生理学考试重点归纳40275

生理学考试重点归纳40275
生理学考试重点归纳40275

第一章绪论

1环境 internal environment 细胞在体直接接触和生活的环境,即细胞外液

2稳态 homeostasis环境理化性质在一定围变动但又保持相对稳定的状态,称为稳态

3自身调节(autoregulation):是指外环境变化时,组织、细胞不依赖于外来的神经或体液因素,所发生的适应性反应。

4环境的稳态:环境的各种物理、化学性质是保持相对稳定的,被称为环境的稳态。

5负反馈:反馈信息使控制系统的作用向相反效应转化。

思考题:

1人体生理功能三大调节方式?各有何特点?

1).神经调节指通过神经系统的活动,对生物体各组织、器官、系统所进行的调节。特点是准确、迅速、持续时间短暂。

2).体液调节体产生的一些化学物质(激素、代产物)通过体液途径(血液、组织液、淋巴液)对机体某些系统、器官、组织或细胞的功能起到调节作用。特点是作用缓慢、持久而弥散。 3).自身调节组织和细胞在不依赖于神经和体液调节的情况下,自身对刺激发生的适应性反应过程。特点是调节幅度小。

2简述负反馈及其生理意义

答:负反馈是指反馈信息的作用使控制系统的作用向相反效应转化;其意义是使机体功能活动及环境理化因素保持相对稳定。

3何谓环境,及其生理意义?

答:环境就是指多细胞动物的体液,包括组织液,血浆和淋巴液。稳态就是生物能够保持环境的状态稳定在一个很小的围之的机制。主要是通过一系列的反馈机制完成的。高等动物稳态主要是靠体液调节和神经调节来维持。意义在于:①能够扩大生物对外界环境的适应围,少受外界不良环境的制约。②能够让生物的酶保持最佳状态,让生命活动有条不絮地进行。

第二章细胞的基本功能

1兴奋性:机体受刺激后产生反应的能力或特征称为兴奋性

2阈强度:在刺激的持续时间以及刺激强度对时间的变化率不变的情况下,刚能引起细胞兴奋或产生动作电位的最小刺激强度。

3静息电位:细胞在安静时,存在于细胞膜、外两侧的电位差,膜外为正,膜为负,该电位称为静息电位

4动作电位:可兴奋细胞受到有效刺激时,在静息电位的基础上,细胞膜产生一次快速可逆转、可扩布的电位变化,称动作电位,

5易化扩散:溶液中的带电离子借助膜蛋白的介导,顺浓度梯度或电位梯度的跨膜扩散

6兴奋—收缩耦联:把肌细胞的电兴奋与肌细胞的机械收缩连接起来的中介过称。

7阈电位:能引起细胞膜中的通道突然大量开放并引发动作电位的临界膜电位。

8极化:细胞处于静息电位时,膜电位较膜外电位为负,这种膜为负,膜外为正的状态,称为膜的极化

9等长收缩:收缩时肌肉的长度保持不变而只有力增加。

1.静息电位的产生机制

答:静息电位:细胞处于安静状态下(未受刺激时)膜外的电位差。静息电位表现为膜个相对为正而膜相对为负。

形成机制:1细胞高浓度K+.2静息时细胞膜只对K+有通透性,则K+受到浓度差的驱使动力向膜外扩散,3.扩散后形成外正负的跨膜电位差成为对抗浓度差的作用力,当达到平衡状态时,K+不再有跨膜的静移动,此时的跨膜电位称为K+平衡电位,膜外K+浓度差值可影响静息电位水平.

2动作电位的产生机制?

答:在静息电位的基础上,细胞受到一个适当的刺激,其膜电位所发生的迅速、一过性的极性倒转和复原,这种膜电位的波动称为动作电位。产生机制:动作电位上升支主要由Na+流形成,接近于Na+的电-化学平衡电位。①细胞外Na+和K+的分布不均匀,细胞外高Na+而细胞高K+。钠顺浓度梯度和电位梯度大量流。②细胞兴奋时,膜对Na+有选择性通透,当达到-70mv时,Na+顺浓度梯度流,形成锋电位的上升支③K+外流增加形成了动作电位的下降支其机制同静息

(2)兴奋沿坐骨神经的传导。实质上是动作电位向周围的传播。动作电位以局部电流的方式传导,在有髓神经纤维是以跳跃式传导,因此比无纤维传导快且“节能”。动作电位在同一细胞上的传导是“全或无”式的,动作电位的幅度不因传导距离增加而减小。

(3)神经-脊髓肌接头处的兴奋传递。实际上是“电-化学-电”的过程,神经末梢电变化引起化学物质释放的关键是Ca2+的流,而化学物质Ach引起中板电位的关键是Ach和Ach门控通道上的两个α亚单位结合后结构改变导致Na+的流增加。

