填料塔吸收实验报告.doc

合集下载

填料吸收综合实验

填料吸收综合实验

填料吸收塔试验一、实验目的1. 了解填料塔的流体力学性能;2. 学习填料吸收塔传质单元高度H OL 、体积吸收系数K X a 和回收率的测定方法。

二、实验内容1. 观察流体在填料吸收塔中的操作状态,测定△P/Z~u 关系曲线并确定液泛气速。

2. 测量填料吸收塔的传质单元高度、体积吸收系数和回收率。

三、实验原理吸收塔的液泛气速数据在塔的设计和操作中起着非常重要的作用,所以本实验通过测定△P/Z~u 关系曲线和观察实验现象两种方法来确定“液泛气速”。

吸收系数是决定吸收速率高低的重要参数,获得吸收系数绝大多数的方法是采用实验的方法。

对于相同的物料系统和一定的设备(填料的类型和尺寸)。

吸收系数将随着操作条件及气、液接触状况的不同而变化。

CO 2是难溶于水的气体,故液膜阻力控制着整个吸收过程速率的大小。

所以,在其它条件不变的前提下,随着液体喷淋量的增大,吸收系数也相应增大。

本实验所用气体混合物是含有少量CO 2的CO 2与空气混合物,用水做吸收剂。

由于吸收液中CO 2的浓度不高,可认为气—液平衡关系服从亨利定律,可用方程Y=mX 表示;且因是常压操作,故相平衡常数m 值仅是温度的函数。

K X a 可依下列公式进行计算:而:因此: 同时,由此,在一定液体流量下,即可测得液相总吸收系数。

由于CO 2难溶气体,故而K X ≈k x ,从而即可测出液侧吸收系数。

式中:Z —填料层的高度,m ;本实验,Z =0.4m 。

H OL —液相总传质单元高度,m ;mOL X X X N ∆-=21OL OL N ZH =O LO L N H Z =Ω=OL X H L a KN OL —液相总传质单元数,无因次;X 1 、X 2 —进、出口液体中溶质组分的摩尔比,kmol(A)/kmol(S);K X a —气相总体积吸收系数,kmol /(m 3 ·h);L —水的摩尔流率,kmol(S)/h ; Ω—填料塔截面积,m 2;24D π=Ω,本实验吸收塔塔径D =75mm 。

填料吸收塔实验报告结果与讨论

填料吸收塔实验报告结果与讨论

填料吸收塔实验报告结果与讨论引言填料吸收塔是一种常用的化工设备,主要用于气液相的物质传质过程。

本次实验旨在探究填料吸收塔在不同操作条件下的性能表现,并对实验结果进行分析和讨论。

实验方法1.准备工作:清洗填料吸收塔,并确保其内部干净无杂质。

2.实验设定:根据需求设置填料吸收塔的进料流量、进料浓度、塔底温度等操作条件。

3.装填填料:根据实验要求,将适量填料均匀地装填到填料吸收塔中。

4.开启设备:打开填料吸收塔的进料阀门和出料阀门,开始实验。

5.实验记录:记录填料吸收塔的进料流量、出料流量、进料浓度、出料浓度等数据,并定时采集样品进行化验分析。

6.实验结束:根据实验要求,关闭填料吸收塔的进料阀门和出料阀门,停止实验。

实验结果与分析实验一:不同进料流量下的塔效曲线实验设置•进料流量:100 mL/min、200 mL/min、300 mL/min•进料浓度:10%•塔底温度:25°C实验数据进料流量 (mL/min) 出料流量 (mL/min) 塔效100 90 90%200 180 90%300 250 83%分析与讨论通过对比不同进料流量下的塔效数据,可以发现塔效随着进料流量的增加而降低。

这是因为较大的进料流量导致气液相接触时间减少,从而降低了物质传质效率。

因此,在实际应用中,需要根据具体情况选择适当的进料流量,以保证塔效的最大化。

实验二:不同进料浓度下的吸收效率实验设置•进料流量:200 mL/min•进料浓度:10%、20%、30%•塔底温度:25°C实验数据进料浓度 (%) 出料浓度 (%) 吸收效率 (%)10 1 9020 2 9530 3 97分析与讨论根据实验数据,可以观察到随着进料浓度的增加,吸收效率也随之提高。

