基于聚类的离群点检测

合集下载

离群点的判定

离群点的判定

离群点的判定摘要本文首先对离群点进行了定义,离群点(outlier)是指数值中,远离数值的一般水平的极端大值和极端小值。

因此,也称之为歧异值,有时也称其为野值。

深入了解了形成离群点的原因,并建立数学模型来找出一维、n维数据中的离群点,主要利用聚类的离群挖掘法。

针对问题一,考虑到数据的杂乱性,先对数据进行排序,由于在实际生活中我们需要处理的数据量往往比较多,离群点的个数也不确定,就考虑对数据进行分类处理,利用离群值跳跃度比较大的特点,采用斜率比较的方法进行分类,在分类的过程中我们就会很容易的发现离群点。

最后再对完成分类的数据进行分析。

完成分类的数据往往差距更小,可以近似的认为数据服从正态分布,利用正态分布的性质可以找出每类数据中的离群点,这样就找出了数据中所有的离群点。

针对问题二,我们主要采用具体的数据绘制具体的图形来分析存在的离群点,并说明离群点带来的影响。

针对问题三,我们主要利用基于聚类的离群挖掘方法,先利用一趟算法对数据集进行聚类;然后再计算每个簇的离群因子,并按离群因子对簇进行排序,最终确定离群簇,也即确定离群对象。

确定算法以后再利用具体的数据进行检测,看该模型是否可行。

关键词:数据的分类处理聚类的离群挖掘方法(CBOD)一、问题重述A题:离群点的判定离群点(outlier)是指数值中,远离数值的一般水平的极端大值和极端小值。

因此,也称之为歧异值,有时也称其为野值。

形成离群点的主要原因有:首先可能是采样中的误差,如记录的偏误,工作人员出现笔误,计算错误等,都有可能产生极端大值或者极端小值。

其次可能是被研究现象本身由于受各种偶然非正常的因素影响而引起的。

例如:在人口死亡序列中,由于某年发生了地震,使该年度死亡人数剧增,形成离群点;在股票价格序列中,由于受某项政策出台或某种谣传的刺激,都会出现极增,极减现象,变现为离群点。