(4)骨骼肌细胞的兴奋-收缩的耦联过程。是指在以膜的电变化为特征的兴奋过程和以肌纤维机械变化为基础的收缩过程之间的某种中介性过程。关键部位为三联管结构。有三个主要步骤:电兴奋通过横管系统传向细胞深处;三联管结构处的信息传递;纵管结构对Ca2+的贮存、释放和聚集。其中,Ca2+在兴奋-收缩耦联过程中发挥着关键作用。

(5)骨骼肌的收缩:肌细胞膜兴奋传导到终池--终池Ca2+释放--胞质Ca2+的浓度增高--Ca2+与肌钙蛋白结--原肌球蛋白变构,暴露出肌动蛋白上的

活化点--处于高势能状态的横桥与肌动蛋白--横桥头部发生变构并摆动—细肌丝向粗肌丝滑行—肌节缩短。肌肉舒过程与收缩过程相反。由于舒时

引起接头前膜电压门控性Ca2+通道的开放--Ca2+在电化学驱动力作用流进入轴突末梢—末梢Ca2+的浓度增加--Ca2+触发囊泡向前膜靠近、融合、破裂、释放递质Ach--Ach通过接头间隙扩散到接头后膜(终板膜)并与后膜上的Ach受阳离子通道上的两个α-亚单位结合—终板膜对Na+、K+的通透性增高-- Na+流(为主)和K+的外流—后膜去极化,称为终板电位(EPP)--终板电位是局部电位可以总和—临近肌细胞膜去极化达到阈电位水平而产生动作电位。Ach发挥作用后被接头间隙中的胆碱酯酶分解失活。特点:1单向传递2时间延搁3一对

T管膜上的L型钙通道。

(2)激活的L型钙通道通过变构作用(在骨骼肌)或流的Ca2+(在心肌)激活连接肌质网(JSR)膜上的钙释放通道(RYR),RYR的激活使JSR的Ca2+释放入细胞质;

(3)胞质的Ca2+的浓度升高引发肌肉萎缩。

(4)细胞质Ca2+的浓度升高的同时,激活纵行肌质网(LSR)膜上的钙泵,回收胞质的Ca2+入肌质网,肌肉舒,其中,Ca2+在兴奋-收缩过程中发挥着关键作用。

6细胞膜的跨膜物质转运形式:

答:1、单纯扩散,如O2、CO2、N2等脂溶性物质的跨膜转运2、易化扩散,分为经载体的易化扩散(葡萄糖由血液进入红细胞)和经通道的易化扩散(K+、Na+、Ca+顺浓度梯度的跨膜转运) 3.主动转运,分为原发性主动转运(K+、Na+、Ca+逆浓度梯度或电位梯度的跨膜转运)和继发性主动转运(小肠粘膜和肾小管上皮细胞吸收和重吸收葡萄糖时跨管腔膜的主动转运)。 4.出胞(腺细胞的分泌,神经递质的释放)和入胞9白细胞吞噬细菌、异物的过程)

7Na+、K+泵的生理意义:

答:1.Na+泵活动造成细胞高K+是细胞许多生化反应所必需的 2.Na+泵不断将Na+泵出胞外,有利于维持胞浆正常渗透压和细胞的正常容积 3.Na+泵活动形成膜外Na+的浓度差是维持Na+-H+交换的动力,有利于维持细胞PH值的稳定4.Na+泵活动建立的势能贮备,为细胞的生物电活动以及非电解质物质的继发性主动转运提供能量来源

第三章血液

1血沉(ESR):通常以红细胞在第一小时末下沉的距离来表示红细胞的沉降速度,称为红细胞沉香率()简称血沉

2血细胞比容:血细胞在全血中所占的容积百分比。

3血液凝固:简称血凝,指血液从流动的溶胶状态变成不流动的凝胶状态,分为三个步骤,凝血酶原酶复合物(FXa-FVa-Ca2+-磷脂复合物)的形成,凝血酶的激活,纤维蛋白的生成

维护、修复血管壁完整性的功能。

(2)生理止血功能:血管损伤处暴露出来的胶原纤维上,同时发生血小板的聚集,形成松软的血小板血栓,以堵塞血管的破口。最后在血小板的参与下凝血过程迅速进行,形成血凝块。

(3)凝血功能:当粘着和聚集的血小板暴露出来单位膜上的磷脂表面时,能吸附许多凝血因子,使局部凝血因子浓度升高,促进血液凝固。(4)在纤维蛋白溶解中的作用:血小板对纤溶过程有促进作用,也有抑制作用,而释放大量的5-HT,则能刺激血管皮细胞释放纤溶酶原的激活物,激活纤溶过程。

2、外源凝血的区别?

