2015学年湖北省荆州市松滋市八年级下学期数学期末试卷带答案
湖北省荆州市八年级下学期数学期末考试试卷

湖北省荆州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题(共10题,共30分) (共10题;共30分)1. (3分)(2019·北京模拟) 在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A .B .C .D .2. (3分) (2017八下·西华期末) 下列计算错误的是()A . · =B .C . ÷ =2D .3. (3分)(2018·淮安) 若点A(﹣2,3)在反比例函数的图像上,则k的值是()。
A . ﹣6B . ﹣2C . 2D . 64. (3分)如果方程(x-1)(x2-2x+m)=0的三根可以作为一个三角形的三边之长,那么实数m的取值范围是()A . 0≤m≤1B . m≥C . <m≤1D . ≤m≤15. (3分)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A . 4:00气温最低B . 6:00气温为24℃C . 14:00气温最高D . 气温是30℃的时刻为16:006. (3分)应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()①结论的否定;②已知条件;③公理、定理、定义等;④原结论.A . ①②B . ②③C . ①②③D . ①②④7. (3分) (2018八上·海曙期末) 如图,△ABC中,∠A=67.5°,BC=4,BE⊥CA于E,CF⊥AB于 F,D是BC的中点.以F为原点,FD所在直线为x轴构造平面直角坐标系,则点E的横坐标是()A . 2-B . -1C . 2-D .8. (3分)(2018·毕节) 如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到△ANM,若AN平分∠MAB,则折痕AM的长为()A . 3B . 2C . 3D . 69. (3分)方程2x(x+6)=5(x+6)的解为()A . x=﹣6B . x=C . x1=﹣6,x2=D . x1=6,x2=﹣10. (3分) (2017八下·下陆期中) 如图,△ABC中,AD为BC边上的中线,若AB=5,AC=13,AD=6,那么BC的值为()A . 18B .C . 2D . 12二、填空题(共10题,共30分) (共10题;共30分)11. (3分) (2020八上·昌平期末) 六个正整数的中位数是4.5,众数是7,极差是6,这六个正整数的和为________.12. (3分)计算:﹣ =________, =________.13. (3分)在四边形中,若有一组对角都为90°,另一组对角不相等的四边形我们称它为“垂直”四边形,那么下列说法正确的序号是________ . (多填或错填得0分,少填酌情给分).① “垂直”四边形对角互补;②“垂直”四边形对角线互相垂直;③“垂直”四边形不可能成为梯形;④ 以“垂直”四边形的非直角顶点为端点的线段若平分这组对角,那么该“垂直”四边形有两组邻边相等.14. (3分) (2019九下·江都月考) 如图,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连接OA,反比例函数y= (k>O,x>O)的图象与线段OA、OB分别交于点C、D,过点C作CE⊥x轴于E.若AB=3BD,则△COE的面积为________.15. (3分)如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是________ .16. (3分)若一元二次方程2x2﹣3x+k=0有两个相等实数根,则k的值是________17. (3分)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n 的值为________.18. (3分) (2017八上·临海期末) 如图,△ABC 中,,,点,分别在线段,上,将沿直线翻折,使落在处,,分别交于, . 若,则的度数为________.19. (3分) (2017八下·射阳期末) 如图,矩形ABCD中,AB=4,AD=6,点E在边AD上,且AE:ED=1:2.动点P 从点A出发,沿AB运动到点B停止.过点E作EF⊥PE交射线BC于点F .设点M是线段EF的中点,则在点P运动的整个过程中,点M的运动路径长为________.20. (3分)(2017·乐陵模拟) 如图,在四边形ABCD中,AD=AB=BC,连接AC,且∠ACD=30°,tan∠BAC= ,CD=3,则AC=________.三、解答题(共6题,共40分) (共6题;共40分)21. (6分)(2018·青羊模拟)(1)计算:(﹣1)2017﹣()﹣2•sin60°+|3﹣ |(2)解方程:2(x﹣2)2=x2﹣422. (6分) (2019七上·天台月考) 某食品厂计划平均每天生产200袋食品,但是由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超过计划量记为正):星期一星期二星期三星期四星期五星期六星期日+5-1-7+11-9+5+6(1)根据记录的数据可知该厂星期二生产食品多少袋?(2)根据记录的数据可知产量最多的一天比产量最少的一天多生产食品多少袋?(3)根据记录的数据可知该厂本周实际共生产食品多少袋?23. (6分)(2017·河北模拟) 我市某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y= 的一部分,请根据图中信息解答下列问题:(1)求k的值;(2)恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有多少小时?24. (6分)(2019·广州模拟) 如图1,点A是⊙O外一点.(1)过点A作⊙O的切线(要求:尺规作图,保留作图痕迹,不写作法);(2)如图2,设AC是⊙O的切线,点C是切点,已知tan∠A=,求tan∠ABC的值.25. (8.0分)(2018·枣庄) 如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD 交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2 ,求BE的长.26. (8.0分)(2013·衢州) 在平面直角坐标系xOy中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒.(1)当点P移动到点D时,求出此时t的值;(2)当t为何值时,△PQB为直角三角形;(3)已知过O、P、Q三点的抛物线解析式为y=﹣(x﹣t)2+t(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.参考答案一、单选题(共10题,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共10题,共30分) (共10题;共30分) 11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题(共6题,共40分) (共6题;共40分) 21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-3、。
2015-2016学年八年级下学期期末质量检测数学试题带答案

E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。
湖北省荆州市八年级下学期数学期末试卷

