材料力学公式汇总

合集下载

材料力学公式汇总完全版

材料力学公式汇总完全版
=
(适用于脆性材料)
(适用于塑性材料)
(适用于塑性材料)
(5.11e)
由扭转试验建立的强度条件
(5.12a)
(5.12b)
平面弯曲梁的正应力强度条件
(5.13)
平面弯曲梁的剪应力强度条件
(5.14a)
(5.14b)
平面弯曲梁的主应力强度条件
(5.15a)
(5.15a)
圆截面弯扭组合变形构件的相当弯矩
(3.3)
主平面方位角
( )
(3.4)
最大主应力的计算公式
(3.5)
最小主应力的计算公式
(3.6)
单元体中的最大剪应力
(3.7)
主单元体的八面体面上的剪应力
(3.8)
面上的线应变
(3.9)
面与 + 面之间的角应变
(3.10)
主应变方向公式
(3.11)
最大主应变
(3.12)
最小主应变
(3.13)
的替代公式
(3.14)
主应变方向公式
(3.15)
最大主应变
(3.16)
最小主应变
(3.17)
简单应力状态下的虎克定理
, ,
(3.18)
空间应和状态下的虎克定理
(3.19)
平面应力状态下的虎克定理(应变形式)
(3.20)
平面应力状态下的虎克定理(应力形式)
(3.21)
按主应力、主应变形式写出广义虎克定理
(3.22)
I取最小值
(7.2)
细长压杆在不同支承情
况下的临界力公式
—计算长度。
—长度系数;
一端固定,一端自由:
一端固定,一端铰支:
两端固定:

材料力学基本概念及计算公式

材料力学基本概念及计算公式

材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。

下面将介绍材料力学的基本概念及计算公式。

1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。

计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。

(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。

计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。

(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。

计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。

2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。

计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。

(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。

计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。

3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。

计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。

(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。

计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。

4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。

材料力学公式大全

材料力学公式大全

材料⼒学公式⼤全材料⼒学常⽤公式1.外⼒偶矩计算公式(P功率,n转速)2.弯矩、剪⼒和荷载集度之间的关系式3.轴向拉压杆横截⾯上正应⼒的计算公式(杆件横截⾯轴⼒F N,横截⾯⾯积A,拉应⼒为正)4.轴向拉压杆斜截⾯上的正应⼒与切应⼒计算公式(夹⾓a 从x 轴正⽅向逆时针转⾄外法线的⽅位⾓为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松⽐8.胡克定律9.受多个⼒作⽤的杆件纵向变形计算公式?10.承受轴向分布⼒或变截⾯的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许⽤应⼒,脆性材料,塑性材料13.延伸率14.截⾯收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松⽐和切变模量G之间关系式17.圆截⾯对圆⼼的极惯性矩(a)实⼼圆(b)空⼼圆18.圆轴扭转时横截⾯上任⼀点切应⼒计算公式(扭矩T,所求点到圆⼼距离r)19.圆截⾯周边各点处最⼤切应⼒计算公式20.扭转截⾯系数,(a)实⼼圆(b)空⼼圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应⼒计算公式22.圆轴扭转⾓与扭矩T、杆长l、扭转刚度GH p的关系式23.同⼀材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截⾯和纵截⾯上的应⼒计算公式,28.平⾯应⼒状态下斜截⾯应⼒的⼀般公式,29.平⾯应⼒状态的三个主应⼒,,30.主平⾯⽅位的计算公式31.⾯内最⼤切应⼒32.受扭圆轴表⾯某点的三个主应⼒,,33.三向应⼒状态最⼤与最⼩正应⼒ ,34.三向应⼒状态最⼤切应⼒35.⼴义胡克定律36.四种强度理论的相当应⼒37.⼀种常见的应⼒状态的强度条件,38.组合图形的形⼼坐标计算公式,39.任意截⾯图形对⼀点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截⾯图形对轴z和轴y的惯性半径? ,41.平⾏移轴公式(形⼼轴z c与平⾏轴z1的距离为a,图形⾯积为A)42.纯弯曲梁的正应⼒计算公式43.横⼒弯曲最⼤正应⼒计算公式44.矩形、圆形、空⼼圆形的弯曲截⾯系数? ,,45.⼏种常见截⾯的最⼤弯曲切应⼒计算公式(为中性轴⼀侧的横截⾯对中性轴z的静矩,b为横截⾯在中性轴处的宽度)46.矩形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处47.⼯字形截⾯梁腹板上的弯曲切应⼒近似公式48.轧制⼯字钢梁最⼤弯曲切应⼒计算公式49.圆形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处50.圆环形薄壁截⾯梁最⼤弯曲切应⼒发⽣在中性轴处51.弯曲正应⼒强度条件52.⼏种常见截⾯梁的弯曲切应⼒强度条件53.弯曲梁危险点上既有正应⼒σ⼜有切应⼒τ作⽤时的强度条件或,54.梁的挠曲线近似微分⽅程55.梁的转⾓⽅程56.梁的挠曲线⽅程?57.轴向荷载与横向均布荷载联合作⽤时杆件截⾯底部边缘和顶部边缘处的正应⼒计算公式58.偏⼼拉伸(压缩)59.弯扭组合变形时圆截⾯杆按第三和第四强度理论建⽴的强度条件表达式,60.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时,合成弯矩为61.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时强度计算公式62.63.弯拉扭或弯压扭组合作⽤时强度计算公式64.剪切实⽤计算的强度条件65.挤压实⽤计算的强度条件66.等截⾯细长压杆在四种杆端约束情况下的临界⼒计算公式67.压杆的约束条件:(a)两端铰⽀µ=l(b)⼀端固定、⼀端⾃由µ=2(c)⼀端固定、⼀端铰⽀µ=(d)两端固定µ=68. 压杆的长细⽐或柔度计算公式,69. 细长压杆临界应⼒的欧拉公式70. 欧拉公式的适⽤范围传动轴所受的外⼒偶矩通常不是直接给出,⽽是根据轴的转速n 与传递的功率P 来计算。