答:(一)启动因子不同源性凝血是因子Ⅻ启动;外源性凝血是因子Ⅲ启动;(二)反应步骤和速度不同外源性凝血比源性凝血的反应步骤少,速度快;(三)凝血因子的数量和来源不同源性凝血的因子数量多,且全在血浆中;外源性凝血的因子少,且需要有组织操作释放的因子Ⅲ参与。(四)凝血过程:凝血酶原酶复合物的形成,凝血酶原的激活和纤维蛋白的生成。

3血型鉴定?

答:血型是指血细胞膜上的凝集原类型。ABO血型鉴定,即指ABH血型抗原的检测。红细胞含A抗原的叫A型,含B抗原的叫B型,含A和B抗原的叫AB型;不含A、B抗原,而含H抗原的称O型。常规的方法有:①正向定型:用已知抗体的标准血清检查红细胞上未知的抗原。②反向定型:用已知血型的标准红细胞检查血清中未知的抗体。

第四章血液循环

1心动周期:心脏一次收缩或舒,构成一个机械活动周期。

2射血分数:每搏输出量占心室舒末期溶积的百分比。

3心输出量:一侧心室每分钟射出的血液量,称每分输出量,等于搏出量与心率的乘积。

4期前收缩:正常心脏按照窦房结的节律而兴奋和收缩,但在某些实验条件和病理情况下,如果心室在有效不应期之后受到人工的或窦房结之外的病理性异常刺激则心室可以接受这一额外刺激,产生一次期前兴奋。由此引起的收缩称为期前收缩。

5窦性心律:心脏中窦房结细胞的自律性最高,它自动产生的兴奋向外传导,引起整个心脏兴奋和收缩,这种以窦房结为起搏点的心脏节律活动称为窦性心律。

6收缩压:心室收缩时主动脉压急剧升高,大约在收缩期的中期达到最高值,这时的动脉血压值称为收缩压。

7舒压:心室舒时主动脉压下降,在心舒末期动脉血压的最低值,称为舒压。

8中心静脉压:指右心房和胸腔的大静脉的血压,约4-12cmH2O。

9微循环:是指循环系统在微动脉和微静脉之间的部分

10动脉血压(arterial blood pressure):指动脉血管血液对管壁的压强。

11房室延搁:兴奋通过房室交界区传导速度最慢.使心房和心室不会同时兴奋,心房兴奋而收缩时,心室仍处于舒状态。保证心房、心室顺序活动,和心室有足够充盈血液的时间

12异常调节:这种通过改变心肌初长度而引起心肌收缩力改变的调节,称为异常调节

为收缩期和扩期。但两者在活动的时间和顺序上并非完全一致,心房收缩在前、心室收缩在后。一般以心房开始收缩作为一个心动周期的起点,如正常成年人的心率为75次/分时,则一个心动周期为0.8秒,心房的收缩期为0.1秒,舒期为0.7秒。当心房收缩时,心室尚处于舒状态;在心房进入舒期后不久,紧接着心室开始收缩,持续0.3 秒,称为心室收缩期;继而计入心室舒期,持续0.5秒。在心室舒的前0.4秒期间,心房也处于

-90mV。2、形成的机制(类似骨骼肌和神经细胞):主要是K+平衡电位。

(2)动作电位(明显不同于骨骼肌和神经细胞)1、特点:去极过程和复极过程不对称,分为0、1、2、3、4期,总时程约200~300ms。2、动作电位的形成机制。向电流:正离子由膜外向膜流动或负离子由膜向膜外流动,使膜除极。外向电流:正离子由膜向膜外流动或负离子由膜外向膜流动,使膜复极或超级化。0期:Na+流(快Na+通道,即I Na通道)接近Na+的平衡电位。1期:K+外流(一次性外向电流,即I10)导致快速复极。2期:向离子流(主要为Ca2+和少量Na+流,即慢钙通道又称L-型钙通道)与外向离子流(K+外流,即I K)处于平衡状态;在平台期的晚期前者逐渐失活,后者逐渐加强。

平台期是心室肌细胞动作电位持续时间较长的主要原因,也是心肌细胞区别于神经细胞和骨骼细胞动作电位的主要特征。平台期与心肌的兴奋-收缩耦联、心室不应期长、不会产生强直收缩有关,也常是神经递质和化学因素调节及药物治疗的作用环节。3期:慢钙通道失活关闭,向离子流终止,膜对K+的通透性增加,出现K+外流。4期:膜的离子转运技能加强,排出细胞的和,摄回细胞外的K+,使细胞外各离子的浓度梯度得以恢复,++2+-Na+的交换(1:3)和Ca2+泵活动的增强。