湖北省荆州市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019九下·江阴期中) 函数y= +3中自变量x的取值范围是()A . x>1B . x≥1C . x≤1D . x≠12. (2分)如果一个多边形的边数增加1,则它的内角和将()A . 增加90°B . 增加180°C . 增加360°D . 不变3. (2分) (2019八上·香洲期末) 点A(2,﹣1)关于x轴对称的点B的坐标为()A . (2,1)B . (﹣2,1)C . (2,﹣1)D . (﹣2,﹣1)4. (2分)如果 + 有意义,那么代数式|x﹣1|+ 的值为()A . ±8B . 8C . 与x的值无关D . 无法确定5. (2分)如果菱形的周长为高度的8倍,则菱形较小的内角的度数为()A . 150°B . 60°C . 45°D . 30°6. (2分) (2019九上·慈溪期中) 某校男子篮球队20名队员的身高如表所示:则此男子排球队20名队员身高的中位数是()身高(cm)170176178182198人数(个)46532A . 176cmB . 177cmC . 178cmD . 180cm7. (2分)下列命题中,正确命题的序号是()①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形③对角线互相垂直且相等的四边形是菱形④任何三角形都有外接圆,但不是所有的四边形都有外接圆A . ①②B . ②③C . ③④D . ①④8. (2分)(2020·松江模拟) 如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角,它们重叠部分(阴影部分)的面积是1.5,那么的值为()A .B .C .D .9. (2分)(2015·丽水) 如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A . 3种B . 6种C . 8种D . 12种10. (2分) (2020八下·阳东期末) 若函数是正比例函数,且随的增大而减小,则下列判断正确的是()A .B .C .D .11. (2分)直线y=kx+b在坐标系中的位置如图,则()A .B .C .D .12. (2分)一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A . x<2B . x<0C . x>0D . x>2二、填空题 (共6题;共6分)13. (1分) (2020八下·汉阳期中) 若,则 ________.14. (1分)(2020·淮安模拟) △ABC中,已知,∠A、∠B为锐角,则∠C=________°15. (1分) (2020八下·丰台期末) 请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式________.16. (1分)某车间有120名工人,为了了解这些工人日加工零件数的情况,随机抽出其中的30名工人进行调查.整理调查结果,绘制出不完整的条形统计图(如图).根据图中的信息,解答下列问题:(1)在被调查的工人中,日加工9个零件的人数为________ 名;(2)在被调查的工人中,日加工12个零件的人数为________ 名,日加工________ 个零件的人数最多,日加工15个零件的人数占被调查人数的________ %;(3)依据本次调查结果,估计该车间日人均加工零件数和日加工零件的总数是________ .17. (1分)直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是________.18. (1分) (2018七下·宝安月考) 若某地打长途电话3分钟之内收费1.8元,3分钟以后每增加1分钟(不到1分钟按1分钟计算)加收0.5元,当通话时间t≥3分钟时,电话费y(元)与通话时间t(分)之间的关系式为________.三、解答题 (共7题;共50分)19. (5分) (2017九上·西湖期中) 已知.(1)求的值.(2)如果,求的值.20. (5分)如图,在△ABC中,AB=4,BC=2,BD=1,CD= ,求∠ACB的度数.21. (10分) (2019九上·义乌月考) 如图,在平面直角坐标系中,直线y=﹣5x+5与x轴、y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴交于另一点B.(1)求抛物线解析式及B点坐标;(2)的解集________.(3)若点M在第一象限内抛物线上一动点,连接MA、MB,当点M运动到某一位置时,△ABM面积为△ABC的面积的倍,求此时点M的坐标.22. (10分)(2020·通州模拟) 如图,在▱ABCD中,AE⊥BC于点E,过点D作DF∥AE,交BC的延长线于点F,连接AF.(1)求证:四边形AEFD是矩形;(2)若AD=8,tanB=,CF=,求AF的长.23. (3分) (2020八下·临江期末) 为了调查甲,乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一,表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:分析数据:得出结论:包装机分装情况比较好的是________(填甲或乙),说明你的理由.24. (6分)(2016·天津) 公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(1)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆37x租用的甲种货车最多运送机器的数量/台135________________租用的乙种货车最多运送机器的数量/台150________________表二:租用甲种货车的数量/辆37x租用甲种货车的费用/元________2800________租用乙种货车的费用/元________280________(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.25. (11分) (2019七下·黄陂期末) 如图,平面直角坐标系中,点在第一象限,轴于B,轴于C,,且四边形的面积为48.(1)如图1,直接写出点A、B、O、C的坐标:(2)如图2,点从出发以每秒1个单位的速度沿轴正半轴运动,同时点从B出发,以每秒2个单位的速度沿射线运动,交线段于,设运动的时间为,当时,求的取值范围;(3)如图3,将线段平移,使点B的对应点恰好落在y轴负半轴上,点C的对应点为N,连交y 轴交于P ,当时,求点M的坐标。
2015-2016学年八年级下学期期末考试数学试题带答案(精品)

CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C .6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CDAB CP第13题图第14题图第8题图第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S(单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米10.如右图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则下列图象能大致反映y与x的函数关系的是()二、填空题(本题共18分,每小题3分)11.如图,点D,E分别为△ABC的边AB,BC的中点,若DE=3cm,则AC=cm.12.已知一次函数2()y m x m=++,若y随x的增大而增大,则m的取值范围是.13.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ACD ∽△ABC(只填一个即可).14.如图,在□ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则AEFCBFSS△△= .DAB CFE DB CAEDAB CSt/平方米/小时16060421ODAFE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案C A B AD BDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=Q △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m=-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。
2015最新人教版八年级数学下册期末考试卷及答案

新人教版八年级数学下期末综合检测一、选择题(每小题3分,共30分)1。
(2013·鞍山中考)要使式子有意义,则x的取值范围是()A.x>0 B。
x≥-2 C.x≥2 D。
x≤22.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等 C。
对角线互相平分D。
两组对角分别相等3.下列计算正确的是()A.×=4B。
+= C。
÷=2D。
=—154。
(2013·陕西中考)根据表中一次函数的自变量x与函数y的对应值,可得p的值为( )x —2 0 1y 3 p 0A。
1 B.—1 C.3 D.—35。
(2013·盐城中考)某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )工资(元) 2 000 2 200 2 400 2 600人数(人) 1 3 4 2A.2400元、2400元B。
2400元、2300元C.2200元、2200元D。
2200元、2300元6。
四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是() A。
AB∥DC,AD∥BC B。
AB=DC,AD=BCC。
AO=CO,BO=DO D。
AB∥DC,AD=BC7。
(2013·巴中中考)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24B.16C.4D。
