脑电图(图谱)

脑电图(图谱)
脑电图(图谱)

脑电图的基本知识

脑电图的基本知识、录像脑电图和24小时脑电图 脑电活动的性质和电磁波一样有四个基本因素即频率、波幅、波形和位相(极性)。除此之外脑电活动又有其本身的特殊性,脑电图不是记录某一点的电位,而是在头皮上记录大脑两半球各个部位的电活动,因此还存在各个部位之间的差异及特殊性的问题。脑电活动是随机非线性电信号,因此还有出现方式的不同。人脑功能与外界和本身内在环境的变化密切相关,对各种刺激的反应性也是应该注意的问题。这些都是判断脑电图是否正常以及何种程度异常的基础。 频率 频率(Freguency)是每秒种以基线为准波动的次数。其单位为C/S(次/秒),亦即Hz (Hertz)。每一次波动的起点和止点在基线上的跨度叫时限(Duration)其单位为毫秒(ms,1ms=1/1000秒)。频率与时限互为倒数。如某一脑电活动的时限为100ms即1/10秒,其频率为10Hz;亦即一个5Hz的波,其时限为200ms。在脑电图的描述中常用频率而少用时限。在Hans Berger首次描述脑电活动时使用频率的概念延续至今。用频率的不同划分脑电活动为若干段,仅在形容非常慢的脑电活动时才使用时限。 脑电活动的测量应从一个波的起点量到终点即“从谷到谷”。可以用公尺测量,测出波的宽度的毫米数,然后可用下列公式换算为频率: 频率=30/波宽(mm) 或用时限(ms)数除1000ms即为频率。但用公尺测量常不够精确,如不易区分8Hz及7Hz 的波,因8Hz相当于3.75mm,7Hz相当于4.26mm。但区分这两者是有实际意义的。 最好用专用尺测量。这种尺的刻试以纸速30mm为1秒作标准。按频率数每一长方格分为3等份,4等份以至于30等份,代表每秒3次,4次以至30次的频率。测量时将尺在脑电图纸上移动,直到某一波的起止点正好在某一频率刻度之间。此频率就是个波的频率数。 人类脑电活动的频率在0.5-30Hz间。分为若干频率组叫频带(Frequency band)。用希腊字母为代表。 δ频带(Delta band) 0.5-3Hz θ频带(Theta band) 4-7Hz α频带(Alpha band) 8-13Hz σ频带(Sigma band) 14-17Hz β频带 (Beta band) 18-30Hz γ频带(Gamma band) >30Hz 在临床上常将α、β及γ频带统称β频带。这些频率的波均可见于正常人。因此仅就频率本身而言并无正常与否的含义。考虑到不同频带在头颅各区的分布及所占的百分比(指数,Index),再加波幅的差别,才能区分正常与否。 波幅 波幅(Amplitude)是电位差的大小,也就是电压的高低。单位为微伏(μV),1μV=10-6V。所以脑电活动是非常微小的电位。其测量应从波顶引一垂直于基线的直线到波谷,其高度与定标的高度比较即可得出微伏数,即“从峰到谷”。一般常用的定标为5mm=50μV,即1mm=10μV此时用测出波高的毫米数乘以10即为此波的波幅数。如波高为6mm,波幅为60μV。如用1mm=7μV的定标,则波高6mm时波幅为42μV。就临床脑电图而言,波幅的具体数值不易准测定。临床上将波幅分为高、中、低三级: 低波幅 <25μV 中波幅 25-50μV或25-75μV

儿童脑脑电图基本特点

儿童脑脑电图基本特点 Document number:PBGCG-0857-BTDO-0089-PTT1998

儿童脑电图基本特点 儿童脑电图随年龄增长不断变化:频率由慢变快,由不规则变规则,由不对称变对称。波幅由低变高,再由高至成人型,由不稳定逐渐稳定。对光反应从无反应到有反应,直至正常反应。 一 1-3月婴儿脑电图: 背景活动 转为连续性活动 清醒与动态睡眠时相为对称的,中低波幅,连续性节律,期间混有散在的波。 静态睡眠以为主的混合波背景活动。 足月2月开始,部分婴儿出现睡眠纺锤波。 足月3月时,所有婴儿睡眠记录均应出现睡眠纺锤波。 二 3-12月婴儿脑电图: 清醒睁眼,以和混合的慢波活动为主;闭眼记录以活动为主。 出生3-4月,枕区出现特征的成熟性变化,优势节律形成。 3-4月为4Hz节律,5月为5Hz节律,12月时为6-8Hz节律,波幅一般在50-100。 睡眠分期基本成熟,半岁后可出现特征性3-5Hz同步性高幅节律活动,枕区明显,3岁后减少。 NREM睡眠期特征性先后出现顶部尖波、睡眠纺锤波K综合波。REM睡眠期主要表现为和的混合性慢波节律。 三 13-36月幼儿脑电图: 背景活动 于清醒闭眼记录中,枕区优势节律明显。 2岁时6-7Hz节律性活动,2-3岁时7-8Hz节律性活动,3岁时 8Hz波活动,尚有散在波分布于枕区。 思睡期可见4-6Hz高波幅活动,睡眠中顶尖波波幅较成人高,时限短,同时可见梳形纺锤波。 四 3-5岁学龄前期脑电图 背景活动 清醒闭目记录,以8-9Hz波为主要节律。但波调幅发育不良、波幅较高,可达100以上。枕顶区常有2-4Hz慢波插入,睁眼减少,过度换气明显。