缩压降低,脉压减小。因此,收缩压的高低主要反映心脏每搏输出量的多少。

(2)心率:心率增加时,舒压升高大于收缩压升高,脉压减小;反之,心率减慢时,舒压降低大于收缩压降低,脉压增大。

(3)外周阻力:外周阻力加大时,舒压升高大于收缩压升高,脉压减小;反之,外周阻力减小时,舒压的降低大于收缩压的降低,脉压加大,因此,舒压主要反映外周阻力的大小。

(4)主动脉和大动脉的顺应性:它主要起缓冲血压的作用,当大动脉硬化时,弹性贮器作用减弱,收缩压升高而舒压降低,脉压增大。

血管系统充血程度的指标。

(2)心脏收缩力量:心脏收缩力量增强,心室收缩末期容积减少,心室舒期室血压较低,对心房和大静脉中血液的抽吸力量大,静脉回流增多。心衰时,由于射血分数降低,使心舒末期容积(压力)增加,从而妨碍静脉回流。

(3)体位改变:当人体从卧位转为直立时,身体低垂部位的静脉因跨壁压增大而扩,造成容量血管充盈扩,使回心血量减少。

(4)骨骼肌的挤压作用:当骨骼肌收缩时,位于肌肉的肌肉间的静脉收到挤压,有利于静脉回流;当肌肉舒时,静脉压力降低,有利于血液从毛细血管流入静脉,使静脉充盈,在健全的静脉瓣存在的前提下骨骼肌的挤压促进静脉回流,即“静脉泵”或“肌肉泵”的作用。

(5)呼吸运动:吸气时,胸腔容积加大,胸压进一步降低,使位于胸腔的大静脉和右心房跨壁压增大,容积扩大,压力降低,有利于体循环的静脉回流;呼气时回流减少;同时,左心房肺静脉的血液回流情况与右心相反。

5.组织液的生成过程(机制)/因素

答:.组织液是血浆滤过毛细血管壁而形成的,其生成量主要取决于有效滤过压。有效滤过压=(毛细血管血压+组织液胶体渗透压)-(血浆胶体渗透压+组织液静水压),在动脉端,有效滤过压=10mmHg,组织液生成;在静脉端,有效滤过压=-8mmHg,组织液回流。

(2)毛细血管通透性;(3)静脉和淋巴回流等等

而扩,从而使血管壁外膜上作为压力感受器的神经末梢兴奋,引起减压反射,使血压下降。当血压下降使窦压降低时,减压反射减弱,使血压升高。在实验中夹闭一侧总动脉后,心室射出的血液不能流经该侧颈动脉窦,使窦压降低,压力感受器收到刺激减弱,经窦神经上传中枢的冲动减少,减压反射活动减弱,因而将出现心率加快、心缩力加强、回心血量增加(因容量血管收缩)、心输出量增加、阻力血管收缩、外周阻力增加,最终导

1受体结合,而产生正性变时、变力、变传导作用;

与血管平滑肌上的α、β2受体结合,产生血管平滑肌收缩或舒作用。但是,由于血管上α、β2受体的分布特点,及二者对不同的肾上腺素能的受

动脉弓血管外膜下的感觉神经末梢,窦神经和主动脉弓是其传导神经。当切断了窦神经和主动脉弓以后,压力感受器受到刺激所产生的冲动就不能上传至延髓心血管中枢,减压反射活动减弱,因而出现心率加快,心输出量减少,外周阻力升高,最终导致血压升高。

9影响心输出量的因素及其影响机制?

答:心输出量等于每搏输出量和心率的乘积,所以凡能影响搏出量和心率的因素都能影响心输出量。包括以下因素:①前负荷:即心肌的初长度,通过异长调节,在一定的初长度围,心肌收缩力可随心室舒末期容积的增加而增加,即在生理围,心脏能将回流的血液全部输出,使血液不会再静脉和心房蓄积。②心肌收缩能力:心肌不依赖前负荷而能改变其力学活动的一种在特性,通过等长调节改变心肌收缩活动强度和速度而形成的。③后负荷:即动脉血压变化课影响心室肌收缩,从而影响心搏出量。如在其他因素不变的情况下,动脉血压升高,会直接引起等容收缩期延长,射血期变短,速度减慢,所以搏出量减少。④心率:心率在一定围加快,可增加每分输出量,但当心率太快时,由于心室充溢不足,搏出量减少,故每分输出量减少;而心率太慢时,心室充溢增到极限,充盈量和每搏输出量不再相应增加,也使心输出量减少。

10心室肌动作电位的特征及各时相产生的机制?