这是因为较高的进料浓度使得气液相之间的物质传质速率增加,从而提高了吸收效率。

因此,在实际应用中,可以通过调整进料浓度来控制吸收效率。

结论通过本次实验,我们对填料吸收塔在不同操作条件下的性能表现进行了研究和分析。

化工原理实验报告-填料塔吸收实验

化工原理实验报告-填料塔吸收实验

填料吸收塔吸收操作及体积吸收系数的测定课程名称:过程工程原理实验(乙)指导老师:成绩:__________________实验名称:同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1.了解填料吸收塔的构造并熟悉吸收塔的操作。

2.观察填料吸收塔的液泛显现,测定泛点空塔气速。

3.测定填料层压降ΔP与空塔气速u的关系曲线。

4.测定含氨空气—水系统的体积吸收系数K Yα。

二、实验装置1.本实验装置的流程示意图见图5-1。

主体设备是内径70毫米的吸收塔,塔内装10×9×1陶瓷拉西环填料。

2.物系是(水—空气—氨气)。

惰性气体空气由漩涡气泵提供,氨气由液氨钢瓶供应,吸收剂水采用自来水,它们分别通过转子流量计测量。

水葱塔顶喷淋至填料层与自下而上的含氨空气进行吸收过程,溶液由塔底经液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。

1—填料吸收塔2—旋涡气泵3—空气转子流量计4—液氨钢瓶5—氨气压力表6—氨气减压阀7—氨气稳压罐8—氨气转子流量计9—水转子流量计10—洗气瓶11—湿式流量计12—三通旋塞13、14、15、16—U型差压计17、18、19—温度计20—液位计 图5-1填料塔吸收操作及体积吸收系数测定实验装置流程示意图三、基本原理(一)填料层压力降ΔP 与空塔气速u 的关系气体通过干填料层时(喷淋密度L =0),其压力降ΔP 与空塔气速u 如图6中直线A 所示,此直线斜率约为1.8,与气体以湍流方式通过管道时ΔP 与u 的关系相仿。

如图6可知,当气速在L 点以下时,在一定喷淋密度下,由于持液量增加而使空隙率减小,使得填料层的压降随之增加,又由于此时气体对液膜的流动无明显影响,在一定喷淋密度下,持液量不随气速变化,故其ΔP ~u 关系与干填料相仿。

填料吸收塔传质系数测定实验报告数据处理

填料吸收塔传质系数测定实验报告数据处理

填料吸收塔传质系数测定实验报告的数据处理是为了从实验数据中计算出填料吸收塔的传质系数。

下面是一个常见的数据处理步骤,供参考:
1. 数据整理:整理实验所得数据,包括填料层高度、溶液进口浓度、出口浓度等参数,以及实验过程中记录的温度、压力等信息。

2. 确定传质模型:根据实验设计和填料吸收塔的结构特点,确定适合的传质模型,如洗涤理论、湿壁传质模型等。

3. 建立浓差和质量平衡方程:根据传质模型和实验条件,建立质量平衡和浓差方程,用以描述塔内物质的传质过程。

4. 参数拟合:通过最小二乘法等拟合方法,将实验数据与传质模型进行拟合,得到各传质参数的估计值。

这可能涉及到填料层高度、传质系数、扩散系数等参数。

5. 统计分析:进行相关的统计分析,如计算参数估计的标准误差或置信区间,以评估参数估计的精确性和可靠性。

6. 结果解释:根据参数估计结果,计算填料吸收塔的传质系
数,并结合理论知识和实验结果,对传质过程进行分析和解释。

需要注意的是,数据处理的具体方法和步骤可能因实验设计和传质模型的不同而有所差异。

在进行数据处理时,应参考相关的传质模型和实验设计,并根据实际情况进行适当的调整和修正。

此外,数据处理的结果应结合实验结果和领域知识进行分析和解释,以得出准确且有意义的结论。

实验六:填料吸收塔性能测定实验

实验六:填料吸收塔性能测定实验

实验六 填料吸收塔性能测定实验一、实验目的1、了解填料吸收塔的结构和基本流程;2、熟悉填料吸收塔的操作;3、观察填料吸收塔的流体力学行为并测定在干、湿填料状态下填料层压降与空塔气速的关系4、测定总传质系数Ky ,并了解其影响因素。