28.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为( )A。
B.2 C.3 D.49。
正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()10。
如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x〈ax+4的解集为()A。
x〈B。
x<3C.x> D.x〉3二、填空题(每小题3分,共24分)11.计算:—=。
2015-2016学年度八年级第二学期期末考试数学试题及参考答案

2015-2016学年度第二学期期末考试八年级数学试题(时间:120分钟 满分:150分)请注意:所有试题的答案均填写在答题卡上,答案写在试卷上无效。
一、选择题:(本大题共6小题,每小题3分,计18分) 1.下列式子中,为最简二次根式的是 ( ▲ ) A .10B .8C .21D .212.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )A .B . C.D.3.与分式x--11的值相等的是( ▲ ) A .11--xB .x+-11 C .x+11D .11-x 4. 已知实数0<a ,则下列事件中是必然事件的是( ▲ ) A .03>aB .03<-aC .03>+aD .03>a5.矩形具有而平行四边形不一定具有的性质是( ▲ ) A .对角线互相平分 B .两组对角相等 C .对角线相等D .两组对边相等6.如图,△ABC 的三个顶点分别为A (1,2),B (1,3),C (3,1).若反比例函数xky =在第一象限内的图象与△ABC 有公共点,则k 的取值范围是( ▲ ) A .32≤≤k B .42≤≤k C .43≤≤kD .5.32≤≤k二、填空题:(本大题共10小题,每小题3分,计30分)7x 的取值范围是 ▲ .8.如图,将△ABC 绕点A 按顺时针方向旋转60°得△ADE ,则∠BAD= ▲ °.9.若分式392+-x x 的值为0,则x 的值为 ▲ .10.若b a <,则2)(b a -可化简为 ▲ .11.若一元二次方程020162=-+bx ax 有一根为1-=x ,则b a -的值为 ▲ .12.在菱形ABCD 中,对角线AC ,BD 的长分别是6和8,则菱形的周长是 ▲ . 13.如图,在Rt △ABC 中,∠ACB=90°,点D 、E 、F 分别是AB 、AC 、BC 的中点,若CD=5,则EF 的长为 ▲ .第8题图 第13题图 第16题图14.某药品2014年价格为每盒120元,经过两年连续降价后,2016价格为每盒76.8元,设这两年该药品价格平均降低率为x ,根据题意可列方程为 ▲ . 15.已知)2,(m A 与)3,1(-m B 是反比例函数xky =图像上的两个点,则m 的值为 ▲ . 16.如图,矩形ABCD 中,AB=7cm,BC=3cm,P 、Q 两点分别从A 、B 两点同时出发,沿矩形ABCD 的边逆时针运动,速度均为1cm/s ,当点P 到达B 点时两点同时停止运动,若PQ 长度为5cm 时,运动时间为 ▲ s . 三、解答题:(本大题共10小题,计102分) 17.(本题10分)计算:(1)0)21()12(8+-+(2))32)(32(-+18.(本题10分)解下列一元二次方程: (1)x x 3322=-(用公式法解) (2)93)3(2-=-x x19.(本题8分)先化简,再求值:121441222+-÷-+-+-a a a a a a ,其中12+=a20.(本题8分)一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其它区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.21.(本题10分)2016年某校组织学生进行综合实践活动,准备从以下几个景点中选择一处进行参观。
荆州市八年级下学期数学期末考试试卷
荆州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·北区模拟) 下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2019九下·武威月考) 在实数范围内,有意义,则x的取值范围是()A . x≥0B . x≤0C . x>0D . x<03. (2分)每个内角都相等的多边形,它的一个外角等于一个内角的,则这个多边形是()A . 三角形B . 四边形C . 五边形D . 六边形4. (2分)(2019·石首模拟) 为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间(分钟)20406090学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A . 众数是60B . 平均数是21C . 抽查了10个同学D . 中位数是505. (2分)用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A . (x+ )2=B . (x+ )2=C . (x﹣)2=D . (x﹣)2=6. (2分) (2019八下·嘉兴期末) 利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设()A . 四边形中至多有一个内角是钝角或直角B . 四边形中所有内角都是锐角C . 四边形的每一个内角都是钝角或直角D . 四边形中所有内角都是直角7. (2分)下列语句中,真命题有()个①在同一平面内,过一点有且只有一条直线与已知直线平行;②相等的角是对顶角;③若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角;④平方根和立方根相等的数是0;⑤平移变换中,各组对应点连成的线段平行且相等.A . 1B . 2C . 3D . 48. (2分)(2017·合肥模拟) 如图,在平面直角坐标系中,点A是y轴正半轴上的一个定点,点B是反比例函数y= (k为常数)在第一象限内图象上的一个动点.当点B的纵坐标逐渐增大时,△OAB的面积()A . 逐渐减小B . 逐渐增大C . 先增大后减小D . 不变9. (2分) (2017八上·阳谷期末) 如图,在△ABC中∠A=80°.点D是BC延长线上一点,∠ACD=150°,则∠B=()A . 60°B . 50°C . 70°D . 165°10. (2分)一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是()A . b=2a+kB . a=b+kC . a>b>0D . a>k>0二、填空题 (共6题;共7分)11. (1分) (2019七下·昭平期中) 计算=________.12. (1分) (2019九下·兴化月考) 小丽同学今年在六次数学考试中的成绩分别是:117,118,120,116,118,119,则她这六次考试成绩的方差是________.13. (1分)如果二次方程x2+3x+m=0有两个不相等的实数根,则实数m的取值范围是 ________.14. (2分) (2017八下·宜兴期中) 如图,将△ABC沿它的中位线MN折叠后,点A落在点A′处,若∠A=30°,∠B=115°,则∠A′NC=________°.15. (1分) (2017八下·鄂托克旗期末) 如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是________.16. (1分) (2017八上·杭州月考) 如图,C 为线段 AE 上一动点(不与 A、E 重合),在 AE 同侧分别作等边△ABC 和等边△CDE,AD 与 BE 交于点 O,AD 与 BC 交于点 P,BE 与 CD 交于点 Q,连接 PQ,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°,其中正确的结论是________(把你认为正确的结论的序号都填上).三、解答题 (共7题;共61分)17. (10分)计算题(1)(2)()+2 ×3 .18. (6分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如图的两幅统计图:(1)该调查小组共抽取了多少名学生;(2)样本学生中阳光体育运动时间为1.5小时的人数,并补全频数分布直方图;(3)请通过计算估计该市中小学生一天中阳光体育运动的平均时间.19. (5分) (2018九下·滨湖模拟) 如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点C作CE//AB,过点B作BE//CD,CE、BE相交于点E.