新生儿振幅整合脑电图临床应用专家共识

新生儿振幅整合脑电图临床应用专家共识 随着围产医学和新生儿医学的发展及危重新生儿抢救水平的提高,新生儿病死率逐渐下降,极早产儿和超早产儿存活率逐步上升[1]。但是由于存活下来的危重新生儿和小胎龄早产儿均是发生围产期脑损伤的高危人群[2integrated electroencephalography,aEEG)是NNICU中评价新生儿脑功能的重要电生理监测手段[7],目前对该检查的临床应用指征、具体方法和结果判读标准尚缺乏统一方案。为此,在中华医学会儿科学分会围产专业委员会的组织下,在广泛阅读相关文献并经业内专家讨论的基础上制定本共识,以规范aEEG的临床应用范围和判读标准,使aEEG能更广泛而且规范的用于新生儿脑发育及脑损伤的评价。 一、aEEG检测的适用范围 1.有脑损伤表现或存在脑损伤高危因素的新生儿,高危因素包括围产期缺氧窒息史、新生儿顽固性低血糖、先天性遗传代谢病、颅内出血、脑卒中、中枢神经系统感染、严重高胆红素血症等,用于发现脑损伤、评价脑损伤的程度和预后; 2.新生儿脑发育的评估;

3.新生儿惊厥和可疑惊厥发作的检测; 4.脑损伤治疗效果的评估,如亚低温治疗、抗惊厥药物止惊治疗等。 二、技术操作 1.电极选择:aEEG常用电极为头皮电极,分为记录电极和参考电极。电极放置位置与国际脑电电极1020系统一致。仅一个参考电极时放在前额正中,两个参考电极时则另一个放在头顶部中心Cz位置。 (1)单导(单通道)aEEG:是aEEG检查的经典通道,在评价新生儿脑发育和脑损伤方面与脑电图(EEG)有较好的一致性[8]。单导aEEG 监测记录电极首选放置在双侧顶骨P311]。 (2)双导(双通道)aEEG:①应用于双侧大脑病变不对称的患儿,如一侧大脑中动脉梗塞,可以分别反应左右大脑半球脑功能受损的情况[12],记录通道常选择F317]。 (3)多导(多通道)aEEG:4通道、8通道等更多通道应用于aEEG

脑电图基础知识总结和入门

脑电图基础知识总结和入门-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

脑电图electroencephalogram 河南科技大学第一附属医院神经内科

一:原理 脑电图的基本原理 (一)基本概念 将大脑细胞群的自发性、节律性电活动所产生与临近部位的5—100微伏电位差用电极加以引导接入放大和记录装置,放大100-200万倍,以脑细胞电活动的电位为纵轴,时间为横轴,记录或显示的电位一时间关系曲线,就是脑电图。不管是哪一类型的脑电图仪,至少包括有输入、放大、调节、记录/显示、电源等五大部分. 脑电图的基本特征有周期、频率、振幅(波幅)、波形和位相。周期:一个波从它离开基线到返回基线所需的时间称为周期或称为1周波,其计算单位为毫秒(1秒以内为短程;1-3秒为中程;3-10秒为长程)。频率:每秒出现的周波数,分为4个频率带(δ频率带:s以下;θ频率带:4~s;α频率带:8~13/s;β频率带:13/s以上)。以周/秒(c/s)表示。振幅:一个波由波顶到波基底线的垂直距离,其计算单位为微伏(25微伏以下为低波幅;25-75微伏为中波幅;75-100微伏为高波幅;100微伏以上为极高波幅)。波形:即波的形状(安静、闭目和清醒状态下的波形:正弦波或类正弦波、半弧状波、锯齿波、后头部孤立性慢波、复合波与多形波;睡眠状态时的脑波:驼峰波:又称顶尖波。在浅睡期出现;睡眠纺锤波:又称σ节律,12-14Hz的波。在中睡期出现)。位相:一个波由基线向上、下偏转便产生位相,向上为负相,向下为正相(正常人中除额部与顶枕之间位相常相反外,在同侧半球其他部位前后(或左右)两个导联之间出现位相倒置是应属于异常)。 脑电图的频率,从~30Hz是为目前普遍使用于临床的频率范围(脑电图仪常用的有16导、24导、32导;滤除高于30Hz或60Hz以上的高频信号,因一般的脑电图有用信号在30Hz以下;滤除低频信号,降低低频干扰(呼吸、动作等)的影响,通过选择时间常数来限定和滤除低频信号。常用秒和秒)。脑电的振幅,从几微伏到几百微伏。脑电图波形的相位,也称波的极性,以波形基线为标准,朝上的波称为负相波,朝下的波称为正相波。两个波顶之间的时间差称相位差,相位差一般用时间ms表示。 一般概念: 1)背景活动:在脑电图描记中,除了阵发或局限的显著变动部分外,其表现为占优势的持续的活动。 2)调幅:背景活动的波幅表现有规律地增高和减低呈纺锤状/梭形。在临床脑电图中,a节律常表现为这种调幅现象。称”a调幅现象“。 3)调节:也叫波率调节,每秒频率的差数叫频宽。一般说,波率调节指a 节律与稳定性而言。同一部位导出的脑波的基本频率前后相差不应超过1Hz,在不同部位导出的脑波基本频率相差不应超过2Hz。 4)弥漫性a节律:a波减慢,波幅和指数增高,调幅明显,呈同步性出现于大脑各区,特别是额、颞区明显。 5)a波前移现象:顶、枕区a节律出现减少,额、颞区a节律出现率明显增加,且额、颞区a波振幅高于顶、枕区。 正常波: 1)α波和α节律:α波乃每秒8~13周波范围的电活动,而重复节律性地出现的8~13周波活动谓之α节律。α波和节律波幅的范围为50~100微伏。