不论是何种原因引起的离群点对以后的分析都会造成一定的影响。

从造成分析的困难来看,统计分析人员说不希望序列中出现离群点,离群点会直接影响模型的拟合精度,甚至会得到一些虚伪的信息。

数据科学中的异常检测与离群点检测技术

数据科学中的异常检测与离群点检测技术

数据科学中的异常检测与离群点检测技术异常检测与离群点检测在数据科学中扮演着重要的角色。

随着大数据和机器学习的快速发展,异常检测和离群点检测技术也变得越来越重要。

在本文中,我将介绍异常检测与离群点检测的概念、方法和应用,并探讨它们在数据科学中的重要性。

一、引言数据科学是一个多学科领域,通过数据挖掘、机器学习和统计学等技术,致力于从数据中获取知识和洞察。

在进行数据分析和建模的过程中,检测异常值和离群点是至关重要的。

异常值和离群点可能是数据输入错误、设备故障、欺诈行为等潜在问题的迹象,因此及时发现并处理它们对数据质量和模型性能至关重要。

二、异常检测与离群点检测的概念异常检测和离群点检测的目标是一样的,即发现数据中的异常或不正常的情况。

异常值是指与其他观察值相比明显不同的观察值,而离群点则是指在整体数据中呈现极端值的观察值。

两者的区别在于异常值可能在特定情境下并不罕见,而离群点通常是极罕见的情况。

三、异常检测的方法在数据科学中,有许多方法用于异常检测,以下是一些常用的方法:1.基于统计的方法:基于数据的分布、均值和标准差等统计量进行检测。

2.基于距离的方法:通过计算数据点之间的距离来检测异常值,如K最近邻算法。

3.基于聚类的方法:将数据点聚类为多个群组,然后找出不属于任何群组或属于小群组的数据点。

4.基于密度的方法:通过计算数据点周围的密度来检测异常值,如局部异常因子算法。

5.机器学习方法:利用监督学习和无监督学习模型进行异常检测,例如支持向量机和集成学习算法。

四、离群点检测的方法与异常检测类似,离群点检测也包括多种方法:1.基于统计的方法:计算数据点到数据的中心或边界的距离来检测离群点。

2.基于距离的方法:使用距离度量来衡量数据点的相对位置,例如局部离群因子算法。

3.基于聚类的方法:将数据点聚类为多个群组,然后找出孤立的群组或包含极少数据点的群组。

4.基于密度的方法:通过计算数据点周围的密度来检测离群点,例如LOF算法。

第9章 离群点检测

第9章 离群点检测

图9-5 基于聚类的离群点检测二维数据集
9.2离群点检测
基与聚类的离群点检测挖掘方法如下:
26
9.2离群点检测
基与聚类的离群点检测挖掘方法如下: 表9-1 离群因子表 X 1 1 1 2 2 2 6 2 3 5 5 Y 2 3 1 1 2 3 8 4 2 7 2 OF1 2.2 2.3 2.9 2.6 1.7 1.9 5.9 2.5 2.2 4.8 3.4
9.2离群点检测
21
‒ 结论 • LOF算法计算的离群度不在一个通常便于理解的范围[0,1],而是一 个大于1的数,并且没有固定的范围。而且数据集通常数量比较大, 内部结构复杂,LOF极有可能因为取到的近邻点属于不同数据密度 的聚类簇,使得计算数据点的近邻平均数据密度产生偏差,而得出 与实际差别较大甚至相反的结果。 ‒ 优点 • 通过基于密度的局部离群点检测就能在样本空间数据分布不均匀的 情况下也可以准确发现离群点。
1 2 2 1
18
图9.2 基于密度的局部离群点检测的必要性
9.2离群点检测
19
图9.2中,p1相当于C2的密度来说是一个局部离群点,这就形成了基于密度 的局部离群点检测的基础。此时,评估的是一个对象是离群点的程度,这种“离 群”程度就是作为对象的局部离群点因子(LOF),然后计算 。
reach _ distk ( x, xi ) max{distk ( xi ), dist ( x, xi )}
工作假设H为,假设n个对象的整个数据集来自一个初始的分布模型F,即: H: oi∈F,其中i=1,2,…,n 不和谐检验就是检查对象oi关于分布F是否显著地大(或小)。
9.2离群点检测 基于正态分布的一元离群点检测 • 正态分布曲线特点:N(μ,σ2) • 变量值落在(μ-σ,μ+σ)区间的概率是68.27% • 变量值落在(μ-2σ,μ+2σ)区间的概率是95.44% • 变量值落在(μ-3σ,μ+3σ)区间的概率是99.73%