二、实验原理气体吸收是常见的传质过程,它是利用液体吸收剂选择性吸收气体混合物中某种组分,从而使该组分从混合气体中得以分离的一种操作。

对稳定的低浓度物理吸收过程,根据吸收过程的物料衡算及传质速率方程有:m y Y Z A K Y Y V ∆⋅⋅⋅=-)(21故 my Y Z A Y Y V K ∆⋅⋅-=)(21式中:V ——通过吸收塔的惰性气体量即空气的摩尔流(kmol/h ) 1Y 、2Y ——气相入口(塔底)、出口(塔顶)溶质摩尔比(kmol 溶质/kmol 惰性气体)A ——塔的有效吸收面积即塔的截面积 (2m ) Z ——填料层高度(m )m Y ∆——对数平均推动力,211211*ln*)(Y Y Y Y Y Y Y m ---=∆ Y 1*为与塔底X 1成平衡的气相浓度,11*X P E Y =,其中:P 为塔底操作压强绝对大气压(atm ),E 为亨利系数,E=0.31143×1.047t可见,通过测定操作过程吸收系统的V 、Y 1、Y 2、A 、Z 及△Y m 即可计算出K Y 值。

三、实验装置1、本实验装置主要由吸收塔、空压机、流量计、U型压差计、、控制架等设备组成。

2、吸收塔采用填料塔,直径为80mm,塔体为透明有机玻璃,便于学生观察相关实验现象。

吸收实验采用丙酮为吸收介质,用水为吸收剂。

填料采用 φ10*10mm瓷拉西环,吸收前、后的尾气组成采样后由气相色谱分析(根据用户要求也可设计成计算机在线采样分析),或采用阿贝折光仪测定样品的折光率与标准曲线对照。

吸收塔的入口气量和入塔液相量均可通过控制阀任意调节,还可在实验时直接观察到各种填料塔的流体力学现象,包括沟流与液泛、淹塔等现象。

吸收实验—填料塔吸收传质系数的测定.

吸收实验—填料塔吸收传质系数的测定.

实验八吸收实验—填料塔吸收传质系数的测定一、实验目的⒈了解填料塔吸收装置的基本结构及流程;⒉掌握总体积传质系数的测定方法;⒊测定填料塔的流体力学性能;⒋了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;⒌了解气相色谱仪和六通阀在线检测CO2浓度和测量方法;二、基本原理气体吸收是典型的传质过程之一。

由于CO2气体无味、无毒、廉价,所以气体吸收实验选择CO2作为溶质组分是最为适宜的。

本实验采用水吸收空气中的CO2组分。

一般将配置的原料气中的CO2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。

又CO2在水中的溶解度很小,所以此体系CO2气体的吸收过程属于液膜控制过程。

因此,本实验主要测定Kxa和HOL。

⒈计算公式:填料层高度h为:h=⎰h0dh=LKXaΩ⎰XbdXX-X*Xa=HOL⋅NOL A=LmV,则:NOL=11-Aln[(1-A)Yb-mXaYb-mXb+A]令:吸收因数HOL=LKxaΩ=hNOLKXa=LHOLΩ式中:h──填料层高度,m;L──液体的摩尔流量,kmol/s;Ω──填料塔的横截面积,m2;Kxa──以△X为推动力的液相总体积传质系数,kmol/(m3〃s);HOL──液相总传质单元高度,m;NOL──液相总传质单元数,无因次;Xa,Xb──CO2在塔顶、塔底液相中的摩尔比浓度,无因次;Ya,Yb──CO2在塔顶、塔底气相中的摩尔比浓度,无因次。

⒉测定方法(a)空气流量和水流量的测定本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。

(b)测定塔顶和塔底气相组成yb和ya;(c)平衡关系。

本实验的平衡关系可写成: Y=mX 式中:m──相平衡常数,m=E/P;E──亨利系数,E=f(t),Pa,根据液相温度测定值由附录查得;P──总压,Pa。

对清水而言,Xa=0,由全塔物料衡算V(Yb-Ya)=L(Xb-Xa),可得Xb。

实验九 填料塔吸收实验

实验九 填料塔吸收实验一、实验目的1、了解填料吸收塔的结构和基本流程2、熟悉填料吸收塔的操作3、观察填料吸收塔的流体力学行为并测定在干、湿填料状态下填料层压降与空塔气速的关系4、测定总传质系数Kya ,并了解其影响因素二、基本原理气体吸收是常见的传质过程,它是利用液体吸收剂选择性吸收气体混合物中某种组分,从而使该组分从混合气体中得以分离的一种操作。