视频脑电图仪技术参数

视频脑电图仪技术参数 一、设备名称:视频脑电图仪 二、购置数量:1台 三、生产国别:国产一线 四、技术参数要求: 1.功能概述:具有常规脑电图、脑电地形图、视频脑电图仪、睡眠分析等功能; 直方图功能、时域地形图、频域数值分析、数值可保持Excel格式、及FFT 数值、能量值、通道内各频段百分比,提供注册证登记表证明。 2.通道配置:≧18通道配置,标准通道脑电、包含心电、呼吸等双极导联 3.传输方式:可采用无线传输功能。患者与主机之间无线连接,患者做检查记 录时可自由活动,更易放松,对无法配合的病人更方便。 4.阻抗测试:具有头皮阻抗测试功能,可通过观察软件上指示灯的颜色变化, 了解电极是否佩戴合适。 5.附件设计:电极导线为一体式插拔,操作更便捷,快速。 6.★电极脱落检测:具有电极脱落实时监测功能,在患者长程监测过程中可随 时了解脑电电极与患者接触状况,以便随时纠正接触不良的电极,提高监测质量。 7.供电方式:脑电放大盒,采用电池直流供电方式,可外接扩展充电; 8.语言要求:全中文界面 9.数据库管理:病例数据库可分类管理,并可导入、导出病例,可对病例存档、 备份; 10.导联编辑:支持单极、双极、平均、自定义任意导联模式的编辑; 11.事件标记:采集病例时支持睁闭眼、深呼吸、闪光等多种事件诱发试验。 12.定标校准:具有自定标校准功能,校准放大器信号输出。 13.测量:具有快捷测量、局部波形放大测量、比例尺测量等多种测量功能; 14.棘波分析:具备棘波分析功能,可自动识别并标记出癫痫病理波; 15.地形图分析:可对任意病例数据进行地形图分析并显示成三维地形图,可直 观的了解脑区中的异常放电状况。 16.地形图能量图谱:具备将地形图图谱转换成曲线图、百分比图、直方图、数

脑电图的基本知识

脑电图的基本知识

————————————————————————————————作者: ————————————————————————————————日期:

脑电图的基本知识、录像脑电图和24小时脑电图 脑电活动的性质和电磁波一样有四个基本因素即频率、波幅、波形和位相(极性)。除此之外脑电活动又有其本身的特殊性,脑电图不是记录某一点的电位,而是在头皮上记录大脑两半球各个部位的电活动,因此还存在各个部位之间的差异及特殊性的问题。脑电活动是随机非线性电信号,因此还有出现方式的不同。人脑功能与外界和本身内在环境的变化密切相关,对各种刺激的反应性也是应该注意的问题。这些都是判断脑电图是否正常以及何种程度异常的基础。 频率 频率(Freguency)是每秒种以基线为准波动的次数。其单位为C/S(次/秒),亦即Hz (Hertz)。每一次波动的起点和止点在基线上的跨度叫时限(Duration)其单位为毫秒(ms,1ms=1/1000秒)。频率与时限互为倒数。如某一脑电活动的时限为100ms即1/10秒,其频率为10Hz;亦即一个5Hz的波,其时限为200ms。在脑电图的描述中常用频率而少用时限。在Hans Berger首次描述脑电活动时使用频率的概念延续至今。用频率的不同划分脑电活动为若干段,仅在形容非常慢的脑电活动时才使用时限。 脑电活动的测量应从一个波的起点量到终点即“从谷到谷”。可以用公尺测量,测出波的宽度的毫米数,然后可用下列公式换算为频率: 频率=30/波宽(mm) 或用时限(ms)数除1000ms即为频率。但用公尺测量常不够精确,如不易区分8Hz及7H z的波,因8Hz相当于3.75mm,7Hz相当于4.26mm。但区分这两者是有实际意义的。 最好用专用尺测量。这种尺的刻试以纸速30mm为1秒作标准。按频率数每一长方格分为3等份,4等份以至于30等份,代表每秒3次,4次以至30次的频率。测量时将尺在脑电图纸上移动,直到某一波的起止点正好在某一频率刻度之间。此频率就是个波的频率数。 人类脑电活动的频率在0.5-30Hz间。分为若干频率组叫频带(Frequency band)。用希腊字母为代表。 δ频带(Delta band) 0.5-3Hz θ频带(Theta band) 4-7Hz α频带(Alpha band)8-13Hz σ频带(Sigma band)14-17Hz β频带 (Beta band)18-30Hz γ频带 (Gamma band)>30Hz 在临床上常将α、β及γ频带统称β频带。这些频率的波均可见于正常人。因此仅就频率本身而言并无正常与否的含义。考虑到不同频带在头颅各区的分布及所占的百分比(指数,Index),再加波幅的差别,才能区分正常与否。 波幅 波幅(Amplitude)是电位差的大小,也就是电压的高低。单位为微伏(μV),1μV=10-6V。所以脑电活动是非常微小的电位。其测量应从波顶引一垂直于基线的直线到波谷,其高度与定标的高度比较即可得出微伏数,即“从峰到谷”。一般常用的定标为5mm=50μV,即1mm=10μV此时用测出波高的毫米数乘以10即为此波的波幅数。如波高为6mm,波幅为60μV。如用1mm=7μV的定标,则波高6mm时波幅为42μV。就临床脑电图而言,波幅的具体数值不易准测定。临床上将波幅分为高、中、低三级: 低波幅 <25μV 中波幅 25-50μV或25-75μV