基于离群点检测的K-means算法

基于离群点检测的K-means算法

基于离群点检测的K-means算法冷泳林;张清辰;赵亮;鲁富宇【摘要】K-means算法以其简单、快速的特点在现实生活中得到广泛应用。

然而传统K-means算法容易受到噪声的影响,导致聚类结果不稳定,聚类精度不高。

针对这个问题,提出一种基于离群点检测的K-means算法,首先检测出数据集中的离群点,在选择初始种子的时候,避免选择离群点作为初始种子。

然后在对非离群点进行聚类完成后,根据离群点到各个聚类的距离,将离群点划分到相应的聚类中。

算法有效降低离群点对K-means算法的影响,提高聚类结果的准确率。

实验表明,在聚类类别数给定的前提下,在标准数据集UCI上该算法有效降低离群点对K-means算法的影响,提高了聚类的精确率和稳定性。

%K-means algorithm is widely used in real life for its simple and rapid characteristics .However , traditional K-means algorithm is affected by outliers , leading to the instability of the clustering results and low accuracy of the clustering .For this problem , the paper proposes a novel K -means algorithm based on outliers detection .The presented algorithm firstly detects outliers from the given dataset , which can avoid selecting outli-ers as the initial seed .After clustering all the objects which are not outliers , the algorithm allocates every outlier to the corresponding cluster according to distance between the outlier and different clusters .The presented algo-rithm reduces the impact of outliers on traditional K -means algorithm and improves the clustering accuracy .For the given number of categories of the clusters and in the standard UCI data sets ,the experimental results indicate that thealgorithm is effective , reduces the influence of outlier on the K -means algorithm , improving the accura-cy and stability of the cluster .【期刊名称】《渤海大学学报(自然科学版)》【年(卷),期】2014(000)001【总页数】6页(P34-38,48)【关键词】聚类;K-means算法;离群点;UCI数据集【作者】冷泳林;张清辰;赵亮;鲁富宇【作者单位】渤海大学高职学院,辽宁锦州 121001; 大连理工大学软件学院,辽宁大连 116621;大连理工大学软件学院,辽宁大连 116621;大连理工大学软件学院,辽宁大连 116621;渤海大学高职学院,辽宁锦州 121001【正文语种】中文【中图分类】TP3110 引言聚类是将物理或抽象对象的集合分成由类似的对象组成多个类的过程,即“物以类聚,人以群分”.聚类是数据挖掘中的一类重要技术,是分析数据并从中发现有用信息的一种有效手段.它将数据对象分组成为多个类或簇,使得同一簇中的对象之间具有较高的相似度,而不同簇中的对象差别很大〔1〕.聚类已经广泛应用于模式识别、空间数据分析、经济学等领域.聚类分析既可以作为单独的工具发现数据集中隐含的相关知识,又可以作为其他数据挖掘分析方法的预处理过程,其已经成为数据挖掘领域的一个重要的研究方向.目前常用的聚类算法包括划分法、层次法、基于密度的方法、基于网格的方法和基于模型的方法等.其中,基于划分方法思想的K-means算法以其简单、快速并有效处理大规模数据等诸多特点,成为现实应用最为广泛的聚类算法.K-means算法〔2,3〕适合聚类大型数据集,特别是当样本分布呈现类内团聚状时,可以达到很好的聚类结果.但是,在有噪声数据影响时,K-means聚类算法结果易受初始聚类中心影响,导致聚类结果不稳定.K-means算法过度依赖初始条件的缺点影响了该算法的聚类效果并制约了其应用范围.当前许多学者致力于改进K-means算法的聚类中心选取方法,如基于均值-标准差选取方法〔4〕,基于近邻密度选取方法〔5〕, 基于密度参数的选取方法〔6〕等,然而这些算法没有充分考虑离群点对聚类的影响,导致最后聚类精度提高不明显.针对这个问题,本文提出一种基于离群点检测的K-means算法,算法将离群点检测引入传统K-means算法,首先检测出数据集中的离群点,在选择初始种子的时候,避免选择离群点作为初始种子.在对非离群点进行聚类完成后,根据离群点到各个聚类的距离,将离群点划分到相应的聚类中.算法有效降低离群点对K-means算法的影响,提高聚类结果的准确率.实验表明,在聚类类别数给定的前提下,通过标准UCI数据库进行实验比较,在保留噪声数据的同时,该算法有效提高聚类精度.1 相关理论和技术1.1 基于距离的离群点检测离群点是指明显偏离数据集中其他数据对象的数据点,人们怀疑这些点是由不同机制产生的〔7〕.离群点检测是数据挖掘领域中的一项重要挖掘技术.它可以发现数据集中小部分偏离了大多数数据行为或数据模型的异常数据.目前常用的离群点检测方法包括基于统计分布、基于距离、基于密度和基于偏差等方法〔8〕.其中,基于距离的离群点检测方法无需了解数据集的分布模型,适用于任何可以计算对象间距离的数据集,而且计算简单,因此本文采用该算法检测离群点.如果对象o在数据集S〔9〕中有大于p部分的对象与它的距离都大于d,那么就将对象o称为数据集S上的DB(p,d)离群点.基于距离的离群点的定义适用于任意维度的数据集,其中参数p表明与离群点的距离大于d的对象所占数据集的最小比例〔10〕.基于距离的离群点检测方法可以简便的定制对象间的距离函数,欧氏距离计算函数就是其中的一种.欧氏距离的定义如下:其中m为数据对象的维(属性)数,xij表示第i个对象的第j属性的值.基于距离的离群点检测算法主要步骤如下:1.随机选取一个数据对象.2.计算其他数据对象与选取的数据对象间的欧氏距离,如果与之距离大于d的数据对象的比例大于p,则判定该数据对象为离群点.3.选取下一个不重复数据对象.4.重复2,直到所有数据对象都被选到.1.2 传统K-means算法传统K-means算法的基本思想是〔11〕:随机地选择k个对象,每个对象初始代表了一个聚类中心;对剩余的每个对象根据其与各个聚类中心的距离,将它赋给最近的聚类;然后重新计算每个聚类的平均值,作为新的聚类中心.