求证:四边形BECD为菱形.20. (10分)(2018·哈尔滨) 如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.①在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;②在图中画出以线段AB为一腰,底边长为2 的等腰三角形ABE,点E在小正方形的顶点上.连接CE,请直接写出线段CE的长.21. (10分) (2017八上·南安期末) 如图,△ABC中,AC=BC=10cm,AB=12cm,点D是AB的中点,连结CD,动点P从点A出发,沿A→C→B的路径运动,到达点B时运动停止,速度为每秒2cm,设运动时间为t秒.(1)求CD的长;(2)当t为何值时,△ADP是直角三角形?(3)直接写出:当t为何值时,△ADP是等腰三角形?22. (10分)(2018·寮步模拟) 如图,在平面直角坐标系中,O为原点,四边形ABCD是矩形,点A、C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A、C重合),连结BD,作,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.(1)填空:点B的坐标为________;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值23. (10分)如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.(2)在木棍滑动的过程中,当滑动到什么位置时,的面积最大?简述理由,并求出面积的最大值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共61分)17-1、17-2、18-1、18-2、18-3、19-1、20-1、21-1、21-2、21-3、22-1、22-2、第11 页共13 页第12 页共13 页22-3、23-1、23-2、第13 页共13 页。
2018-2019学年湖北省荆州市松滋市八年级(下)期末数学试卷(解析版)
2018-2019学年湖北省荆州市松滋市八年级(下)期末数学试卷一、选择题(每道题后面的四个选项中,有且只有一个正确.每小题3分,共30分)1a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤12.下列二次根式中能与合并的是()A B C D3.若一个等腰三角形的腰长为5,底边长为6,则底边上的高为()A.4 B.3 C.5 D.64.下列选项中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AB∥CD B.AB∥CD,AB=CDC.AD∥BC,AB=DC D.AB=DC,AD=BC5.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.抛掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定6.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AD,AC的中点,若CB=4,则EF的长度为()A .2B .1C .32D .7.若b <0,则一次函数y=-x+b 的图象大致是( )A .B .C .D .8.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF 的长是( )A .14B .13C .D .9.如图,在矩形ABCD 中,E 为AD 的中点,∠BED 的平分线交BC 于点F ,若AB=3,BC=8,则FC 的长度为( )A .6B .5C .4D .310.在平面直角坐标系内,已知点A 的坐标为(-6,0),直线l :y=kx+b 不经过第四象限,且与x 轴的夹角为30°,点P 为直线l 上的一个动点,若点P 到点A 的最短距离是2,则b 的值为( )ABC .D .或二、填空题(每小题3分,共18分)11.计算:(2=;= .12.若点A (2,m )在平面直角坐标系的x 轴上,则点P (m-1,m+3)到原点O 的距离为 .13.小华用S 2=110{(x 1-8)2+(x 2-8)2+……+(x 10-8)2计算一组数据的方差,那么x 1+x 2+x 3+…+x 10= .14.一个有进水管与出水管的容器,从某时刻开始,2min 内只进水不出水,在随后的4min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则每分钟出水 升.15.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E ,若AB=8,AD=6,则EC= .16.在三角形纸片ABC 中,∠A=90°,∠C=30°,AC=10cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 cm .三、解答题(本大题满分为72分)17.计算题(1)(2)2-18.已知22a b ==-b a a b-的值. 19.如图,在四边形ABCD 中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD 的面积.20.某中学九年级开展“社会主义核心价值观”演讲比赛活动,九(1)班、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出5名选手的复赛成绩(满分100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的众数是分,九(2)班复赛成绩的中位数是分;(2)请你求出九(1)班和九(2)班复赛的平均成绩和方差,并说明哪个班的成绩更稳定.21.在数学学习中,及时对知识进行归纳和整理是提高学习效率的重要方法,善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,对照图形,把相关知识归纳整理如下:一次函数与方程(组)的关系:(1)一次函数的解析式就是一个二元一次方程;(2)点B的横坐标是方程kx+b=0的解;(3)点C的坐标(x,y)中x,y的值是方程组①的解.一次函数与不等式的关系:(1)函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式kx+b>0的解集;(2)函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式②的解集.(一)请你根据以上归纳整理的内容在下面的数字序号后写出相应的结论:①;②;(二)如果点B坐标为(2,0),C坐标为(1,3);①直接写出kx+b≥k1x+b1的解集;②求直线BC的函数解析式.22.已知:如图,平行四边形ABCD中,对角线AC与BD相交于点E,点M为AD的中点,连接CM,CM的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AM=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.23.A城有肥料400t,B城有肥料600t,现要把这些肥料全部运往C、D两乡,所需运费如下表所示:现C乡需要肥料480t,D乡需要肥料520t.(1)设从A城运往C乡肥料x吨,总运费为y元;①求B城运往C、D两乡的肥料分别为多少吨?(用含x的式子表示).②写出y关于x的函数解析式,并求出最少总运费.(2)由于更换车型,使A城运往C乡的运费每吨减少m元(0<m<6),这时怎样调运才能使总运费最少?24.如图(1),在平面直角坐标系中,直线y=-x+m交y轴于点A,交x轴于点B,点C为OB的中点,作C关于直线AB的对称点F,连接BF和OF,OF交AC于点E,交AB于点M.(1)直接写出点F的坐标(用m表示);(2)求证:OF⊥AC;(3)如图(2),若m=2,点G的坐标为(-13,0),过G点的直线GP:y=kx+b(k≠0)与直线AB始终相交于第一象限;①求k的取值范围;②如图(3),若直线GP经过点M,过点M作GM的垂线交FB的延长线于点D,在平面内是否存在点Q,使四边形DMGQ为正方形?如果存在,请求出Q点坐标;如果不存在,请说明理由.2018-2019学年湖北省荆州市松滋市八年级(下)期末数学试卷参考答案与解析1.【分析】根据二次根式有意义的条件可得a-1≥0,再解不等式即可.【解答】解:由题意得:a-1≥0,解得:a≥1,故选:B.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.【解答】解:A=合并,错误;=能与B3CD3不能与故选:B.【点评】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.3.