脑电图基础知识

一起学学脑电图 脑电图是将人体脑组织生物电活动放大记录的一门技术,主要用于神经系统疾病的检查。由于它反映的是“活”的脑组织功能状态,所以,自30年代出现以来,对神经系统疾病的诊断一直发挥着重大作用。 脑电图主要用于癫痫、脑外伤、脑肿瘤等疾病的诊断。脑血管病的脑电图,尽管无特异性改变,但对诊断和预后的判断,以及与脑肿瘤的鉴别仍十分有意义。脑血管病急性期90%脑电图出现异常,主要是慢波增多,尤其是病灶侧更明显。 脑出血时常伴有意识障碍、脑水肿和脑室出血,只有部分轻症患者表现轻度局限性异常。 蛛网膜下腔出血的脑电图,由于动静脉畸形好发生于大脑半球的表面,可因脑血液循环障碍,而发生局限性或半球性异常。有时对侧亦可发生异常。随着病情的好转,慢波的波幅减低,频率增快。 脑梗塞发生后,数小时就可有局灶性慢波出现,这种改变常在数周后改善或消失。急性缺血性脑血管病损害,以大脑中动脉为最多见,故局灶性改变主要在颞叶。如果是短暂性脑缺血发作,在发作间期脑电图可无异常。在发作期一部分脑电图可能出现异常,这类病人较易发生脑梗塞。 无论是脑梗塞或是轻度脑出血,主要表现为局限性慢波增多。如果病灶广泛引起脑干受压时,可引起两侧弥漫性慢波。如果病灶小或位置较深,脑电图可无异常。 脑血管病与脑肿瘤用脑电图进行鉴别诊断也很有帮助。脑肿瘤患者脑电图的异常日渐加重,而脑血管病者则恰恰相反。 动态观察脑电图的变化,对判断预后也有重要价值。临床症状逐渐好转,脑电图异常改变逐渐减少或消失,预后较好;临床症状无明显好转,脑电图呈进行性加重改变,预后不良。 头皮电极的安放位置及连接方法如何? 常规脑电图是指在正常生理条件下和安静舒适状态下按规定的统一方法和时间描记的头皮脑电图。目前临床上应用最多的是国际脑电图学会建议采用的标准电极安放法,其中FP为额极,Z代表中线电极,FZ为额,CZ为中央点,PZ为顶点,O为枕点,T为颞点,A 为耳垂电极。上述记录电极的序号通常是用奇数代表左侧,偶数代表右侧。整个头皮及双耳上所安放的电极数为21个。这种安放法特点是:头部电极的位置与大脑皮质的解剖学分区较为一致,电极的排列与头颅大小及形状成比例,在与大脑皮质凸面相对应的头部各主要区域均有电极安放。 将电极按照一定的顺序或有目的地组合起来进行描记称为导联,描记脑电图常规应用单极导联和双极导联两种方法。一次描记中至少要有3~4个导联的描记,并有单极导联和双极导联的组合,以便观察异常放电和定位诊断。一般来讲,单极导联对癫痫灶定位较好,而双极导联的波形、波幅失真较少。 便携式动态脑电图和常规脑电图有什么不同?

不同心理状态下脑电波信号的非线性分析

不同心理状态下脑电波信号的非线性分析 引言: 背景:EEG信号是一种携带着大脑状态信息的典型信号。脑电波的波形中可能携带有关于大脑状态的有用信息。但是,我们现有的检测设备不能直接的检测脑电波信号中蕴含的微小细节。此外,由于生物信号有着极强的主观性,那些症状在时间范围内是随机出现的。因此,使用计算机采集并分析得到的脑电波信号在诊断学中有很大的作用。这篇论文主要讨论音乐和刺激反射对于脑电波信号的作用。 实验方法:在实验过程中,我们从脑电波信号中提取出关联维数、最大Lyapunov 指数、Hurst指数和近似熵等非线性参数例。 实验结果:从我们实验中获得的结果表明,脑电波信号在大于85%的置信区间上会由于受到外界刺激的作用而比正常状态下的脑电波信号显现出更低的复杂度。 实验结论:我们发现相对于正常状态下测量的结果,在声音或者反射刺激下的测量结果要明显低。这个变化的尺度会随着认知行为的程度增强而提升。这表明当人受到声音或反射刺激时,大脑中并行活动会减轻,这意味着大脑会处于一种更放松的状态。背景: 通过脑电波来检测到的大脑的电现象表现出很复杂的非线性的动态特性。这种行为表现在不同复杂度的脑电波图上。考虑到这一点,使用非线性的动力学理论可能比传统的线性方法更能很好的展现脑电图的内在本质特征。对于非线性动力学的研究和描述有助于理解脑电波信号的动态特性以及大脑的一些潜在活动并探明它们的生理意义。在研究应用非线性动态理论去分析生理信号的文献中我们可以看到,非线性的分析方法被用于心脏速率、神经活动、肾血流量、动脉压以及脑电图和呼吸信号的分析。 生物时间序列分析由于其体现出典型的复杂动态特性而在非线性分析领域中一直倍受认可。这些方法的特点是可以检测到一些生理现象中隐藏的重要动态参数。非线性动态技术基于混沌理论,现在混沌理论已经被应用到许多领域,包括医学和生物学领域。目前混沌理论已经用于检测一些心律失常的情况,例如心室颤动。现在人们已经致力于检测一些生理学信号的非线性参数,因为这些参数已经被证明是非常有价值的病理学参数。 许多研究者,例如Duke等人,已经证明了复杂的动态演化会产生混沌状态。在过去的三十年中,研究观察已经指出,实际上混沌系统在大自然中是很常见的。Boccalettiet已经给出了这些系统的一些细节。在神经系统的理论模型中,重点被集中在稳定的或循环的行为上。可能混沌行为在神经水平是造成精神分裂症、失眠、癫痫等疾病的原因。在过去大量的工作被用于理解大脑的复杂性通过数学、物理学、工程学、化学以及生理学的协作。在过去,人们一直对描述神经过程和大脑信号很感兴趣,尤其是脑电波信号,这一点从本文中针对非线性动态分析以及混沌理论的介绍可以看出。非线性动态分析理论为理解脑电波信号打开了一个新的窗口。脑电波模型由Freeman等人在研究新皮层动态时以及Wright等人研究混沌动力学时提出,这是为了迎合神经生物学的研究需要。在分析脑电波数据时,最近的文献中使用了不同种类的参数,例如关联维数、最大Lyapunov指数和近似熵。Naoto等人则在研究人类在闭眼走路和不同睡眠阶段的呼吸动作的近似熵。 在本文中,我们记录了不同状态下的脑电信号,例如:(1)正常静息状态下的受试者;(2)聆听古典音乐的受试者;(3)聆听摇滚乐的受试者以及(4)给予足部刺激的受试者。我们通过对非线性参数如关联维数、近似熵、最大Lyapunov