不断重复这个过程,直到准则函数收敛.收敛函数E定义为:其中:E是数据集所有对象与它所在的聚类中心的平方误差的总和,E越大说明对象与聚类中心的距离越大,聚类内的相似度越低,反之E越小说明聚类内的相似性越高. 为聚类内的一个数据对象;是聚类Ci的聚类中心,k是聚类个数,Ci是第i个聚类.K-means算法步骤如下:1.随机选择k个数据对象,每个对象作为初始聚类中心.2.计算每个数据对象与聚类中心的距离,根据距离将对象划分到距离最近的聚类.3.重复计算每个聚类中对象的平均值,更新聚类中心.4.重复2和3,直到准则函数E收敛.2 基于离群点检测的K-means算法基于离群点检测的K-means算法的基本思想是:首先利用基于距离的离群点检测方法检测数据集的离群点,然后在非离群点中随机选择k个数据点作为聚类的初始种子,利用传统K-means算法对非离群点进行聚类,最后将离群点划分到相应到聚类中.算法的思想如图1所示.图1 基于离群点检测的K-means算法算法具体步骤如下:1.随机选取一个数据对象.2.计算其他数据对象与选取的数据对象间的欧氏距离,如果与之距离大于d的数据对象的比例大于p,则判定该数据对象为离群点.3.选取下一个不重复数据对象.重复2,直到将所有离群点检测出为止.4.在非离群点中随机选取k个数据对象作为初始聚类种子.5.计算每个非离群点数据对象与聚类中心的距离,根据距离将对象划分到距离最近的聚类.6.重复计算每个聚类中对象的平均值,更新聚类中心.7.重复5和6,直到准则函数E收敛.8.计算每个离群点数据对象与聚类中心的距离,根据距离将其划分到最近的聚类. 算法描述如下:输入:n个数据对象集S 和聚类数k;输出:k个聚类中心Zj及k个聚类数据对象集合Cj;Beginfor r=1 to n //取数据集S中的各个数据对象begincount=0;for any q!=r //数据集中除了当前对象的其他对象beginend//离群点集A={a1,a2,...,ai};M=S-A; //在S中去除数据集A中的数据对象,生成数据集M;k_means( M , k ); //执行传统的K_means算法;for r=1 to i dobeginfor q=1 to jEnd.3 结果与分析本文将传统的K-means算法和基于离群点检测的K-means算法进行实验对比.为了测试本文算法的有效性,实验选择专用于测试聚类算法性能的UCI数据库中的Iris数据集,Diabetes数据集和Wine数据集作为实验数据集.分别用传统聚类算法与本文提出的算法对3组数据集进行测试.本文实验环境为:CPU为E4500(2.20 GHz)、内存为1.99 GB、操作系统为Windows XP,编程语言为Java.实验结果一:随机选择一批数据分别利用传统K-means聚类算法与本文改进的K-means算法对其进行聚类,结果示意图如图2所示.图2 聚类结果示意图由图2可知,传统K-means算法没有充分考虑离群点的影响,导致最后聚类结果不精确.本文在选择初始聚类中心时,避免选择离群点作为初始聚类中心,首先对非离群点进行聚类,最后根据离群点到与各个聚类的距离将其分配到相应的聚类中.本文有效避免离群点对聚类结果的影响,聚类精度高于传统K-means算法.实验结果二:利用传统K-means算法与本文改进的K-means算法分别对3组数据进行6次实验,对实验结果进行统计,平均准确率如表1所示.表1 传统K-means算法与本文算法聚类平均精度比较IrisDiabetesWine传统k-means算法0.79530.61880.9563本文算法0.83090.64840.96716次实验准确率统计曲线如图3所示.Iris聚类结果曲线 Diabetes聚类结果曲线Wine聚类结果曲线图3 实验结果统计曲线从表1与图3可以看出,传统K-means算法的最高准确率与本文算法的平均准确率接近,但平均准确率明显低于本文改进的K-means算法.另外,传统K-means算法容易受到噪声影响,导致聚类结果不稳定,当不选择离群点作为初始种子时,聚类结果较好,否则聚类效果很差.本文避免选择离群点作为初始种子,因此聚类效果稳定,聚类精度高于传统K-means聚类算法.4 结论聚类分析是数据挖掘领域中常用的数据分析方法,目前聚类分析的主流方法有很多,其中基于划分的K- means算法以其简单、快速并有效处理大规模数据等诸多优点,成为最经典并应用最广泛的聚类方法之一.然而传统K-means算法容易受到离群点的影响,导致聚类结果不稳定、聚类精度低,影响了该算法的聚类效果并制约了其应用范围.本文针对这个问题提出基于离群点检测的K-means算法,将离群点检测引入传统K-means算法,避免选择离群点作为初始聚类中心.在对非离群点进行聚类之后,根据离群点到各个聚类的距离,将其分配到相应的聚类之中.实验结果表明,算法在聚类精度上明显高于传统K-means算法.参考文献:【相关文献】〔1〕Stalling W. Operating systems: internals and design principles(4th Edition)〔M〕.New Jersey, Prentice-Hall, 2001.〔2〕MacQueen J. Some methods for classification and analysis of multivariate observations〔C〕. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967.〔3〕张玉芳,毛嘉莉,熊忠阳. 一种改进的K-means算法〔J〕. 计算机应用, 2003,8(23):31-34. 〔4〕张文君,顾行发,陈良富,等. 基于均值-标准差的K均值初始聚类中心选取方法〔J〕. 遥感学报,2006,10(5):715-721.〔5〕Shehroz S Khan, Amir Ahmad. Cluster center initialization algorithm for K-Means clustering〔J〕. Pattern Recogintion Letters(S0167-8655),2004,25(11):1293-1320.〔6〕韩凌波,王强,蒋正锋,等. 一种基于改进的K-means初始聚类中心选取算法〔J〕. 计算机工程与应用,2010,46(17):150-153.〔7〕Elio L, Edgar A. Parallel algorithms for distance-based and density-based outliers 〔C〕.Proc of International Conference on IEEE. 2005: 767-776.〔8〕Kriegel H P, Schubert M, Zimek A. Angle-based outlier detection in high-dimensional data〔C〕. Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACM,2008:444-452.〔9〕张秀梅,王涛.模糊聚类分析方法在学生成绩评价中的应用〔J〕. 渤海大学学报:自然科学版,2007,28(2):169-172.。