【分析】根据等腰三角形底边高线和中线重合的性质,则BD=DC=3,可以根据勾股定理计算底边的高【解答】解:如图,在△ABC中,AB=AC=5,AD⊥BC,则AD为BC边上的中线,即D为BC中点,∴BD=DC=3,在直角△ABD中AD= AB2−BD2=4.故选:A.【点评】本题考查了勾股定理在直角三角形中的正确运用,考查了等腰三角形底边高线、中线重合的性质,本题中根据勾股定理正确计算AD是解题的关键.4.【分析】根据平行四边形的判定方法一一判断即可;【解答】解:A、由AD∥BC,AB∥CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;B、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;C、由AD∥BC,AB=DC不能判断四边形ABCD是平行四边形;故本选项符合题意;D、由AB=DC,AD=BC可以判断四边形ABCD是平行四边形;故本选项不符合题意;故选:C.【点评】本题考查平行四边形的判定方法,解题的关键是熟练掌握基本知识,属于中考基础题.5.【分析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题.【解答】解:为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,一组数据1、2、5、5、5、3、3的中位数和众数分别是3、5,故选项B错误,投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D 正确,故选:D.【点评】本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.6.【分析】根据直角三角形的性质求出CD,根据三角形中位线定理计算即可.【解答】解:∵∠ACB=90°,∠A=30°,∴AB=2BC=8,∵∠ACB=90°,D为AB的中点,∴CD=12BC=4,∵E,F分别为AD,AC的中点,∴EF=12CD=2,故选:A.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7.【分析】根据一次函数的k、b的符号确定其经过的象限即可确定答案.【解答】解:∵一次函数y=-x+b中k=-1<0,b<0,∴一次函数的图象经过二、三、四象限,故选:C.【点评】要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.【分析】24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF的长.【解答】解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24-10=14,∴EF==故选:D.【点评】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.9.【分析】根据矩形点的性质可得AD∥BC,AD=BC,再求出AE的长度,再根据勾股定理列式求出BE的长,然后根据角平分线的定义求出∠BEF=∠DEF,根据两直线平行,内错角相等求出∠BFE=∠DEF,再求出BEF=∠BFE,根据等角对等边可得BE=BF,然后根据FC=BC-BF代入数据计算即可得解.【解答】解:在矩形ABCD中,AD∥BC,AD=BC=8,∵E为AD的中点,∴AE=12AD=12×8=4,在Rt△ABE中,5BE==,∵EF是∠BED的角平分线,∴∠BEF=∠DEF,∵AD ∥BC ,∴∠BFE=∠DEF ,∴BEF=∠BFE ,∴BE=BF ,∴FC=BC-BF=8-5=3.故选:D .【点评】本题考查了矩形的性质,勾股定理的应用,两直线平行,内错角相等的性质,等角对等边的性质,熟记各性质是解题的关键.10. 【分析】直线l :y=kx+b 不经过第四象限,可能过一、二、三象限,与x 轴的夹角为30°,又点A 的坐标为(-6,0),因此两种情况,分别画出每种情况的图形,结合图形,利用已学知识进行解答.【解答】解:如图:分两种情况:(1)在Rt △ABP 1中,AP 1=2,∠ABP 1=30°,∴AB=2AP 1=4,∴OB=OA-AB=6-4=2,在Rt △BCO 中,∠CBO=30°,∴OC=tan30°×OB=3,即:b=3;(2)同理可求得AD=4,OD=OA+AD=10,在Rt △DOE 中,∠EDO=30°,∴OE=tan30°×,即:; 故选:A .【点评】考查一次函数的图象和性质、直角三角形的边角关系等知识,分类讨论得出答案,注意分类的原则既不重复,又不能遗漏,可根据具体问题合理灵活地进行分类. 二、填空题(每小题3分,共18分)11. 【分析】根据二次根式的性质计算即可.【解答】解:2(2π==-.故答案为:5,π-2.【点评】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.12. 【分析】首先根据x 轴上的点纵坐标为0得出m 的值,再根据勾股定理即可求解.【解答】解:∵点A (2,m )在直角坐标系的x 轴上,∴m=0,∴点P (m-1,m+3),即(-1,3)到原点O =.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.求出m 的值是解题的关键13. 【分析】根据S 2=110{(x 1-8)2+(x 2-8)2+……+(x 10-8)2可得平均数为8,进而可得答案.【解答】解:由S 2=110{(x 1-8)2+(x 2-8)2+……+(x 10-8)2知这10个数据的平均数为8, 则x 1+x 2+x 3+…+x 10=10×8=80,故答案为:80.【点评】此题主要考查了方差公式,关键是掌握方差公式:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 14. 分析】出水量根据后4分钟的水量变化求解.【解答】解:根据图象,每分钟进水20÷2=10升,设每分钟出水m 升,则 10×(6-2)-(6-2)m=30-20,解得:m=7.5.故答案为:7.5【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15. 【分析】连接EA ,如图,利用基本作图得到MN 垂直平分AC ,所以EC=EA ,设CE=x ,则AE=x ,DE=8-x ,根据勾股定理得到62+(8-x )2=x 2,然后解方程求出x 即可.【解答】解:连接EA ,如图,由作图得到MN 垂直平分AC ,∴EC=EA ,∵四边形ABCD 为矩形,∴CD=AB=8,∠D=90°,设CE=x ,则AE=x ,DE=8-x ,在Rt △ADE 中,62+(8-x )2=x 2,解得x=254, 即CE 的长为254. 故答案为254. 【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.16. 【分析】首先求出DE 的长,再分两种情形分别求解即可解决问题;【解答】解:如图1中,∵∠A=90°,∠C=30°,AC=10cm ,∴AB=BE=3,CB=3, 设AD=DE=x ,在Rt △CDE 中,(10-x )2=x 2+)2, ∴x=103, ∴DE=103, ①如图2中,当ED=EF 时,沿着直线EF 将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长=4×103=403(cm ).②如图2-1中,当FD=FB 时,沿着直线DF 将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长=10442DF =(cm ) 综上所述,满足条件的平行四边形的周长为403cm或9cm , 故答案为403cm或9cm . 【点评】本题考查翻折变换、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(本大题满分为72分)17. 【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【解答】解:(1)原式=(2)原式(20-2)【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18. 【分析】先计算出a+b ,b-a 以及ab 的值,再把所求代数式变形为()()b a b a ab +-,然后代值计算即可.【解答】解:∵22a b =+=,∴4,431a b b a ab +=-=-=-=,∴原式=22()()4(1b a b a b a ab ab -+-⨯-===- 【点评】本题二次根式的化简求值,通过先计算a+b ,b-a 以及ab 的值,变形所求代数式,从而使计算变得简便.19. 【分析】连接AC ,根据勾股定理求出AC ,根据勾股定理的逆定理求出△ACD 是直角三角形,分别求出△ABC 和△ACD 的面积,即可得出答案.