脑电信号特征提取及分类

脑电信号特征提取及分类

第 1 章绪论 1.1引言 大脑又称端脑,是脊椎动物脑的高级的主要部分,由左右两半球组成及连接两个半球的中间部分,即第三脑室前端的终板组成。它是控制运动、产生感觉及实现高级脑功能的高级神经中枢[1]。大脑是人的身体中高级神经活动中枢,控制着人体这个复杂而精密的系统,对人脑神经机制及高级功能进行多层次、多学科的综合研究已经成为当代脑科学发展的热点方向之一。 人的思维、语言、感知和运动能力都是通过大脑对人体器官和相应肌肉群的有效控制来实现的[2]。人的大脑由大约1011个互相连接的单元体组成,其中每个单元体有大约104个连接,这些单元体称做神经元。在生物学中,神经元是由三个部分组成:树突、轴突和细胞体。神经元的树突和其他神经元的轴突相连,连接部分称为突触。神经元之间的信号传递就是通过这些突触进行的。生物电信号的本质是离子跨膜流动而不是电子的流动。每有一个足够大的刺激去极化神经元细胞时,可以记录到一个持续1-2ERP的沿轴突波形传导的峰形电位-动作电位。动作电位上升到顶端后开始下降,产生一些小的超极化波动后恢复到静息电位(静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差)。人的神经细胞的静息电位为-70mV(就是膜内比膜外电位低70mV)。这个变化过程的电位是局部电位。局部电位是神经系统分析整合信息的基础。细胞膜的电特性决定着神经元的电活动[3]。当神经元受到外界刺激时,神经细胞膜内外两侧的电位差被降低从而提高了膜的兴奋性,当兴奋性超过特定阈值时就会产生神经冲动或兴奋,神经冲动或兴奋通过突触传递给下一个神经元。由上述可知,膜电位是神经组织实现正常功能的基本条件,是兴奋产生的本质。膜电位使神经元能够接收刺激信号并将这一刺激信号沿神经束传递下去。在神经元内部,树突的外形就像树根一样发散,由很多细小的神经纤维丝组成,可以接收电信号,然后传递给细胞体。如果说树突是树根的话,那么细胞体就是树桩,对树突传递进来的信号进行处理,如果信号超过特定的阈值,细胞体就把信号继续传递给轴突。轴突的形状像树干,是一根细长的纤维体,它把细胞体传递过来的信号通过突触发送给相邻神经元的树突。突触的连接强度和神经元的排列方式都影响着神经组织的输出结果。而正是这种错综复杂的神经组织结构和复杂的信息处理机制,才使得人脑拥有高度的智慧。我们的大脑无时无刻不在产生着脑电波,对脑来说,脑细胞就像是脑内一个个“微小的发电站”。早在1857年,英国的青年生理科学工作者卡通(R.Caton)就在猴脑和兔脑上记录

脑电图基础知识总结和入门

脑电图electroencephalogram 河南科技大学第一附属医院神经内科

一:原理 脑电图的基本原理 (一)基本概念 将大脑细胞群的自发性、节律性电活动所产生与临近部位的5—100微伏电位差用电极加以引导接入放大和记录装置,放大100-200万倍,以脑细胞电活动的电位为纵轴,时间为横轴,记录或显示的电位一时间关系曲线,就是脑电图。不管是哪一类型的脑电图仪,至少包括有输入、放大、调节、记录/显示、电源等五大部分. 脑电图的基本特征有周期、频率、振幅(波幅)、波形和位相。周期:一个波从它离开基线到返回基线所需的时间称为周期或称为1周波,其计算单位为毫秒(1秒以内为短程;1-3秒为中程;3-10秒为长程)。频率:每秒出现的周波数,分为4个频率带(δ频率带:3.5/s以下;θ频率带:4~7.5/s;α频率带:8~13/s;β频率带:13/s 以上)。以周/秒(c/s)表示。振幅:一个波由波顶到波基底线的垂直距离,其计算单位为微伏(25微伏以下为低波幅;25-75微伏为中波幅;75-100微伏为高波幅;100微伏以上为极高波幅)。波形:即波的形状(安静、闭目和清醒状态下的波形:正弦波或类正弦波、半弧状波、锯齿波、后头部孤立性慢波、复合波与多形波;睡眠状态时的脑波:驼峰波:又称顶尖波。在浅睡期出现;睡眠纺锤波:又称σ节律,12-14Hz 的波。在中睡期出现)。位相:一个波由基线向上、下偏转便产生位相,向上为负相,向下为正相(正常人中除额部与顶枕之间位相常相反外,在同侧半球其他部位前后(或左右)两个导联之间出现位相倒置是应属于异常)。 脑电图的频率,从0.5~30Hz是为目前普遍使用于临床的频率范围(脑电图仪常用的有16导、24导、32导;滤除高于30Hz或60Hz以上的高频信号,因一般的脑电图有用信号在30Hz以下;滤除低频信号,降低低频干扰(呼吸、动作等)的影响,通过选择时间常数来限定和滤除低频信号。常用0.1秒和0.3秒)。脑电的振幅,从几微伏到几百微伏。脑电图波形的相位,也称波的极性,以波形基线为标准,朝上的波称为负相波,朝下的波称为正相波。两个波顶之间的时间差称相位差,相位差一般用时间ms表示。 一般概念: 1)背景活动:在脑电图描记中,除了阵发或局限的显著变动部分外,其表

临床常规脑电图检测规范

临床常规脑电图检测规范 主要适应症: 1、中枢神经系统发作性疾患,如癫痫、意识障碍、睡眠相关疾病等。 2、癫痫外科手术前致痫区定位。 3、围产期异常的新生儿监测。 4、脑外伤及大脑手术后监测。 5、危重病人监测(ICU)。 6、脑死亡的辅助判定。 1.设备 (1)脑电图仪标准:选择符合国际脑电图和临床神经生理联盟(IFSECN)及中华人民共和国脑电图国家标准并经国家计量局检测规程认可的脑电图仪。目前使用16导程或以上脑电图仪进行常规记录。有条件的实验室或出于特殊需要,可以应用更多导程记录。 (2)电源标准:交流电的接线应该滿足所在地系统标准要求,所有的交流电插座必须提供可靠的地线,以避免交流电干扰或触电的危险。要接专用电源线,电源电压为220V。应用交流电子稳压器时,需待电压稳定后方可打开脑电图仪的电源开关。 (3)辅助设备:应该包括一个能够产生节律性高强度闪光的刺激装置。 2.电极及其放置 理想电极应具有导电良好、易于安置和固定、无创性、耐磨损、无明显信号衰减信号的特性。 (1)头皮电极:包括盘状电极、针电极和柱状电极。盘状金属(银质)电极记录效果较好,推荐在临床工作中常规使用。特殊需要时可使用一次性针电极,若用可供重复使用的电极,应确保严格消毒以避免交叉感染。 (2)特殊电极:包括蝶骨电极和鼻咽电极。主要用于记录特殊脑区(如颞叶底部或内侧)的异常电活动,临床上常与头皮脑电图配合使用。疑及颞叶内侧放电而头皮脑电图无异常发现时,可考虑加用蝶骨电极。推荐使用针灸毫针作为常规脑电图蝶骨电极使用,长时间监测时应使用柔软的线型植入式蝶骨电极。鼻咽电极目前已很少使用。由于安置特殊电极具有微创性,需要