L O F 离 群 点 检 测 算 法

L O F 离 群 点 检 测 算 法

数据挖掘(五)离群点检测5 异常检测方法异常对象被称作离群点。

异常检测也称偏差检测和例外挖掘。

异常检测的方法:(1)基于模型的技术:首先建立一个数据模型,异常是那些同模型不能完美拟合的对象;如果模型是簇的集合,则异常是不显著属于任何簇的对象;在使用回归模型时,异常是相对远离预测值的对象。

(2)基于邻近度的技术:通常可以在对象之间定义邻近性度量,异常对象是那些远离其他对象的对象。

(3)基于密度的技术:仅当一个点的局部密度显著低于它的大部分近邻时才将其分类为离群点。

(1)统计方法。

统计学方法是基于模型的方法,即为数据创建一个模型,并且根据对象拟合模型的情况来评估它们。

大部分用于离群点检测的统计学方法都是构建一个概率分布模型,并考虑对象有多大可能符合该模型。

离群点的概率定义:离群点是一个对象,关于数据的概率分布模型,它具有低概率。

这种情况的前提是必须知道数据集服从什么分布,如果估计错误就造成了重尾分布。

异常检测的混合模型方法:对于异常检测,数据用两个分布的混合模型建模,一个分布为普通数据,而另一个为离群点。

聚类和异常检测目标都是估计分布的参数,以最大化数据的总似然(概率)。

聚类时,使用EM算法估计每个概率分布的参数。

然而,这里提供的异常检测技术使用一种更简单的方法。

初始时将所有对象放入普通对象集,而异常对象集为空。

然后,用一个迭代过程将对象从普通集转移到异常集,只要该转移能提高数据的总似然(其实等价于把在正常对象的分布下具有低概率的对象分类为离群点)。

(假设异常对象属于均匀分布)。

异常对象由这样一些对象组成,这些对象在均匀分布下比在正常分布下具有显著较高的概率。

优缺点:(1)有坚实的统计学理论基础,当存在充分的数据和所用的检验类型的知识时,这些检验可能非常有效;(2)对于多元数据,可用的选择少一些,并且对于高维数据,这些检测可能性很差。

(2)基于邻近度的离群点检测。

一个对象是异常的,如果它远离大部分点。

离群点的概念

离群点的概念

离群点的概念离群点[líqún diǎn]时间序列中,远离序列的一般水平的极端大值和极端小值。

离群点离群点,也称之为歧异值,有时也称其为野值。

概括的说,离群点是由于系统受外部干扰而造成的。

但是,形成离群点的系统外部干扰是多种多样的。

首先可能是采样中的误差,如记录的偏误,工作人员出现笔误,计算错误等,都有可能产生极端大值或者极端小值。

其次可能是被研究现象本身由于受各种偶然非正常的因素影响而引起的,例如。

在人口死亡序列中,由于某年发生了地震,使该年度死亡人数剧增,形成离群点;在股票价格序列中,由于受某项政策出台或某种谣传的刺激,都会出现极增,极减现象,变现为序列中的离群点。

不论是何种原因引起的离群点对以后的时间序列分析都会造成一定的影响。

从造成分析的困难来看,统计分析人员说不希望序列中出现离群点,离群点会直接影响模型的拟合精度,甚至会得到一些虚伪的信息。

例如,两个相距很近的离群点将在谱分析中产生许多虚假的频率。

因此,离群点往往被分析人员看作是一个“坏值”。

但是,从获得信息来看,离群点提供了很重要的信息,它不仅提示我们认真检查采样中是否存在差错,在进行时间序列分析前,认真确认序列,而且,当确认离群点是由于系统受外部突发因素刺激而引起的时候,他会提供相关的系统稳定性,灵敏性等重要信息。