【解答】解:连结AC ,在△ABC 中,∵∠B=90°,AB=3,BC=4,∴, S △ABC =12AB•BC=12×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD=12AC•CD=12×5×12=30.∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC 和△CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.20.【分析】(1)利用众数、中位数的定义分别解答即可;(2)根据平均数和方差的公式分别计算出各自的平均数和方差,然后利用方差的意义进行判断即可.【解答】解:(1)九(1)班复赛成绩的众数是85分;九(2)班复赛成绩的中位数是80分,故答案为:85,80;(2)九(1)班的选手的得分分别为85,75,80,85,100,所以九(1)班成绩的平均数=15(85+75+80+85+100)=85(分),九(1)班的方差S22=15[(85-85)2+(75-85)2+(80-85)2+(85-85)2+(100-85)2]=70(分);九(2)班的选手的得分分别为70,100,100,75,80,所以九(2)班成绩的平均数=15(70+100+100+75+80)=85(分),九(2)班的方差S22=15[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160(分)因为在平均数一样的情况下,九(1)班方差小,所以九(1)班的成绩比较稳定.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了统计图.21. 【分析】(一)①因为C 点是两个函数图象的交点,因此C 点坐标必为两函数解析式联立所得方程组的解;②函数y=kx+b 中,当y <0时,kx+b <0,因此x 的取值范围是不等式kx+b <0的解集;(二)①由图可知:在C 点左侧时,直线y=kx+b 的函数值要大于直线y=k 1x+b 1的函数值; ②利用待定系数法即可求出直线BC 的函数解析式.【解答】解:(一)根据题意,可得①11y k x b y kx b++⎧⎨⎩==;②kx+b <0.故答案为11y k x b y kx b ++⎧⎨⎩==;kx+b <0; (二)如果点B 坐标为(2,0),C 坐标为(1,3);①kx+b≥k 1x+b 1的解集是x≤1;②∵直线BC :y=kx+b 过点B (2,0),C (1,3),∴203k b k b ++⎧⎨⎩==,解得36k b ⎩-⎧⎨==,∴直线BC 的函数解析式为y=-3x+6.【点评】此题考查了一次函数与二元一次方程组及一元一次不等式之间的联系,一次函数的性质,待定系数法求一次函数解析式,利用数形结合与方程思想是解答本题的关键.22. 【分析】(1)只要证明AB=CD ,AF=CD 即可解决问题;(2)由平行四边形的性质可证△DMC 是等边三角形,可得MD=MC ,可得AD=CF ,且AF=CD ,AF ∥CD ,可证四边形AFDC 是矩形.【解答】证明:(1)∵四边形ABCD 是平行四边形∴AB=CD ,AB ∥CD∴∠FAD=∠ADC ,∵点M 为AD 的中点∴AM=DM ,且∠FAD=∠ADC ,∠AMF=∠CMD∴△AMF ≌△CMD (ASA )∴AF=CD∴AB=AF(2)四边形AFDC 是矩形理由如下:∵AD∥BC∴∠BCD+∠ADC=180°,且∠BCD=120°,∴∠ADC=60°∵AF=CD,AF∥CD∴四边形AFDC平行四边形∴AM=MD,FM=CM∵AB=AM∴MD=CD,且∠ADC=60°∴△DMC是等边三角形∴MC=CD=MD∴AD=CF∴平行四边形AFDC是矩形【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,矩形的判定,灵活运用这些性质进行推理是本题的关键.23.【分析】(1)①根据题意列代数式即可;②根据:运费=运输吨数×运输费用,得一次函数解析式,然后根据一次函数的性质解答即可;(2)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,并得结论.【解答】解:(1)①B城运往C:(480-x)吨;B城运往D:(120+x)吨;②根据题意得:y=20x+25(400-x)+15(480-x)+24(120+x),即y=4x+20080(0≤x≤400),∵k=4>0,∴y随x的增大而增大,当x=0时,y最小值20080;(2)设从A城运往C乡肥料x吨,总费用为y,则:y=(20-m)x+25(400-x)+15(480-x)+24(120+x),即y=(4-m)x+20080.①当4-m<0即4<a<6时,y随x的增大而减小,∴当x=400时y最少.调运方案:A运往C处400t,B运往C处80t,运往D处520t;②4-m=0即m=4时,无论x取多少y的值一样,符合要求的方案都可以;③当4-m>0,即0<m<4时,y随x的增大而增大,∴当x=0时,y最小.调运方案:A运往D处400t,B运往C处480t,运往D处120t.【点评】本题考查了一次函数的应用.根据题意列出一次函数解析式是关键.注意到(2)需分类讨论,24.【分析】(1)CF⊥AB,CR=FR,则∠RCB=45°,则RC=RB=RF,∠RBF=45°,即FB⊥x轴,即可求解;(2)证明△AOC≌△OBF(HL),即可求解;(3)①将点(-13,0)代入y=kx+b即可求解;②求出点D(2,-1),证明△MNG≌△MHD(HL),即可求解.【解答】解:(1)y=-x+m,令x=0,则y=m,令y=0,则x=m,则∠ABO=45°,故点A、B的坐标分别为:(0,m)、(m,0),则点C(12m,0),如图(1)作点C的对称轴F交AB于点R,则CF⊥AB,CR=FR,则∠RCB=45°,则RC=RB=RF,∴∠RBF=45°,即FB⊥x轴,故点F(m,12 m);(2)∵OC=BF=12m,OB=OA,∴△AOC≌△OBF(HL),∴∠OAC=∠FOB,∵∠OAC+∠AOE=90°,∴∠OAC+∠AOE=90°,∴∠AEO=90°,∴OF ⊥AC ;(3)①将点(-12,0)代入y=kx+b 得: 213y x y kx k ⎧-+⎪⎩+⎪⎨==,解得:633733k x k k y k -⎧=⎪⎪+⎨⎪=⎪+⎩, 由一次函数图象知:k >0, ∵交点在第一象限,则60337033k k k k -⎧>⎪⎪+⎨⎪>⎪+⎩, 解得:0<k <6;②存在,理由:直线OF 的表达式为:y=12x ,直线AB 的表达式为:y=-x+2, 联立上述两个表达式并解得:x=43,故点M (43,23),直线GM 所在函数表达式中的k 值为:25,则直线MD 所在直线函数表达式中的k 值为-52, 将点M 坐标和直线DM 表达式中的k 值代入一次函数表达式并解得:直线DM 的表达式为:y=-52x+4,故点D (2,-1), 过点M 作x 轴的垂线于点N ,作x 轴的平行线交过点G 于y 轴的平行线于点S , 过点G 作y 轴的平行线交过点Q 与x 轴的平行线于点T ,则242415252,(1) 33333333 MN MH GN DH===-==+===--=,∴△MNG≌△MHD(HL),∴MD=MG,则△GTQ≌△MSG,则GT=MS=GN=53,TQ=SG=MN=23,故点Q(13,-53).【点评】本题考查的是一次函数综合运用,涉及到三角形全等、点的对称性,其中(3)②,证明△MNG≌△MHD(HL),是本题的难点.。
2015年最新人教版八年级下数学期末试题及答案
2015年最新人教版八年级下数学期末试题及答案2015年最新人教版八年级下数学期末试题及答案一、选择题1.下列式子中,属于最简二次根式的是()A.9.B.7.C.20.D.1/32、若a+b=3,且a^2+b^2=5,则ab的值为()A.1.B.2.C.-1.D.-23、在△ABC中AB=15,AC=13,高AD=12,则△ABC的周长为()A.42.B.32.C.42或32.D.37或334、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m的取值范围是()A。
m>1.B。
m>3/4.C。
m<1.D。
m<3/45、如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上。
连接BM、DN.若四边形MBND是菱形,则A。
AM/MD=1/36、已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3.B.y1y1>y2.D.y3<y1<y27、如图,在菱形ABCD中,对角线AC、BD相交于点O,E为BC的中点,则下列式子中,一定成立的是()A。
∠AOC=∠BOE。
B。
∠AOC=∠BOD。
C。
∠AOC=∠DOC。
D。