脑电图常用术语

网络培训学习方法 为了锻炼学员的实际阅图能力,网络培训并不根据EEG培训大纲顺序推进,而是从习题库中随机抽取EEG习题供学员学习,每2周一课,每课30道习题,包括选答题和判断题。EEG截图部分点击1下放大一级,点击2下放大到全屏。回答问题并提交后,系统会自动给出参考答案,供学员对照和自评。答题结束后请根据自己的感受填写每题的难易程度,以作为下一步集中培训的参考。 请学员在规定的时间内完成习题。每一课结束2周后答题系统将关闭。此时学员可以浏览阅图和查阅问题及答案,但不能再答题。 在网络学习过程中,以下问题请学员特别注意: 1. 网络培训以阅图实践为主,但阅图答题并不能取代理论方面的学习。二者是相辅相成的关系。有关EEG仪器、操作和电生理基础,以及与EEG相关的临床问题,还需要学员看书自学。为此特别列出了主要参考书(附件1)。 2. 因为工作习惯不同,各医院提供的EEG所使用的参数和导联编排方式有所不同,其中蝶骨电极可能用PG、SP或SPH表示,大家在阅图时需注意。 3. 习题中使用了一些常见的EEG术语缩写,学员应该了解这些缩写的含义,附件2列举了一些常见缩略语,供大家参考。如有未列出的,请大家自行查阅参考书。 4. EEG诊断需要结合临床,因此习题中介绍的临床简要病史或发作症状描述对判图和答题都很重要,要仔细阅读分析。 5. 如学员对习题或答案有疑问或质疑,应首先查阅参考书,多数可以找到解答。如仍有问题,欢迎在“我要提问”栏目中提问,我们将邀请命题专家在适当时间予以解答。 本期EEG习题来自多家医院EEG专家提供的资料,内容丰富,是大家学习交流的难得机会。北京大学第一医院、协和医院、首都医科大学宣武医院、三博脑科医院、北京天坛医院、清华大学玉泉医院、北京市儿童医院、广州医学院附属第二医院、深圳市儿童医院、上海复旦大学华山医院、上海复旦大学儿科医院、上海仁济医院、武汉市儿童医院、第三军医大学新桥医院、中国医科大学附属第一医院等单位的专家参与了本期EEG网络培训的命题工作,在此表示特别感谢! 附件1:参考书 CAAE脑电图分会:《临床脑电图培训教程》,人民卫生出版社 刘晓燕:《临床脑电图学》,人民卫生出版社 CAAE译:《现代临床脑电图学》,人民卫生出版社 刘兴洲译:《成人和儿童脑电图图谱》,海洋出版社 刘晓燕:《小儿脑电图图谱》,人民卫生出版社 刘兴洲译:《婴儿、儿童、青春期癫痫综合征》,海洋出版社 吴立文、任连坤译:《癫痫-发作和综合征的诊断与治疗》,协和医科大学出版社

儿童脑脑电图基本特点

儿童脑脑电图基本特点标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

儿童脑电图基本特点 儿童脑电图随年龄增长不断变化:频率由慢变快,由不规则变规则,由不对称变对称。波幅由低变高,再由高至成人型,由不稳定逐渐稳定。对光反应从无反应到有反应,直至正常反应。 一 1-3月婴儿脑电图: 背景活动 转为连续性活动 清醒与动态睡眠时相为对称的,中低波幅,连续性节律,期间混有散在的波。 静态睡眠以为主的混合波背景活动。 足月2月开始,部分婴儿出现睡眠纺锤波。 足月3月时,所有婴儿睡眠记录均应出现睡眠纺锤波。 二 3-12月婴儿脑电图: 清醒睁眼,以和混合的慢波活动为主;闭眼记录以活动为主。 出生3-4月,枕区出现特征的成熟性变化,优势节律形成。 3-4月为4Hz节律,5月为5Hz节律,12月时为6-8Hz节律,波幅一般在50-100。

睡眠分期基本成熟,半岁后可出现特征性3-5Hz同步性高幅节律活动,枕区明显,3岁后减少。 NREM睡眠期特征性先后出现顶部尖波、睡眠纺锤波K综合波。 REM睡眠期主要表现为和的混合性慢波节律。 三 13-36月幼儿脑电图: 背景活动 于清醒闭眼记录中,枕区优势节律明显。 2岁时6-7Hz节律性活动,2-3岁时7-8Hz节律性活动,3岁时8Hz波活动,尚有散在波分布于枕区。 思睡期可见4-6Hz高波幅活动,睡眠中顶尖波波幅较成人高,时限短,同时可见梳形纺锤波。 四 3-5岁学龄前期脑电图 背景活动 清醒闭目记录,以8-9Hz波为主要节律。但波调幅发育不良、波幅较高,可达100以上。枕顶区常有2-4Hz慢波插入,睁眼减少,过度换气明显。 思睡和觉醒期易见高波幅活动爆发,过度换气有明显波或波慢活动,可把或波重叠其上,误为棘-慢波或尖-慢波。

儿童脑脑电图基本特点

儿童脑脑电图基本特点标准化管理部编码-[99968T-6889628-J68568-1689N]