在时间序列分析中通常把离群点分为四种类型进行处理。

第一类是加性离群点。

造成这种离群点的干扰,只影响该干扰发生的那一时刻T上的序列值,即XT而不影响该时刻以后的序列值;第二种是更新离群点,造成离群点的干扰不仅作用于XT,而且影响T时刻以后序列的所有观察值,它的出现意味着一个外部干扰作用于系统的开始,并且其作用方式与系统的动态模型有关;第三种树水平位移离群点,造成这种离群点的干扰素在某一时刻T,系统的结构发生了变化,并持续影响T时刻以后的所有行为,在数列上往往变现为T时刻前后的序列均值发生水平位移;第四种是暂时变更离群点,造成这种离群点的干扰是在T时刻干扰发生时具有一定初始效应,以后随时间根据衰减因子的大小呈指数衰减的一类干扰事件。

一种多目标自适应DBSCAN离群点检测算法

一种多目标自适应DBSCAN离群点检测算法

一种多目标自适应DBSCAN离群点检测算法
黄剑柔;王茜;蔡星娟;李建伟
【期刊名称】《小型微型计算机系统》
【年(卷),期】2022(43)4
【摘要】在基于聚类的DBSCAN离群点检测算法中,存在参数Eps的不确定性和全局统一性问题.因此,本文首先提出了一种基于多目标优化的自适应DBSCAN离群点检测算法,根据不同数据集的特点,通过NSGA-II优化算法为数据集中的每个数据自适应地求解一个最优Eps,不仅避免了人为经验设置参数的不足,还解决了全局参数带来的聚类不精确问题.其次,通过基于Eps的LOF算法进行离群点检测,减少了计算量.最后,通过在不同数据集下的实验对比,结果表明本文提出的算法对于检测离群点有更高的准确率.
【总页数】5页(P702-706)
【作者】黄剑柔;王茜;蔡星娟;李建伟
【作者单位】太原科技大学计算机科学与技术学院
【正文语种】中文
【中图分类】TP181
【相关文献】
1.基于统计的自适应窗数据流离群点检测算法
2.一种基于谱嵌入和局部密度的离群点检测算法
3.基于网格LOF和自适应K-means的离群点检测算法
4.基于网格
LOF和自适应K-means的离群点检测算法5.一种基于邻域系统密度差异度量的离群点检测算法
因版权原因,仅展示原文概要,查看原文内容请购买。

outlier检测 统计方法

outlier检测 统计方法

outlier检测统计方法
Outlier检测是指识别数据集中与其余数据明显不同的观测值。

在统计学和数据分析中,outlier通常被认为是异常值,可能是由
于测量误差、实验误差或者真实的变异性。

有许多统计方法可以用
来检测outlier,下面我将从几个角度来介绍一些常见的方法。

1. 基于离群点得分的方法,这类方法通过计算每个数据点的离
群点得分来识别离群点。

常见的方法包括Z得分、学生化残差、Grubb's测试等。

这些方法基于假设数据符合正态分布,因此对非
正态分布的数据可能不够准确。

2. 基于距离的方法,这类方法基于数据点之间的距离来识别离
群点,例如K近邻算法、LOF(局部离群因子)算法等。

这些方法适
用于多维数据集,并且不受数据分布的影响。

3. 基于聚类的方法,这类方法将数据点聚类,然后识别不属于
任何簇的数据点作为离群点。

DBSCAN(基于密度的聚类算法)和OPTICS(基于密度的空间聚类算法)是常用的基于聚类的离群点检
测方法。

4. 基于模型的方法,这类方法使用统计模型来描述数据,然后识别与模型不符的数据点作为离群点。

例如,基于高斯混合模型的离群点检测方法可以识别不符合高斯分布的数据点。

总的来说,选择合适的离群点检测方法取决于数据的特征、数据分布、离群点的定义以及分析的目的。

在实际应用中,通常需要结合多种方法来全面检测离群点,以确保结果的准确性和可靠性。

希望这些信息对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DBSCAN密度算法:1、DBSCAN算法介绍DBSCAN算法是将密度足够大的数据组成类。

DBSCAN需要由用户主观来选择参数从而影响了最终的聚类结果,对于数据量为凡的样本集合,DBSCAN的计算复杂度为D(n2)。

一般采用空间索引的方法降低时间复杂度,复杂度为D(n log n)。

2、DBSCAN算法用到的定义如下定义l(数据点的Eps邻域)以数据样本中任意一点为圆心,Eps为半径的球形区域内包含的点的集合,叫做该数据点的Eps邻域。

定义2(数据点的密度)数据样本中任意一点的Eps邻域内包含的点数,叫做该数据点的密度。

定义3(核心数据点)核心数据点是指在Eps半径范围之内包含等于Minpts或大于Minpts个点的数据样本中任意一点。

定义4(边界数据点)边界数据点是指在某个核心数据点的邻域内,但自身不是核心数据点的数据样本中任意一点。

定义5(直接密度可达)已知Eps,Minpts,对于点x和点y,如果y 是核心点,而且x属于y的Eps邻域,则点x从点y直接密度可达。

定义6(密度可达)如果对于给定的Eps,Minpts存在点链x1,x2,x3⋯ x n,其中x1=x,x n=Q,而且xi从xi+l直接密度可达,那么点x从点Q密度可达。