答:特征是复极化时间长,有两个平台期,其动作电位分为去极化时相(0期)和复极化(1、2、3、4期),0期去极化是由快钠通道开放形成的,而且4期稳定,故为快反应非自律细胞。各离子时相的形成机制:0期去极化是由于Na流,1期是K外流。2期是Ca缓慢持久流和K外流处于平衡状态,使复极化减慢形成平台期,3期是K迅速外流,4期是Na-K泵开动及Ca-Na交换使细胞外的离子浓度的不均衡分布得以恢复的时期。

11心肌兴奋周期性变化及其生理意义?

答:心肌细胞兴奋后,其兴奋会发生一系列的周期性变化,其过程及意义为:①有效不应期:从0期去极化开始到3期膜电位复极化达-60mV这段时间,即以超过阈值的刺激,也不能再次引发动作电位产生;②相对不应期:膜电位由3期复极化从-60到-80mV期间,兴奋性有所恢复但仍处于正常,须用阈上刺激才可以引发动作电位再次产生;③超常期:膜电位由-80恢复到-90mV之前的时间,兴奋性高于正常,用阈下刺激也能引发动作电位再次产生;④低常期:兴奋性低于正常水平,为正后电位期。因此,心肌兴奋性与Na通道的状态有关,由于心肌有效不应期很长,一直持续到舒早期,这期间任何刺激都不能引起心肌再次兴奋和收缩,不会产生强直收缩,从而保证心脏收缩和舒交替进行,以实现其持久的泵血功能。12心脏传导途径特点、房室延搁的生理意义?

答:兴奋传导途径:整常心脏兴奋由窦房结产生后,一方面经过心房肌传到左右心房,另一方面是经过某些心房肌构成优势传导通路传给房室交界,再经房室束及其左右束支、浦是纤维传至左右心室。特点:①心房肌传导速度慢,优势传导通路传导速度快,两心房能同步收缩;②房室交界传导性较差,速度缓慢,因此在这里产生延搁;③心室传导组织传导速度很快,左右心室也能产生同步兴奋和收缩。形成了心房收缩在先,心室收缩在后,避免了心房、心室收缩重叠的现象,充分发挥心房的初级泵血和心室的主力泵作用,使两者斜体一致的泵血功能。

13微循环的通路、生理作用及其调节

答:微循环是指微动脉和微静脉之间的血液循环,是血液与组织细胞进行物质交换的场所。①迂回通路血流从微动脉经后微动脉、前毛细血管括约肌、真毛细血管网,最后汇流至微静脉。由于真毛细血管交织成网,迂回曲折,穿行于细胞之间,血流缓慢,加之真毛细血管管壁薄,通透性又高。因此,此条通路是血液与组织进行物质交换的主要场所。故又称为营养通路。真毛细血管是交替开放的。安静时,骨骼肌中真毛细血管网大约只有20%处于开放状态,运动时,真毛细血管开放数量增加,提高血液和组织之间的物质交换,为组织提供更多的营养物质。②直捷通路血流从微动脉经后微动脉、通血毛细血管至微静脉。这条通路较直,流速较快,加之通血毛细血管管壁较厚,又承受较大的血流压力,故经常处于开放状态。因此这条通路的作用不是在于物质交换,而是使一部分血液通过微循环快速返回心脏。③动--静脉短路血流经被动脉通过动一静脉吻合支直接回到微静脉。动静脉吻合支的管壁厚,有完整的平滑肌层。多分布在皮肤、手掌、足底和耳廓,其口径变化与体温调节有关。当环境温度升高时,吻合支开放,上述组织的血流量增加,有利于散发热量;环境温度降低,吻合支关闭,有利于保存体的热量。

14血浆渗透压的类型,及其定义和生理意义?

答:晶体渗透压维持细胞外水平衡;胶体渗透压维持血管外水平衡。①血浆晶体渗透压是指血浆中的小分子物质(主要是氯化钠、其次是是碳酸氢钠、葡萄糖、尿素、氨基酸等)形成的渗透压力。晶体物质比较容易通过毛细血管壁,因此血液与组织液之间r的渗透压力基本相等。②血浆晶体渗透压对维持细胞外的水分子的正常交换和分布、电解质的平衡及保持血细胞的正常形态和功能具有十分重要的作用。血浆胶体渗透压的正常值约1.5mOsm/L(25mmHg或3.3kPa)。主要由血浆蛋白构成,其中白蛋白含量多、分子量相对较小,是构成血浆胶体渗透压的主要成分。血浆胶体渗透压对于调节血管外水分的交换,维持血容量具有重要的作用。