儿童脑电图基本特点 儿童脑电图随年龄增长不断变化:频率由慢变快,由不规则变规则,由不对称变对称。波幅由低变高,再由高至成人型,由不稳定逐渐稳定。对光反应从无反应到有反应,直至正常反应。 一 1-3月婴儿脑电图: 背景活动 转为连续性活动 清醒与动态睡眠时相为对称的,4-7.5Hz中低波幅,连续性?节律,期间混有散在的?波。 静态睡眠以?为主的混合波背景活动。 足月2月开始,部分婴儿出现睡眠纺锤波。 足月3月时,所有婴儿睡眠记录均应出现睡眠纺锤波。 二 3-12月婴儿脑电图: 清醒睁眼,以?和?混合的慢波活动为主;闭眼记录以?活动为主。出生3-4月,枕区出现特征的成熟性变化,优势节律形成。 3-4月为4Hz?节律,5月为5Hz?节律,12月时为6-8Hz?节律,波幅一般在50-100??。 睡眠分期基本成熟,半岁后可出现特征性3-5Hz同步性高幅节律活动,枕区明显,3岁后减少。 NREM睡眠期特征性先后出现顶部尖波、睡眠纺锤波K综合波。REM睡眠期主要表现为?和?的混合性慢波节律。 三 13-36月幼儿脑电图: 背景活动 于清醒闭眼记录中,枕区优势节律明显。 2岁时6-7Hz节律性活动,2-3岁时7-8Hz节律性活动,3岁时8Hz?波活动,尚有散在?波分布于枕区。 思睡期可见4-6Hz高波幅?活动,睡眠中顶尖波波幅较成人高,时限短,同时可见梳形纺锤波。 四 3-5岁学龄前期脑电图 背景活动 清醒闭目记录,以8-9Hz?波为主要节律。但?波调幅发育不良、波幅较高,可达100??以上。枕顶区常有2-4Hz慢波插入,睁眼减少,过度换气明显。 思睡和觉醒期易见高波幅?活动爆发,过度换气有明显?波或?波慢活动,可把?或?波重叠其上,误为棘-慢波或尖-慢波。

小儿抽动症的临床与脑电图特点研究200例

小儿抽动症的临床与脑电图特点研究200例 摘要:目的:研究小儿抽动症的临床与脑电图特点。 方法:对我院在2010年7月~2013年7月收治的200例抽动症患儿的临床资料进行回顾性分析。 结果:EEG正常143例(71.5%),EEG异常57例(28.5%)。在57例EEG异常患儿中,异常表现:43例(75.4%)为背景脑波发育延迟(包括散在波增多、α波指数减少、节律偏慢)、14例(24.6%)为阵发性异常(包括颞区、中央区、额区少量尖波、棘波或散在波减慢)。检查期间,有101例发作抽动,同期常规EEG未发现同步发作性异常波。 结论:在小儿抽动症的临床诊断中,脑电图检查具有重要的应用价值。 关键词:脑电图小儿抽动症临床特点诊断 Doi:10.3969/j.issn.1671-8801.2014.05.158 【中图分类号】R4【文献标识码】B【文章编号】1671-8801(2014)05-0104-01 抽动症是一种神经精神障碍,目前关于抽动症的发病机制还没有明确阐释。抽动症多发于青少年和儿

童时期,且以男性多见。临床表现主要为某一个(或多个)部位的肌肉快速地、反复地、不由自主地抽动或发声抽动,例如耸肩、摇头、伸颈、张口、吸鼻、皱额、挤眉、眨眼等,并常会伴有喉中发声或清嗓声音[1]。为研究小儿抽动症的临床与脑电图(EEG)特点,笔者对200例抽动症患儿的临床资料进行了回顾性分析,现报告如下。 1一般资料与方法 1.1一般资料。选取我院在2010年7月~2013年7月收治的200例抽动症患儿作为研究对象,所有患儿均符合DSM-Ⅳ(美国《精神疾病诊断和统计手册》第Ⅳ版)诊断标准。男168例,女32例,年龄在3~11岁,平均(7.3± 2.6)岁。其中123例为短暂性抽动,77例为Tourette综合征。经智力检测,均无异常,均排除难产儿、早产儿、出生时窒息患儿,既往无家族癫痫史和高热惊厥史。临床表现:以吸鼻、皱额、眨眼为首发症状127例,以挺腹、耸肩、摇头、伸颈、伸舌、张口、做怪相为主31例,喉中异常发声、清嗓21例,四肢抽动4例,秽语5例,轻中度行为紊乱12例。 1.2方法。应用南京伟思公司生产的16道脑电图机,对所有患者进行脑电图检查。按照国际10~20

脑电图顶尖波

关于儿童脑电图睡眠顶尖波特点的初步探讨 高艳琼金瑞瑞郭向阳 摘要:目的:初步探讨儿童睡眠脑电图顶尖波的其他特点。方法:回顾性分析陕西省人民医院2013年11月至2014年11月的100例儿童长程(8小时-24小时)视频脑电图,对睡眠脑电图的非快速动眼睡眠Ⅰ期(NREM Ⅰ)的标志性波顶尖波进行研究分析。结果:100例病例中,顶尖波仅出现在中线及左右中央、顶脑区导联的有9(9%)例,另有62(62%)同时出现于双侧前额、中额脑区,有13(13%)例同时出现于双侧顶枕部脑区,其中有89(89%)例波及至颞区。有58(58%)例患者均延伸至NREMⅢ期,22(22%)例延伸至NREMⅣ期。10(10%)例患者轻度思睡即出现了类似顶尖波的发放。结论:1、顶尖波除了出现在中线及双侧中央、顶脑区外,在双侧额、额后脑区导联最明显;2,、NREM Ⅲ期、NREMⅣ期睡眠中仍可见到少量的顶尖波;3 、在轻度思睡状态下也会见到类似顶尖波的发放。 关键词:儿童脑电图,睡眠顶尖波,特点 Discussion of the features about vertex sharp of chi dren’s sleeping EEG Gao Yan-qiong, Jin Rui-rui, Guo Xiang-yang Abstract: Objective: To study the features about vertex sharp of chindren’s sleeping EEG.. Methods: Analysed 100 cases about child ren’s long monitoring EEG (8hours-24hours)and study signature wave (vertex sharp) of NREM Ⅰsleep obtained from Shan Xi Provential P eople’s Hospital. Rerults: Among 100 cases, there’re 9(9%) cases ,their vertex sharp only appeared at bilateral central and bilateral parietal region; the other 62 cases appeared bilateral orbitofrontal? cortex at the same time.; there’re 13 cases appear ed at bilateral parietal and occipital reg ion, and there’re 89 cases spreaded to bilateral temporal area at the same time; 58 cases extended to NREM Ⅲ, 22 cases extended to NREM Ⅳ,10 cases appeared wave likes vertex sharp in mild sleepiness. Conclusion:1.Except middle line、bilateral central and parietal region, vertex sharp also appears at bilateral orbiitofrontal; 2、Vertex sharp is also appears in NREM Ⅲ and NREM Ⅳ;3、Vertex sharp appears in mild sleeping time, too. Key words: EEG of children, vertex sharp in sleep; feature.