定义7(密度相连)如果在给定Eps,Minpts的情况下,存在点p,使得点x和点y都从p密度可达,则点x和y是密度相连的。

定义8事先给定Eps和Minpts,基于密度聚类中的一个聚类就是可以密度连接所能包含的最多数据点的集合。

不属于任何聚类的数据点的集合称为噪声。

假定输入参数为Eps和Minpts,DBSCAN的算法3、描述如下(1)输入聚类数据,然后任意选取一个数据点茗,检查数据点菇的Eps邻域。

(2)如果戈是核心点而且没有被划分到某一个类,则找出所有从戈密度可达的点,最终形成一个包含菇的类。

(3)如果z不是核心点,则被当做噪声处理。

(4)转到第一步,重复执行算法;如果数据集合中所有的点都被处理,则算法结束。

基于多重聚类的局部离群点检测算法1、局部离群点检测算法LDOF该算法定义了一个基于距离的局部离群因子ldof,利用该离群因子可以评估某个数据点p与其自身最近邻邻域集合的偏离程度。

ldof(p)的值越大,表示数据点p相对于其邻域的偏离程度越大,p的离群度就越大。

设N p为数据对象p的k最近邻点的集合(不包括对象p)。

定义3.1点p的KNN距离所有N p内的数据到p的平均距离,记作p的平均距离,记作d p ,计算公式如下:d p=1k∑dis(p,q)q∈N p(3.1)其中,dis(p,q)表示点p与点q之间的距离,而且dis(p,q)≥0。

定义3.2点p的KNN内部距离N p内所有数据对象间的平均距离,记作D p,计算公式如下:D p=1k(k−1)∑dist(q,r)q,r∈N,q≠r(3.2)定义3.3点p的局部距离离群因子点p的k最近邻距离与k最近邻内部距离的之比,记作ldof ( p),计算公式如下:ldof(p)=d pp(3.3)LDOF采用了top-n离群检测方式,首先计算所有数据的ldop值,然后根据ldof值对所有数据进行排序,将ldof值最大的n个数据点作为检测结果。

这种top-n离群检测方式使得LDOF算不需要再设置局部离群度阈值。

LDOP不足LDOF不但可以有效地检测数据集中的全局离群点,还可以很好地检测数据集中包含的局部离群点。

但是LDOF仍然存在明显的不足:(1)LDOF算法中,由于需要计算所有数据点的ldof值,导致其时间复杂度很高。

然而,数据集中的绝大多数数据是正常点,离群点只占很小一部分。

这意味着对LDOF算法中存在大量的无效(或无价值)ldof值计算。

这种无效的计算直接导致了算法较高的时间复杂度。

(2)LDOF对最近邻参数k比较敏感,其离群检测精度受k值影响大。

2、基于DBSCAN聚类剪枝的局部离群点检测算法PLDOF稠密区域内的数据聚集为簇,并不聚集稀疏区域的数据。

总之,将DBSCAN算法作为剪枝手段,既可以适应复杂多变的数据集,又可以满足降低局部离群因子计算量的要求。

PLDOF算法分剪枝初选阶段和离群点精选阶段进行,其主要思想和执行步骤如下:①首先采用DBSCAN算法对数据集进行聚类以找到簇数据,然后将不可能是离群点的簇数据剪枝,保留剩余数据作为候选离群点集。

②对于候选离群点集中的所有数据对象,计算它们的局部离群因子ldof。

③若某数据的局部离群度属于top-n,则将该数据对象视为离群点。

PLDOP不足PLDOF算法利用DBSCAN算法作为剪枝手段,虽然既可以适应复杂多变的数据集,又可以改进LDOF的缺点,但是其却带来了错剪离群点的问题。

3、基于多重聚类的局部离群点检测算法PMLDOFPMLDOF算法首先利用多重聚类思想剪枝(丢弃)目标数据集内包含的簇数据,同时得到由剩下的非簇数据组成的候选离群点集。

然后对候选离群点集执行LDOF算法,并检测出符合条件的离群点。

可以将PMLDOF对离群点的检测过程分为两个阶段:候选离群点集的初选阶段和真正离群点的精选阶段。

○1初选阶段初选阶段首先运用多重聚类剪枝思想对数据集进行剪枝,得到初步的离群点集—候选离群点集。

理想情况下,多重聚类对目标数据集进行剪枝的过程为:假设目标数据集DS包含n个数据,S={S1,S2,S3……S n},首先在DS上运行包含R个聚类成员的多重聚类,得到R个聚类划分:P={P1,P2,P3……P n},其中P i{i=1,2,3……,R}表示第i个DBSCAN聚类成员对数据集聚类得到的聚类划分。