∠AOC=∠BOC8、如图,正方形ABCD的边长为4,点E在对角线BD 上,且∠BAE=22.5º,EF⊥AB,垂足为F,则EF的长为()A.1.B.2.C.4-2√2.D.3-√29、某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是()A.23,25.B.23,23.C.25,23.D.25,2510.矩形具有而菱形不具有的性质是()A.两组对边分别平行。
B.对角线相等。
C.对角线互相平分。
D.两组对角分别相等11.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()y 3[p]A.1.B.-1.C.3.D.-3二、填空题13、直角三角形的两条直角边长分别为3和4,则这个直角三角形的斜边长为5,面积为6.14、函数y=2x的自变量x的取值范围是全体实数。
八年级数学(下)期末考试试卷含答案
得分评卷人人八年级数学(下)期末考试试卷(全卷共五个大题,满分150分,考试时间100分钟)题号 一 二 三 四 五总分 总分人 复查人 得分友情提示:答题前先写好自己的学校、姓名、考号等信息;答题时,请你认真审题,做到先易后难;答题后,要注意检查.祝你成功! 一、选择题:(本大题共12个小题,每小题4分,共48分)每小题只有一个答案是正确的,请将正确选项的字母填在下列括号内.1.下列手机屏幕解锁图案中不是轴对称图形的是( )2.以下列各组线段为边,能组成三角形的是( )A .2 cm ,3 cm ,5 cmB .3 cm ,3 cm ,6 cmC .5 cm , 8 cm , 2 cmD .4 cm ,5 cm ,6 cm3.下列运算正确的是( )A . 235=x x x +B .()222=x y x y ++ C . 236=x x x ⋅ D . ()326=x x4.一枚一角硬币的直径约为0.022m ,用科学记数法表示为( )A .32.210m -⨯B .22.210m -⨯C .12.210m -⨯ D .32210m -⨯5.下列各式从左到右的变形是因式分解的是( )A .2)1(3222++=++x x xB .22))((y x y x y x -=-+ C .222()x xy y x y -+=- D .)(222y x y x -=-6.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知∠BAC =60° ,PA=6,则PE长是( )A .3B .4C .5D .67.已知△ABC 的三个内角满足关系:∠A+∠B=∠C ,则此三角形是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形8.“尊老、敬老”是中华民族的传统美德.重阳节当天,我区一中学 “善行文学社”的全体同学租一辆面包车前去“夕阳红”老年公寓看望那里的老年人面包车的租金为180元,出发时又增加了两名同学,结果每个同学比原来少花费了3元车费.若设“善行文学社”有x 人,则所列方程为( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=+ D .18018032x x-=-9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1、P 2、P 3、P 4四个点中找出符合条件的点P ,则点P 有( )A . 1个B .2个C . 3个D . 4个10.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A . 90°B . 100°C . 130°D . 180°11. 分式1x mx --中,当x m =时,下列结论正确的是( )A.分式的值为零B .分式无意义C .若1m ≠时,分式的值为零D .若1m =时,分式的值为零 12.如图所示,△ABC 为等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,现有①点P 在∠BAC 的平分线上; ②AS=AR ;③QP ∥AR ; ④△BRP ≌△QSP 四个结论.第10题图第12题图得分评卷人人• 则对四个结论判断正确的是( ).A .仅①和②正确B .仅②③正确C .仅①和③正确D .全部都正确二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上.13.若点A (m ,7)与点B (8,n )关于x 轴对称,则m = . 14.因式分解:23aa -= .15.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.(只填一个即可)16.如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若 △ABC 的面积为122cm ,则图中阴影部分的面积是____________2cm .17.如图,在△ABC 中,将△ABC 沿DE 折叠,使顶点C 落在△ABC 三边的垂直平分线的交点O 处,若BE=BO ,则∠BOE=____________度.18.如果记22()1x y f x x ==+,并且f (1)表示当1x =时y 的值,即f (1)=2211112=+;得分评卷人人得分评卷人人f (12)表示当12x =时y 的值,即f (12)=221()12151()2=+.那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++1(2017)()2017f f +++= _.三、解答题:(本大题2个小题,19题10分,20题6分,共16分)下列各题解答时必须给出必要的演算过程或推理步骤.19.计算或化简(每小题5分,共10分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年湖北省荆州市松滋市八年级(下)期末数学试卷 一、选择题:(每小题的四个选项中,只有一个正确,选对一题3分,不选和选错0分,本题满分为30分) 1.(3分)式子是二次根式,那么( ) A.x≠2 B.x>2 C.x<2 D.x≥2 2.(3分)化简的结果是( ) A.﹣2 B.4 C.±2 D.±4 3.(3分)直角三角形两条直角边长分别是1cm,cm.那么斜边的长是( ) A.3cm B.cm C.cm D.5cm 4.(3分)为了调查一个品种的草莓的产量,分别在4个大棚种植,获得的亩产是1100kg,1200kg,1100kg,1180kg.这组数据的众数和中位数分别是( ) A.1100kg,1100kg B.1100kg,1140kg C.1140kg,1140kg D.1100kg,1150kg 5.(3分)下面每组3条线段,以它们为边能恰好组成直角三角形的是( ) A.4cm,5cm,6cm B.1cm,1cm,cm C.2cm,3cm,4cm D.cm,4cm,5cm 6.(3分)用每片长6cm的纸条,重叠1cm粘贴成一条纸带,如图.纸带的长度y(cm)与纸片的张数x之间的函数关系式是( )
A.y=6x+1 B.y=4x+1 C.y=4x+2 D.y=5x+1 7.(3分)如图,AC是平行四边形ABCD的对角线,当它满足以下:①∠1=∠2;②∠2=∠3;③∠B=∠3;④∠1=∠3中某一条件时,平行四边形ABCD是菱形,这个条件是( )
A.①或② B.②或③ C.①或④ D.③或④ 8.(3分)一次函数y=﹣x+3,当x在x≥2范围变化时,函数y的变化范围是( ) A.y≤2 B.y≥2 C.y≤﹣2 D.y≥﹣2 9.(3分)矩形的两边分别长3cm,4cm,两对角线长之和是( ) A.10cm B.11cm C.12cm D.14cm 10.(3分)已知y是x的一次函数,解析式为y=(k﹣1)x+k,它的图象不经过第三象限,那么k的范围是( ) A.k≥0 B.k≤1 C.0≤k<1 D.0<k≤1
二、填空题(每小题3分,共24分) 11.(3分)把一张长为cm的矩形纸片对折(折痕的两边完全重合)后是一个正方形,这个正方形的面积是 . 12.(3分)点P(﹣1,1)在一次函数y=kx+3k的图象上,那么k= . 13.(3分)对甲、乙两个品种的葡萄做含糖度的检测,得到两组对应的数据,其方差分别为S甲2、S乙2,且S甲2>S乙2.则甜度较均衡的品种是 . 14.(3分)平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠B=50°时,∠EAF的度数是 .
15.(3分)如图是4×4的正方形网格,小正方形的边长是1,在网格中画一条长为5的线段,使线段的两个端点都是正方形网格的格点.
16.(3分)如图,四边形ABCD中,AD∥BC,作AE∥DC交BC于E.△ABE的周长是25cm,四边形ABCD的周长是37cm,那么AD= cm.
17.(3分)将正比例函数y=5x的图象上下平行移动k个单位后,图象经过点M (﹣3,1),则k是 . 18.(3分)有一个如图所示的凹槽,各部分长度如图中所标.一只蜗牛从A点经过凹槽内壁爬到B点取食,最短的路径长是 m.