振幅整合脑电图在新生儿监护中的应用

DO I :1013969/j 1issn 1167326710120111041022 基金项目:广东省社会发展科技计划项目(2006B36030006);广州市科技支撑项目(2009Z12E121) 作者单位:510120广州市妇女儿童医疗中心,广州市儿童医院新生儿科 通讯作者:周伟,电子信箱:zhouwei_pu002@1261com ?综 述? 振幅整合脑电图在新生儿监护中的应用 卢伟能 周伟 近年来,由脑功能监护仪(Cerebral functi on mo 2nit or,CF M )记录得出的振幅整合脑电图(a mp litude 2integrated electr oencephal ogra m ,aEEG )在新生儿监护中的应用逐渐增多。该理论是以过滤压缩的脑电图为基础,通过相对简便的阅图分析,得出脑电背景活动在一段时期内的趋势和变化,以指导对临床预后的判断。自上世纪60年代Maynard 等应用首台脑功能监护仪持续监测脑电活动起,aEEG 在临床上的应用已有40多年历史。虽然CF M 开始时只是为成人患者设计,但在新生儿监护的应用也有20多年。然而在国内由于各种因素的限制,能将aEEG 应用于新生儿临床监测及实验研究的单位极少,该项技术在我国仍未能很好地开展。 一、aEEG 在新生儿重症监护病房的应用(一)概述研究表明,新生小鼠生后第1天的aEEG 表现相当于人类胎龄23周的早产儿,生后7天的表现相当于人类胎龄30~32周的早产儿,而生后10天小鼠aEEG 的表现则已相当于人类胎龄40~42周,而且随着日龄增长,暴发间期(interburst intervals,I B I )逐渐缩短,脑电背景活动由非连续性发展为连续性 脑电图[1] 。健康新生儿aEEG 随着胎龄的增长而变化。早产儿aEEG 背景活动亦随着胎龄的增长,从 原来不连续性脑电图逐渐发育为连续性脑电图[2] 。从胎龄26~27周起,健康早产儿的aEEG 会出现背景活动的周期性波动,表现为不成熟的睡眠2觉醒周期(sleep 2wake cycling,S WC )。S WC 随胎龄增加而逐渐成熟,在胎龄31~32周左右,频宽增加,已经可以分辨出睡眠2觉醒状态。窄带代表清醒或活动睡眠期,宽带代表安静睡眠时期。S WC 是成熟aEEG 的重要特征。一项多中心研究结果表明,90%以上 的足月新生儿出生时即已存在睡眠2觉醒周期性的 变化,1次睡眠2觉醒周期时程约为70m in 。健康新生儿aEEG 背景波最低电压均>5μV,最高电压均>10μV ,其aEEG 表现不受日龄、性别、分娩方式及 母亲妊娠并发症的影响[3] 。如果早产儿aEEG 出现S WC,提示其远期预后良好。大部分严重颅内出血(intraventricular he morrhage,I V H )的患儿S WC 常缺如[4] 。 (二)aEEG 在足月儿的应用 aEEG 是比较理想的评估足月儿脑功能、围产期窒息或严重疾病所致脑损伤及其脑恢复情况的手段[5] 。存在循环不稳定(如败血症)、低氧(如持续肺动脉高压)、胎粪吸入、心脏疾病、先天性膈疝、低血糖惊厥等原因需要重症监护的新生儿,易发生脑 部并发症[6] 。 T oet 等[7] 比较了aEEG 和其他一些脑功能监测手段,如脑局部血氧饱和度(regi onal cerebral oxygen saturati on,rS O 2),脑组织氧提取分数(fracti onal cer 2ebral tissue oxygen extracti on,FT OE )和近红外光谱(near 2infrared s pectr oscopy,N I RS ),结果显示预后正常的患儿rS O 2和FT OE 保持稳定,而预后不良的患儿生后24h rS O 2增高,FT OE 下降,aEEG 在评估重度窒息新生儿预后方面有更好的相关性。一项Meta 分析显示,aEEG 能很好地提示缺氧缺血性脑病(hy 2poxic ische m ic encephal opathy,H I E )的预后,帮助临床医生制定监护治疗计划,决定哪些患儿需要进一 步治疗以及预测治疗的效果[8]。Luk áskov á等[9] 对围产期有缺氧病史的56例新生儿在生后数小时内即进行持续aEEG 监测,结果显示,未发展为H I E 的患儿和轻度H I E 患儿aEEG 轨迹正常或仅轻度异常;中度H I E 患儿aEEG 监测记录的结果由正常到严重异常;重度H I E 患儿aEEG 的轨迹均为暴发2抑制、低电压或低平的等电位表现。反之,如果新生儿缺氧后数小时内的aEEG 轨迹为病理性,将至少会发展为中度H I E 。53%aEEG 轨迹为低平等电位表 现的新生儿会发展为重度H I E 。刘登礼等[10] 的研究也证实,对于H I E 的足月儿,在生后6h 内进行

相关文档
最新文档