第五章呼吸

1顺应性:在外力作用下,弹性组织的可扩性称为顺应性,容易扩者顺应性大,弹性阻力小,不易扩者顺应性小,弹性阻力大。

2肺泡通气量:指每分钟吸入肺泡的新鲜空气量,它等于潮气量与无效腔气量之差,乘以呼吸频率。

3通气/血流比值:每分钟肺泡通气量与每分钟肺血流量的比值,正常成人安静时约为0.84。

4氧离曲线:反应氧分压与Hb氧结合量或Hb氧饱和度关系的曲线。

5肺牵反射:由肺扩或萎缩引起的吸气抑制或吸气兴奋的反射。又称黑-伯反射。包括肺扩反射和肺萎缩反射两种表现方式。

6肺活量:指尽力吸气后,再用力呼气,所能呼出的最大气量。正常成年男性平均为3.5L,女性为2.5L。潮气量、补气量和补呼气量之和。

7血红蛋白氧容量:100ml血液中血红蛋白所能结合的最大氧量称为血红蛋白氧容量。

8氧热价:某种食物氧化时消耗1L氧所释放的能量。

9血氧饱和度:血红蛋白含氧量占氧容量的百分比。

10呼吸中枢:指中枢神经系统产生和调节呼吸运动的神经细胞群。

11生理无效腔:每次吸入的气体,一部分将留在从上呼吸道至细支气管以前的呼吸道,这部分气体不参与肺泡与血液之间的气体交换称为解剖无效腔,因血流在肺分布不均而未能与血液进行气体交换的这一部分肺泡容量,称为肺泡无效腔。两者合称生理无效腔。

12肺扩散容积:气体在0.133kpa(1mmhg)分压差作用下,每分钟通过呼吸膜扩散的气体的ml数。

13氧容量,指100ml血液中,血液所能运输的最大氧量。

14肺泡通气量:每分钟吸入肺泡的新鲜空气量,等于(潮气量—无效腔气量)×呼吸频率。

15弹性阻力:弹性组织在外力作用下变形时,有对抗变形和弹性回缩的倾向,这种阻力称为弹性阻力。

16表面活性物质,是由肺泡ii型细胞合成释放的复杂的脂蛋白混合物,以单分子层形式覆盖于肺泡液体表面的一种脂蛋白。主要成分是二棕榈酰卵磷脂,它分布于肺泡表面,可以降低表面力的作用。

中枢化感器: 指位于延髓腹外侧浅表部位、对脑组织液和脑脊液h+浓度变化敏感的化学感受器。可接受h+浓度增高的刺激而反射地使呼吸增强。

17用力呼气量:最大吸气后,再用力尽快呼气,计算第一秒末,第二秒末,第三秒末呼出的气量占其用力肺活量的百

为迷走神经。吸气时肺扩牵拉呼吸道,兴奋肺牵感受器,冲动沿迷走神经的传入纤维到达延髓,在延髓通过一定的神经联系使吸气切断机制兴奋,切断吸气,转入呼气,是呼吸保持一定的深度和频率,当剪断家兔双侧迷走神经后,使家兔吸气不能及时转入呼气,出现吸气延长和加深,变为深而慢的呼吸。

3,CO2对呼吸调节效应和机制

答:调节效应:CO2在呼吸调节中最重要的化学因素,在血液中保持一定的浓度,可以维持呼吸中枢的正常兴奋性。在一定围,动脉血PCO2的升高,可引起呼吸加深加快,肺通气量增加,但超过一定限度则气压抑和麻醉效应。

机制:CO2刺激呼吸是通过两条途径是实现的,一是通过刺激中枢化学感受器再兴奋呼吸中枢,二是刺激外周化学感受器,冲动窦神经和迷走神经传入延髓,反射性的使呼吸加深加快,增加肺通气,两条途径中以前者为主,当中枢化学感受器受到抑制,对CO2的反应降低时,外周化学感受器就起重要作用。

4.肺换气的影响因素

答:1.呼吸膜的面积和厚度影响肺换气。气体的扩散速率与呼吸面积成正比,与呼吸膜厚度成反比。2.气体分压值、扩散系数、、温度各因素与气体扩散速率成正比。3.通气/血流比值。比例适宜通气/血流比值才能实现适宜的肺换气,无论该比值增大或减小,都会妨碍有效气体的交换。

5什么是氧解离曲线,试分析曲线特点和生理意义?

