处,光学系统的物方主光线平行于光轴,主光线汇聚中心位于物方无限远处,这样的光路称为[1]。

物方远心光路10、孔径光阑位于光学系统物方焦面处,光学系统的像方主光线平行于光轴,主光线汇聚中心位于像方无限远处,这样的光路称为[1]。

像方远心光路11、在长光路系统中,往往利用[1]达到前后系统的光瞳衔接,以减小光学零件的口径。

场镜12、在像平面上所获得的成清晰像的物空间深度称为成像空间的[1]。

景深13、像面边缘比中心暗的现象称为[1]。

渐晕14、为了减少测量误差,测量仪器一般采用[1]光路。

远心15、渐晕大小用渐晕系数衡量,线渐晕系数定义为轴外点成像光束与轴上点成像光束在[1]上线度之比。

入瞳16、与入射窗共轭的物是[1]。

视场光阑17、与入瞳共轭的物是[1]。

孔径光阑I 级2空1、在放大镜和人眼组成的光学系统中,放大镜的镜框是(),人眼是()。

视场光阑,孔径光阑2、一个10倍的放大镜,通光直径为20mm ,人眼离透镜15mm ,眼瞳直径为3mm ,当渐晕系数为0.5时,人眼观察到的线视场为()mm ;无渐晕时,线视场为()mm 。

33.33,28.333、开普勒望远系统加场镜后,视放大率不变,目镜通光口径(),出瞳离目镜距离()。

工程光学第六章像差理论重点讲解


校对公式:
h lu lu nuy nuy J
最后可计算出像点位置和系统各基点位置。
焦点位置及焦距计算:l1 , u1 0
f ' h1 / u'k
2、轴外物点近轴光线光路计算(第二近轴光线)
仍用近轴光线光路计算公式和校对公式,所有量均注以下标z.
已知:物方物位、入瞳位置和物高,即 l, lz , uz 。 求解:像方物位、出瞳位置和像高,即 l, lz , uz 。
i
l
r
r
u(当l1
时, u1
0,i1
h1
/
r1)
i' n i
n'
u' u i i'
l' r(1 i' )
u'
l' n'lr
n'l n(l r)
第二节 光线的光路计算
对于有k个面的折射系统,需利用根据过渡公式:
过渡公式:
lk lk1 dk 1 uk uk 1 nk nk 1
对于小视场的光学系统,例如望远物镜和显微物镜等,只 要求校正与孔径有关的像差,所以只需计算上述第一种光线。 对大孔径、大视场的光学系统,如照相物镜等,要求校正所 有像差,所以需要计算上述三种光线。
第二节 光线的光路计算
由已知条件:
光学系统的结构参数(r,d,n)
物体的位置和大小 入瞳的位置和大小
解决问题:
第一节 概述
像差校正:
在实际光学系统中,各种像差是同时存在的,像差 影响光学系统成像的清晰度、相似性和色彩逼真度等 ,就降低了成像质量。故像差的大小反映了光学系统 质量的优劣。
除了平面镜成像以外,没有像差的光学系统是不 存在的。完全消除像、色差是不可能的,针对光学系 统的不同用途,只要把像、色差降低在某范围内,使 光接收器不能分辨,或者说这种差别只要能骗过光接 收器,就可以认为是理想的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光学系统中视场的计算
视场是光学系统中一个重要的概念,它描述了在光学系统中可见的范围或角度。

视场的大小对于光学系统的设计和性能具有重要的影响。

本文将对视场的计算方法进行探讨。

视场的计算涉及到光学系统的参数和特性。

在光学系统中,光线从物体上发出并经过光学元件的折射或反射,最终形成一个像。

视场就是这个像在光学系统中可见的范围或角度。

视场的大小可以用角度或线性尺寸来表示。

在实际的光学系统中,常常使用角度来描述视场的大小。

视场的角度可以通过光学系统的焦距、孔径和物体大小来计算。

我们需要知道光学系统的焦距。

焦距是光学系统中的一个重要参数,它描述了光线通过光学系统后的汇聚或发散情况。

焦距通常用f表示。

我们需要知道光学系统的孔径。

孔径是光学系统中光线通过的有效区域。

孔径的大小对于光线的折射和汇聚有重要影响。

孔径可以用光学系统的有效直径来表示。

我们需要知道物体的大小。

物体的大小是影响视场大小的关键因素之一。

物体的大小可以用线性尺寸来表示,比如物体的直径或者对角线长度。

视场的计算方法可以通过简单的几何关系来推导。

设物体的直径为D,光学系统的焦距为f,光学系统的孔径为A,视场的角度为θ。

根据几何关系,我们可以得到以下公式:θ = 2arctan(D / (2f)),其中arctan是反正切函数。

通过这个公式,我们可以计算出给定光学系统和物体大小时的视场角度。

这个角度可以用来描述光学系统中可见的范围。

除了角度,视场的大小还可以用线性尺寸来表示。

视场的线性尺寸可以通过视场角度和焦距来计算。

线性尺寸可以用以下公式计算:视场线性尺寸= 2f * tan(θ/2)。

视场的计算对于光学系统的设计和性能具有重要的影响。

较大的视场角度和线性尺寸意味着光学系统可以显示更多的信息,适用于更广泛的应用。

但是,随着视场角度的增加,光学系统的畸变和像差也会增加,可能会影响图像质量。

因此,在实际光学系统的设计中,需要综合考虑视场大小、图像质量和系统成本等因素,进行合理的设计。

视场是光学系统中一个重要的概念,它描述了在光学系统中可见的范围或角度。

视场的计算涉及到光学系统的焦距、孔径和物体大小等参数。

视场的计算可以用角度或线性尺寸来表示。

视场的大小对光学系统的设计和性能具有重要的影响。

在实际的光学系统设计中,
需要综合考虑视场大小、图像质量和系统成本等因素,进行合理的设计。

相关文档
最新文档