三、解答题(本大题满分为66分) 19.(10分)计算: (1)
(2). 20.(7分)四边形ABCD中,AB∥CD,过C作AD的平行线,交AB于E,连接DE,正好有DE∥BC.问:线段AE、BE的大小关系是什么,证明你的结论. 21.(8分)小青家有一块如图的四边形土地要流转出去,其中∠D=∠B=90°,∠C=135°,用激光测距仪测得:BC=(千米),DC=3(千米),求这块四边形土地的面积.
22.(9分)池塘边有一根芦苇,如图(1),B点离岸的距离BD=2米,芦苇上的一个节C离水面的距离BC=0.5米.将芦苇杆拉到岸边,C正好与D重合,如图(2).求水深AB为多少米.
23.(9分)如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2). (1)求出m、n的值; (2)直接写出不等式﹣x+m>﹣2x+3的解集; (3)求出△ABP的面积.
24.(11分)甲已经乘缆车到达山腰的位置,乙还在山脚.现在两人同时登山,他们距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题: (1)甲登山的速度是每分钟 米,乙开始提速时距地面的高度b为 米. (2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式. (3)登山多长时间时,甲、乙所处的高度相同?此时乙从提速开始上升的高度为多少米?
25.(12分)正方形ABCD的边长是8cm,对角线AC、BD相交于O.有一个动点M在射线OC上以1cm/s的速度运动,运动的时间为t(s).连接DM,过A作直线DM的垂线,垂足为E,AE交射线OD于N. (1)当t=a时,M到达C点,a= ; (2)当t<a时,如图(1),求证:ON=OM; (3)当t>a时,如图(2),用含t的式子表示AN的长. 2014-2015学年湖北省荆州市松滋市八年级(下)期末数学试卷 参考答案与试题解析
一、选择题:(每小题的四个选项中,只有一个正确,选对一题3分,不选和选错0分,本题满分为30分) 1.(3分)式子是二次根式,那么( ) A.x≠2 B.x>2 C.x<2 D.x≥2 【解答】解:∵式子是二次根式, ∴x﹣2≥0, 解得:x≥2. 故选:D.
2.(3分)化简的结果是( ) A.﹣2 B.4 C.±2 D.±4 【解答】解:原式==4. 故选:B.
3.(3分)直角三角形两条直角边长分别是1cm,cm.那么斜边的长是( ) A.3cm B.cm C.cm D.5cm 【解答】解:∵直角三角形两条直角边长分别是1cm,cm. ∴斜边的长是=3(cm). 故选:A.
4.(3分)为了调查一个品种的草莓的产量,分别在4个大棚种植,获得的亩产是1100kg,1200kg,1100kg,1180kg.这组数据的众数和中位数分别是( ) A.1100kg,1100kg B.1100kg,1140kg C.1140kg,1140kg D.1100kg,1150kg 【解答】解:要求一组数据的中位数, 把这组数据按照从小到大的顺序排列1100,1100,1180,1200; 第2、3个两个数的平均数是(1100+1180)÷2=1140, 所以中位数是1140, 在这组数据中出现次数最多的是1100, 即众数是1100, 故选:B.
5.(3分)下面每组3条线段,以它们为边能恰好组成直角三角形的是( ) A.4cm,5cm,6cm B.1cm,1cm,cm C.2cm,3cm,4cm D.cm,4cm,5cm 【解答】解:A、42+52≠62,不能作为直角三角形的三边长,故本选项不符合题意. B、12+12=()2,能作为直角三角形的三边长,故本选项符合题意. C、22+32≠42,不能作为直角三角形的三边长,故本选项不符合题意. D、()2+42≠52,不能作为直角三角形的三边长,故本选项不符合题意. 故选:B.
6.(3分)用每片长6cm的纸条,重叠1cm粘贴成一条纸带,如图.纸带的长度y(cm)与纸片的张数x之间的函数关系式是( )
A.y=6x+1 B.y=4x+1 C.y=4x+2 D.y=5x+1 【解答】解:纸带的长度y(cm)与纸片的张数x之间的函数关系式是y=6x﹣(x﹣1)=5x+1, 故选:D.
7.(3分)如图,AC是平行四边形ABCD的对角线,当它满足以下:①∠1=∠2;②∠2=∠3;③∠B=∠3;④∠1=∠3中某一条件时,平行四边形ABCD是菱形,这个条件是( ) A.①或② B.②或③ C.①或④ D.③或④ 【解答】解:∵四边形ABCD是平行四边形, ∴AD∥BC, ∴∠2=∠3, ∵∠1=∠2, ∴∠1=∠3, ∴AB=BC, ∴平行四边形ABCD是菱形;故①④能判定. 故选:C.
8.(3分)一次函数y=﹣x+3,当x在x≥2范围变化时,函数y的变化范围是( ) A.y≤2 B.y≥2 C.y≤﹣2 D.y≥﹣2 【解答】解:由y=﹣x+3得到x=﹣2y+6, 依题意得:﹣2y+6≥2, 解得y≤2. 故选:A.
9.(3分)矩形的两边分别长3cm,4cm,两对角线长之和是( ) A.10cm B.11cm C.12cm D.14cm 【解答】解:∵矩形的两边长分别是3和4, ∴它的对角线长==5(cm), ∴两对角线长之和=5+5=10(cm). 故选:A.
10.(3分)已知y是x的一次函数,解析式为y=(k﹣1)x+k,它的图象不经过第三象限,那么k的范围是( ) A.k≥0 B.k≤1 C.0≤k<1 D.0<k≤1 【解答】解:∵一次函数y=(k﹣1)x+k的图象不经过第三象限, ∴k﹣1<0,并且k≥0, ∴m的取值范围是0≤k<1. 故选:C.
二、填空题(每小题3分,共24分) 11.(3分)把一张长为cm的矩形纸片对折(折痕的两边完全重合)后是一个正方形,这个正方形的面积是 2cm2 . 【解答】解:如图,矩形ABCD的长BC为,由于矩形ABCD沿EF对折得到正方形,则可判断四边形ABFE和四边形FCDE为重合得正方形,根据折叠性质得BF=CF=BC=,然后根据正方形的面积公式求解. 如图,矩形ABCD的长BC为, 把矩形ABCD沿EF对折得到正方形,则四边形ABFE和四边形FCDE为重合得正方形, 所以BF=CF=BC=×=, 所以正方形ABFE的面积为()2=2. 故答案为2cm2.
12.(3分)点P(﹣1,1)在一次函数y=kx+3k的图象上,那么k= . 【解答】解:∵点P(﹣1,1)在一次函数y=kx+3k的图象上, ∴﹣k+3k=1,解得k=.
故答案为:.
13.(3分)对甲、乙两个品种的葡萄做含糖度的检测,得到两组对应的数据,其方差分别为S甲2、S乙2,且S甲2>S乙2.则甜度较均衡的品种是 乙 . 【解答】解:∵S甲2>S乙2, ∴乙队整齐.