答:氧解离曲线是表示Po2与Hb氧饱和度关系的曲线。曲线近似s形,分为上、中、下三段。①上段:60-100mmhg,可认为是Hb与氧气结合的部分。曲线较平坦,Po2的变化对Hb氧饱和度的影响不大,只要氧分压不低于60,氧饱和度就保持在九成以上,血液仍可携带大量的氧,不致发生明显的低氧血症。②中段:曲线较陡,是释放的O2的部分,表示氧分压在40-60围稍有下降,Hb氧饱和度变化下降较大,因而释放大量的氧气,以满足机体的需要。③下段:15-40,曲线最陡。表示氧分压稍有下降,hb氧饱和度就大大下降,是氧大量释放,以满足组织活动增强的需要。因此,此曲线代表了O2的储备。

第六章消化和吸收

1胃肠刺激:由存在于胃肠粘膜层、胰腺的分泌细胞的旁分泌细胞分泌,以及由胃肠壁的神经末梢释放的激素,统称为胃肠刺激。

2因子:是胃腺壁细胞分泌的一种糖蛋白,它可与维生素B 12相结合,保护其不被消化液破坏,并促进维生素B 12在回肠被吸收。

3胃容受性舒:当咀嚼和吞咽时,食物对咽、食管等处感受器的刺激,可通过迷走神经反射性的引起胃底和胃体肌肉的舒。胃壁肌肉这种活动称为胃容受性舒。

4消化:食物在消化道被分解为可吸收小分子物质的过程,分为机械性消化和化学性消化。

(2)分解食物中的结缔组织和肌纤维,使食物中的蛋白质变性,易于被消化。

(3)杀死随食物入胃的细菌。

(4)与钙和铁结合,形成可溶性盐,促进他们的吸收。

(5)进入小肠可促进胰液和胆汁的分泌。

2试述胃液的主要成分极其作用

答:1.主要成分:盐酸、黏液和碳酸氢盐、胃蛋白酶原和因子2.盐酸的作用:(1)激活胃蛋白质酶原、并给胃蛋白酶提供活动所需的酸性PH;(2)杀菌(3)使蛋白质变性,利于消化;(4)促进胰液、胆汁和小肠液的分泌;(5)促进小肠对铁和钙的吸收等。

胃蛋白酶原的作用:在盐酸的激活下成为胃蛋白酶,具有活性,能分解食物中的蛋白质。粘液:粘液的作用是保护胃粘膜。一方面,它可以润滑食物,防止食物中的粗糙成分的机械性损伤。更重要的方面是,覆盖于粘膜表面的粘液凝胶层与表面上皮细胞分泌的HCO3—一起,共同构成了所谓“粘液- HCO3—”屏障。因子的作用:因子可与维生素B12结合成复合体,保护B12免遭肠水解酶的破坏。

3.为什么说小肠是消化和吸收的主要场所

答:1.小肠长度长,黏膜上具有环状皱褶,并拥有大量的绒毛和微绒毛,具有巨大的吸收面积。2.食物在小肠停留时间较长(3-8小时).3.食物在小肠已被消化为适于吸收的小分子物质。4.小肠绒毛部有丰富的毛细血管、毛细淋巴管、平滑肌纤维和神经纤维网等结构,进食可引起绒毛产生节律性的伸缩和摆动,可加速绒毛血液和淋巴的流动,有助于吸收。

小肠运动的形式有哪几种,及其生理意义?

答:.①紧性收缩,是其他运动的基础。②分节运动。其意义:a.使食靡与消化液充分混和;b.使食靡与肠粘膜紧密接

c.挤压肠壁有助于血液和淋巴回流;③蠕动,把经过分节运动的食靡向前推进一步。

(1)头期:①头期是指刺激因素作用于头部感受器引起的胃酸分泌。这是由于进食动作引起的条件反射和非条件反射两种分泌。引起头期分泌的视觉反射的初级中枢在延髓,高级中枢分布于下丘脑、边缘叶和大脑皮层。②头期泌酸效应主要由迷走神经介导,迷走神经兴奋后,一方面通过末梢神经释放乙酰胆碱直接引起腺体细胞分泌,另一方面引起胃窦黏膜的G细胞释放胃泌素,胃泌素经血液循环再刺激胃腺分泌。假饲能引起头期分泌,切断迷走神经可消除头期泌酸效应。由此可见头期胃液分泌是神经-体液性的调节。(2)胃期:指刺激因素作用于胃感受器引起的胃液分泌。①扩刺激胃底、胃体部的感受器,引起胃腺分泌。它是通过迷走-迷走神经长反射和壁神经丛的短反射产生的。②扩刺激胃幽门部,通过壁神经丛,作用于G细胞,引起胃泌素释放。③食物的化学成分直接作用于G细胞,引起胃泌素的释放。能刺激G细胞的物质有咖啡、乙醇、钙离子及蛋白质的消化产物(3)肠期:指食物在小肠时引起胃液分泌的情况。这种分泌的调节机制是通过体液完成的,因为切断胃的迷走神经不能消除肠期的泌酸效应。头期胃蛋白酶分泌最多,胃期和头期的泌酸度相当,肠期胃液分