材料力学公式超级大汇总

材料力学公式超级大汇总
6.纵向线应变和横向线应变
7.泊松比
8.胡克定律
9.受多个力作用的杆件纵向变形计算公式?
10.承受轴向分布力或变截面的杆件,纵向变形计算公式
11.轴向拉压杆的强度计算公式
12.许用应力 , 脆性材料 ,塑性材料
13.延伸率
14.截面收缩率
15.剪切胡克定律(切变模量G,切应变g)
16.拉压弹性模量E、泊松比 和切变模量G之间关系式
(6.13)
平面弯曲梁的剪应力强度条件
(6.14a)
(6.14b)
平面弯曲梁的主应力强度条件
(6.15a)
(6.15a)
圆截面弯扭组合变形构件的相当弯矩
(6.16)
螺栓的抗剪强度条件
(6.17)
螺栓的抗挤压强度条件
(6.18)
贴角焊缝的剪切强度条件
7刚度校核
序号
公式名称
公式
符号说明
(7.1)
构件的刚度条件
(9.17)
一次超静定结构的力法方程:
(9.18)
方向有位移 时的力法方程:
(9.19)
自由项公式:
(9.20)
主系数公式:
(9.21)
桁架的主系数与自由项公式:
材料力学公式汇总
一、应力与强度条件
1、拉压
2、剪切
挤压
3、圆轴扭转
4、 平面弯曲①


应力
(4.31)
矩形截面中性
轴各点的剪应力
(4.32)
工字形和T形截
面的面积矩
(4.33)
平面弯曲梁的挠
曲线近似微分方

V向下为正
X向右为正
(4.34)
平面弯曲梁的挠曲线上任一截面

材料力学公式超级大汇总

材料力学公式超级大汇总

(5.2)
(5.3)
tan 2 0
2 x ( 0与 x反号 ) x y
(5.4)
大主应力的计算 2 x y x y 2 公式 max x 2 2 主应力的计算公 2 x y x y 2 式 max x 2 2
, y
x
, z
x
E