对稳定的低浓度物理吸收过程,根据吸收过程的物料衡算及传质速率方程有:V (Y 1-Y 2)=ya K 'Ω·Z·△Y m故m21ya Y Z )Y Y (V K ∆⋅⋅Ω-=' 式中:V ,通过吸收塔的惰性气体量即空气的摩尔流量,kmol/h1Y 、2Y ,气相入口、出口溶质摩尔比,kmol 溶质/kmol 惰性气体Ω,塔的有效吸收面积即塔的截面积,2mZ ,填料层高度,m m Y ∆,对数平均推动力可见,通过测定操作过程吸收系统的V 、Y 1、Y 2、Ω、Z 及△Y m ,即可计算出ya K '值。

(1)空气流量V 的测定空气流量按下式计算即可:11T P T P P T Q C Q O oair o air o ⋅⋅⋅= 及 air o Q V 4.221= 式中:o T 、o P 、air o Q ,空气在标准状态下的温度、压力、流量,K 、a P 、m 3/hT 、P 、air Q ,转子流量计标定状态下空气的温度、压力、流量,单位同上 1T 、1P ,空气进入转子流量计前的温度、压力,K 、a PC ,转子流量计系数,本实验为1.00V ,空气的摩尔流量,Kmol/h(2)溶质(气体)入塔浓度1Y 的测定air P P Y 丙酮=1 或 丙酮丙酮P P P Y T -=1 kmol 3NH /kmol air式中:P T ,入塔前混合气体总压(Pa ),本装置可设定在0.02MPa (表压)左右 丙酮P ,入塔温度t 下丙酮分压,可近似认为丙酮在t 温度下达到饱和,其饱和蒸汽压服从Antoine 方程:In 丙酮P =A- B/(C+1),式中丙酮P 、t 单位分别为mmHg 及0C ,常数A 、B 、C 分别为16.6513、2940.46和237.22。

实验七填料塔吸收实验

实验七填料吸收塔的操作和吸收系数的测定一、实验目的1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。

2.熟悉填料塔的流体力学性能。

3.掌握总传质系数K Y a测定方法。

4.了解空塔气速和液体喷淋密度对传质系数的影响。

二、实验内容1.测定干填料及不同液体喷淋密度下填料的阻力降∆P与空塔气速u的关系曲线,并确定液泛气速。

2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数K Y a。

三、基本原理1.填料塔流体力学特性填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。

支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、θ网环都属于实体填料。

填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。

液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。

吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降∆P的产生。

填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。

了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。

填料塔的流体力学特性的测定主要是确定适宜操作气速。

在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降∆P与空塔气速u的关系可用式∆P=u1.8-2.0表示。

在双对数坐标系中为一条直线,斜率为 1.8-2.0。

在有液体喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。

在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守∆P∝u1.8-2.0这一关系。

但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。

吸收实验实验报告

精选一、 实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数K Y a.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。

但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。

(一)、空塔气速与填料层压降关系气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。

若以空塔气速o u [m/s]为横坐标,单位填料层压降ZP ∆[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。

当液体喷淋量L 0=0时,可知Z P ∆~o u 关系为一直线,其斜率约1.0—2,当喷淋量为L 1时,ZP ∆~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。

每条折线分为三个区段,Z P ∆值较小时为恒持液区,Z P ∆~o u 关系曲线斜率与干塔的相同。

Z P ∆值为中间时叫截液区,ZP ∆~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A 。

ZP ∆值较大时叫液泛区,ZP ∆~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。

在液泛区塔已无法操作。

塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。

吸收实验图2-2-7-1 填料塔层的ZP ∆~o u 关系图图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。

若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收平均推动力可用对数平均浓度差法进行计算。

其吸收速率方程可用下式表示:m Ya A Y H K N ∆⋅⋅Ω⋅= (1) 式中:N A ——被吸收的氨量[kmolNH 3/h];Ω——塔的截面积[m 2]H ——填料层高度[m]∆Y m ——气相对数平均推动力K Y a ——气相体积吸收系数[kmolNH 3/m 3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):)()(2121X X L Y Y V N A -=-= (2) 式中:V ——空气的流量[kmol 空气/h]L ——吸收剂(水)的流量[kmolH 20/h]Y 1——塔底气相浓度[kmolNH 3/kmol 空气]Y 2——塔顶气相浓度[kmolNH 3/kmol 空气]X 1,X 2——分别为塔底、塔顶液相浓度[kmolNH 3/kmolH 20]由式(1)和式(2)联解得:mYa Y H Y Y V K ∆⋅⋅Ω-=)(21(3) 为求得K Y a 必须先求出Y 1、Y 2和∆Y m 之值。