3

1)HCO3—:由胰腺中的小导管管壁细胞分泌,HCO3—的作用包括:a中和进入十二指肠的盐酸,防止盐酸对肠粘膜的侵蚀;b为小肠的多种消化酶提供最适宜的PH环境(PH7~8)

2)消化酶:由胰腺的腺泡细胞分泌。a胰蛋白酶原和糜蛋白酶原:二者均无活性。但进入十二指肠后,被肠致活酶激活为胰蛋白酶和糜蛋白酶,它们的作用相似,将蛋白质分解为氨基酸和多肽。b胰淀粉酶:可将淀粉水解为麦芽糖。它的作用较唾液淀粉酶强。c胰脂肪酶:可将甘油三脂水解为脂肪酸、甘油和甘油一脂。d核酸酶:可水解NDA和RNA。

第七章能量代

1基础代:是指基础状态下的能量代。所谓基础状态,是指满足以下条件的一种状态:清晨、清醒、静卧、未作肌肉活动、前夜睡眠很好、测定时无精神紧,测定前至少禁食12小时,室温保持在20-25℃;体温正常。

2基础代率:指在基础状态下,单位时间每平方米体表面积的能量代。

第八章尿的生成和排泄

1排泄:机体将代终产物、进入体的异物,过剩的物质及药物和有害物质,经过血液循环由排泄器官排除体外的过程。

2滤过分数:是肾小球滤过率与肾血浆流量的比值,正常人虑过分数为125/660×100%=19%。

3肾小球滤过率:为单位时间两肾生成的超滤液量,是衡量肾功能的重要指标。

4定比重吸收:近端小管中Na+和水的重吸收率总是占肾小球滤过率的65%—70%。

5消除率(clearance,C):两肾在一分钟能将多少毫升血浆中的某物质完全清除(排出),这个被完全清除了该物质的血浆毫升数,成为该物质的清除率。

6球-管平衡:不论肾小球过滤过率或增或减,近端小管的重吸收率始终是占肾小球滤过率的65%-70%,这种现象被称为球-管平衡。

7管-球反馈:由小管液流量变化而影响肾小球滤过率和肾血流量的现象被称为管-球反馈。

8肾糖阈:当血糖浓度达180mg/100ml时,有一部分肾小管对葡萄糖的吸收已达极限,尿中开始出现葡萄糖,此时的血浆葡萄糖浓度称为肾糖阈。9渗透性利尿:由于小管液中溶质浓度增加,渗透压增高,妨碍了Na和水的重吸收,使尿量增加的现象。

-(血浆胶体渗透压+肾小囊压)

升压素受体时,可出现尿崩症,每天可排高达20L的低渗尿。大量饮水引起的尿量增加的现象,称为水利尿。

2)小管液中溶质浓度升高是对抗肾小管水重吸收的力量。因为小管外的渗透压梯度式水重吸收的动力。静脉注射甘露醇,由于小管液中溶质浓度增加,渗透压升高,妨碍了Na+和水的重吸收,使尿量增加,这种情况称为渗透性利尿。

2临床上给病人大量补液时对其尿量有何影响?为什么?(答案有2个,选择一个回答) 1大量补液:循环血量↑心房、胸腔大V上的容量感受器所受刺激↑心输出量↑→BP↑→颈A窦压力感受器所受刺激→迷走N传入冲动↑→下丘脑分泌N↑垂体释放ADH↓→远曲小管和集合管对H2O的通透性↓→H2O重吸收↓→尿量↑ 2静脉输入大量生理盐水使血浆稀释,导致血浆胶体渗透压降低,有效滤过压升高,肾小球滤过率增加,尿量将增多。

3简述尿的生成过程?

答:①肾小球的滤过,当学业流经肾小球毛细血管时,有效滤过压的作用下,使血浆中的水和小分子溶质进入肾小囊形成超滤液。②肾小管和集合管的重吸收,小管液流经肾小管和集合管时,其中的某些成分又经过小关上皮细胞转运至血液中。③肾小管和集合管的分泌,小管上皮细胞可将自身产生的物质或血液中的物质转运至肾小管。由此三步骤后形成的尿液称为终尿。

4大量饮用清水后尿量的变化及其机制?

答:尿量明显增加。机制:因为大量饮水后,血浆晶体渗透压下降,对渗透压感受器的刺激减弱,引起血管升压素的释放减少,使远曲小管和集合管对水的通透性降低,水的冲吸收减少,因此尿量增多。

5大量失血后尿量的变化及其机制?

答:尿量明显减少。机制:①大量失血造成动脉血压降低,肾血浆流量减少使有效滤过率降低,尿量减少;②失血后循环血量减少,对左心房容量

相关主题
相关文档
最新文档