( x y ) E E (5.20) 平面应力状态下 x ( x y ) 的虎克定理(应 1 2 E 力形式) y ( y x ) 1 2
z

z 0
(5.21) 按主应力、主应 变形式写出广义 虎克定理
(5.9)
面与 + 90o 面 xy ( x y ) sin 2 xy cos 2
之间的角应变
(5.10)
主应变方向公
tan 2 0
式 (5.11) 大主应变
xy x y
x y xy 2 4 x y xy 2 4
(5.5)
(5.6) (5.7) (5.8)
3 单元体中的最大 max 1 剪应力 2 1 主单元体的八面 1 2 2 1 3 2 2 3 2 体面上的剪应力 3 面上的线应变 y x y xy x cos 2 sin 2 2 2 2
2 M M z2 M y
a z z0
2 iy
zp , yp 是 集 中 力 作
zp
用点的标
iz2 a y y0 yp
4
5 应力状态分析

材料力学公式大全

材料力学公式大全

材料⼒学公式⼤全材料⼒学常⽤公式1.外⼒偶矩计算公式(P功率,n转速)2.弯矩、剪⼒和荷载集度之间的关系式3.轴向拉压杆横截⾯上正应⼒的计算公式(杆件横截⾯轴⼒F N,横截⾯⾯积A,拉应⼒为正)4.轴向拉压杆斜截⾯上的正应⼒与切应⼒计算公式(夹⾓a 从x轴正⽅向逆时针转⾄外法线的⽅位⾓为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松⽐8.胡克定律9.受多个⼒作⽤的杆件纵向变形计算公式?10.承受轴向分布⼒或变截⾯的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许⽤应⼒,脆性材料,塑性材料13.延伸率14.截⾯收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松⽐和切变模量G之间关系式17.圆截⾯对圆⼼的极惯性矩(a)实⼼圆(b)空⼼圆18.圆轴扭转时横截⾯上任⼀点切应⼒计算公式(扭矩T,所求点到圆⼼距离r)19.圆截⾯周边各点处最⼤切应⼒计算公式20.扭转截⾯系数,(a)实⼼圆(b)空⼼圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应⼒计算公式22.圆轴扭转⾓与扭矩T、杆长l、扭转刚度GH p的关系式23.同⼀材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截⾯和纵截⾯上的应⼒计算公式,28.平⾯应⼒状态下斜截⾯应⼒的⼀般公式 ,29.平⾯应⼒状态的三个主应⼒ , ,30.主平⾯⽅位的计算公式31.⾯内最⼤切应⼒32.受扭圆轴表⾯某点的三个主应⼒,,33.三向应⼒状态最⼤与最⼩正应⼒ ,34.三向应⼒状态最⼤切应⼒35.⼴义胡克定律36.四种强度理论的相当应⼒37.⼀种常见的应⼒状态的强度条件,38.组合图形的形⼼坐标计算公式,39.任意截⾯图形对⼀点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截⾯图形对轴z和轴y的惯性半径? ,41.平⾏移轴公式(形⼼轴z c与平⾏轴z1的距离为a,图形⾯积为A)42.纯弯曲梁的正应⼒计算公式43.横⼒弯曲最⼤正应⼒计算公式44.矩形、圆形、空⼼圆形的弯曲截⾯系数? ,,45.⼏种常见截⾯的最⼤弯曲切应⼒计算公式(为中性轴⼀侧的横截⾯对中性轴z的静矩,b为横截⾯在中性轴处的宽度)46.矩形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处47.⼯字形截⾯梁腹板上的弯曲切应⼒近似公式48.轧制⼯字钢梁最⼤弯曲切应⼒计算公式49.圆形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处50.圆环形薄壁截⾯梁最⼤弯曲切应⼒发⽣在中性轴处51.弯曲正应⼒强度条件52.⼏种常见截⾯梁的弯曲切应⼒强度条件53.弯曲梁危险点上既有正应⼒σ⼜有切应⼒τ作⽤时的强度条件或,54.梁的挠曲线近似微分⽅程55.梁的转⾓⽅程56.梁的挠曲线⽅程?57.轴向荷载与横向均布荷载联合作⽤时杆件截⾯底部边缘和顶部边缘处的正应⼒计算公式58.偏⼼拉伸(压缩)59.弯扭组合变形时圆截⾯杆按第三和第四强度理论建⽴的强度条件表达式,60.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时,合成弯矩为61.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时强度计算公式62.63.弯拉扭或弯压扭组合作⽤时强度计算公式64.剪切实⽤计算的强度条件65.挤压实⽤计算的强度条件66.等截⾯细长压杆在四种杆端约束情况下的临界⼒计算公式67.压杆的约束条件:(a)两端铰⽀µ=l(b)⼀端固定、⼀端⾃由µ=2(c )⼀端固定、⼀端铰⽀ µ= (d )两端固定 µ= 68. 压杆的长细⽐或柔度计算公式, 69. 细长压杆临界应⼒的欧拉公式 70.欧拉公式的适⽤范围传动轴所受的外⼒偶矩通常不是直接给出,⽽是根据轴的转速n 与传递的功率P 来计算。