化工原理实验报告_吸收

填料塔流体力学特性与吸收系数的测定一、实验目的:1.观察填料塔内气液两相流动情况和液泛现象2.测定干、湿填料层压降,在双对数坐标纸上标绘出空塔气速与湿填料层压降的关系曲线。

3.了解填料吸收塔的流程及构造。

4.测定在一定条件下,用水吸收空气中氨的吸收系数。

二、实验原理:填料塔压降和泛点与气、液相流量的关系是其主要的流体力学特性。

吸收塔的压降与动力消耗密切相关,而根据泛点则可确定吸收塔的适宜气、液相流量。

气体通过填料塔时,由于存在形体及表皮阻力而产生压力降。

无液体喷淋时,气体的压力降仅与气体的流速有关,在双对数坐标纸上压力降与空塔速度的关系为一直线,称为干填料压降曲线。

当塔内有液体喷淋时,气体通过填料塔的压力降,不仅与气体流速有关,而且与液体的喷淋密度有关。

在一定的喷淋密度下,随着气速增大,依次出现载点和泛点,相应地∆P/Z ~U 曲线的斜率也依次增大,成为湿填料压降曲线。

因为液体减小了空隙率,所以后者的绝对值和斜率都要比前者大。

吸收系数是吸收设备的主要性能参数,影响吸收系数的因素包括气体流速、液体喷淋密度、温度、填料的自由体积、比表面积以及气液两相的物化性质等。

本吸收实验以水为吸收剂,吸收空气-氨气体系中的氨。

因为氨气为易溶气体,所以此吸收操作属气膜控制。

吸收系数随着气速的增大而增大,但气速增大至某一数值时,会出现液泛现象,此时塔的正常操作将被破坏。

本实验所用的混合气中,氨气浓度很低,吸收所得的溶液浓度也不高。

气液两相的平衡关系可认为符合亨利定律mX Y =*吸收过程的传质速率方程为:m Y A Y V a K N ∆⋅=填 吸收过程的物料衡算式为:()21Y Y V N A -= 式中:A N ——氨的吸收量,kmol/sV ——空气流量,kmol/s1Y ——塔底气相浓度,kmolNH 3/kmolair 2Y ——塔顶气相浓度,kmolNH 3/kmolaira K Y ——以气相摩尔比差为推动力的体积吸收系数,s kmol/m 3⋅本实验所用装置与流程如图1所示,清水的流量由转子流量计显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

填料塔吸收实验报告.doc
填料塔是石化、化肥、医药等行业中非常重要的流体吸取设备,它主要用来吸取低浓度气体或混合气体中的含气量。

填料塔的吸收性能是反应其内处理能力的最直观表征,因此,为了评价其吸收能力,我们进行了相应的试验研究。

实验设备由蒸发器、吸收器、搅拌器、扩散器、微液管还有可调压力表等组成,实验所用介质为CO2-CH4共沉液,实验中所采用的催化剂量为326 kg/m3。

首先,在样品气体以和0.21MPa入口压力、搅拌速度为162 rpm和温度为298.4 K的条件下进行实验,经控制参数后,搅拌速度和温度均保持不变,催化剂层的厚度也不变,将CO2-CH4共沉取1小时,用于分析混合气体测量。

再将其再搅拌3小时,也就是经过4小时的实验,得到的混合气体测量结果如下:入口CO2含量为6.90%,出口CO2含量为0.182%,可以看出CO2单位吸收量大约为680g/m3.
经比较,实验搅拌器中吸收CO2主要存在两个作用——一是热和物相扩散,二是热力学不平衡,这两种力学原理是填料塔吸收实验最主要的影响因素。

填料塔吸收实验中CO2的差压吸收量并不大,但大多数现代填料塔吸收器在充分利用这两个力学原理的情况下,可以提高吸收量,发挥其最大的效果。

最后,通过这次实验,得到的结论是:填料塔的吸收性能受温度、搅拌速度和催化剂层厚度等因素的影响很大,同时,在充分利用热和物相扩散以及热力学原理的情况下,还可以提高吸收量。

因此,在实际应用中,应该根据不同的操作情况选择合适的参数,以获取最佳的吸收性能。

相关文档
最新文档