然后根据一定的规则对P内的聚类划分进行整合得到一个统一的共识划分P’。

最后,将P’中的簇数据剪枝(丢弃),保留剩余的非簇数据组成候选离群点集。

需要解决的问题1)得到聚类划分PMLDOF 算法中,多重聚类由多个具有不同参数的DBSCAN 聚类算法组成。

其需要设置多个DBSCAN 参数,所采取的策略是:首先采用相应方法获得目标数据集一个DBSCAN 经验参数,然后根据该经验参数合理地设置其它参数,即以经验参数为中心合理地对参数加大或减小。

具体地,可以保持经验半径参数Eps不变,以经验Mints 参数为中心选取mints-i;类似地,保持密度参数Mints不变,以Eps 为中心选取eps-i 的值。

事实上,多重聚类的每个聚类成员对数据集的聚类过程都是相互独立的,所以它们对数据集的操作是可以并行推进的。

这使得多个DBSCAN 算法的时间复杂度与单个DBSCAN算法的时间复杂度相差不会太多。

2)聚类匹配算法从前面的讨论已经知道,不同的聚类划分间的逻辑等价簇有可能存在着簇标签不匹配的问题。

下面对不同划分间逻辑等价簇不匹配的情况进行分析和探讨。

P1和P2表示同一数据集的两个不同的聚类划分,P1和P2间逻辑等价簇不匹的情况可以总结为下4种情形:a) P1 和P2 包含的簇数相等,聚类划分基本一致,基本一致,但是因为两个划分中簇标签的标记顺序不同,导致簇标签不匹配。

如图3.5所示:b) P1 和P2 包含的簇数不相等,划分内的某些簇是由另一个划分内的某些簇是由另一个裂而成的,导致一对多或情况。

如图3.6所示:P1 的C2 簇被分裂成P2 内的C3 和C4 两个簇,且C3 和C4 内的数据完全包含于内的数据完全包含于C2 。

因为多重聚类的主要目是剪枝数据集中真正的簇数据,所以的簇数据,所以在判定数据的聚类情况时,仅仅关心其是否为簇数据,不必关心具体属于哪个簇。

因此,在处理聚类的匹配时,直接将C3 和C4 这种由一个簇分裂而成的簇视为分裂原簇C2 的等价簇即可。

c) 一个划分内的多簇所包含大部数据是属于另一个划分内某个簇的。

如图3.7所示:P2 内的C3 簇和C4 簇的大部分数据是属于P1 的C2 簇的,它们与C2 有非常高的重叠性,也一定差异性,显然地,与情形2类似,应将C3 簇和C4 簇视为簇视为C2 簇的等价。

d) 一个聚类划分内的某些簇在另个划分内找不到等价簇。

如图3.8所示:P2 的C1 簇和C3 簇都可以在P1 内找到等价簇,但是C4 簇却无论如何也找不到等价簇。

为了实现逻辑等价簇的匹配,需要使用聚类相似度度量评估两个聚类的匹配程度。

本文采用聚类相似度度量。

该度量的计算公式为:simi(X1,X2)=X1T X2X1T X1+X2T X2−X1T X2(3.5)其中,X1和 X2是两个二值向量,表示两个不同聚类划分中的两个聚类簇。

例如,某个数据集有5 个数据记录,{1,2,3,4,5}。

该数据集的某个划分包含两个簇:{{1,3}{2,4,5}} 。

那么,这两个簇的等效二值向量表示分别为{1,0,1,0,0} 和{0,1,0,1,1}。

simi(X1,X2)越大表示X1和 X2的相似度越大。

3)投票整合本文采用简单投票法对上面经过匹配处理的R个聚类划分进行整合。

简单投票法的基本思想是:尽可能多地共享聚类成员对数据对象的分类信息,根据各个聚类成员对数据对象的预测进行投票,每个聚类成员对自己所做的预测投一票,计算数据对象被分配到每个簇的投票比例。

依据多数投票原则,如果数据对象属于某个簇的得票超过一半,则将其划分到该簇中。

离群点分类把基于距离的离群点分为平凡和非平凡离群点,非平凡离群点按照其不同的特征被进一步细分为强离群点和弱离群点。

若数据对象p在某个属性空间A p上离群,如果存在非空子空间B ∈ A p ,在B中p也是离群的,则称p是平凡离群点,否则p是非平凡离群点;如果当前B中再没有其它离群数据,则p为强离群点,若B中仍含有另一离群数据p’,且p’ ≠p,则称p为弱离群点。

相关文档
最新文档