材料力学公式超级大汇总

专业整理分享 完美DOC格式 材料力学公式超级大汇总

1. 外力偶矩计算公式 (P功率,n转速) 2. 弯矩、剪力和荷载集度之间的关系式 3. 轴向拉压杆横截面上正应力的计算公式 (杆件横截面轴力FN,横截面面积A,拉应力为正) 4. 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)

5. 纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)

6. 纵向线应变和横向线应变

7. 泊松比 专业整理分享

完美DOC格式 8. 胡克定律 9. 受多个力作用的杆件纵向变形计算公式? 10.承受轴向分布力或变截面的杆件,纵向变形计算公式

11.轴向拉压杆的强度计算公式 12.许用应力 , 脆性材料 ,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g )

16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距 专业整理分享 完美DOC格式 离r ) 19.圆截面周边各点处最大切应力计算公式 20.扭转截面系数 ,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计

算公式 22.圆轴扭转角与扭矩T、杆长l、 扭转刚度GHp的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)

时 或 24.等直圆轴强度条件 25.塑性材料 ;脆性材料

26.扭转圆轴的刚度条件? 或 专业整理分享

完美DOC格式 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,

28.平面应力状态下斜截面应力的一般公式 ,

29.平面应力状态的三个主应力 , , 30.主平面方位的计算公式 31.面内最大切应力 32.受扭圆轴表面某点的三个主应力, , 33.三向应力状态最大与最小正应力 ,

材料力学公式汇总完全版

TR
maxI
(2.13)
抗扭截面模量 (扭转抵抗矩)
I
WT
R
(2.14)
实心圆截面扭 转轴横截面的 圆周上的应力
T
max――
WT
(2.15)
圆截面扭转轴的 变形
T」
GI
(2.16)
圆截面扭转轴的 变形
Til
iGIi
(2.17)
单位长度的扭转 角
T l,GI
(2.18)
矩形截面扭转轴 长边中点上的剪 应力
max2*24
(3.12)
最小主应变
12 2
xy|xyxy
max1r
2\24
(3.13)
xy的替代公

2
xy厶450xy
(3.14)
主应变方向 公式
tan20
2450
xy
y
x
1
2 2
(3.15)
取大主应变
xy
max
J
x450
y450
2
V
2
2
2 2
(3.16)
最小主应变
xy
max—
2
x450
2
y450
的参数
(2.22)
平面弯曲梁上任 一点上的线应变
(2.23)
平面弯曲梁上任 一点上的线应力

(2.24)
平面弯曲梁的曲 率
1M
EIz
(2.25)
纯弯曲梁横截面 上任一点的正应

My
Iz
(2.26)
离中性轴最远的 截面边缘各点上 的最大正应力
M .ymax
max
1z
(2.27)

材料力学常用公式

工程力学常用公式
外力偶矩: n
P M e 9550= 胡克定律:εσE =;EA
l F l N =∆ 圆轴扭转横截面上任一点应力:p T I M ρτρ=,最大切应力:p
T W M =max τ 梁弯曲时横截面上任一点应力:Z
Z I y M =σ,最大正应力:Z W M =max σ
伸长率:%10000⨯-=l l l b δ,断面收缩率:%1000
0⨯-=A A A b ψ 拉压强度条件:][max max σσ≤=
A F N , 扭转强度条件:][max max ττ≤=P
T W M 剪切挤压强度条件:][, ][bs bs
bs bs Q
A F A F σσττ≤=≤= 弯曲强度条件:][ ][max max max max max σσσσ≤=≤=Z Z W M I y M 或 拉(压)弯曲组合变形强度条件:][max max σσ≤±±=Z N W M A F
弯曲与扭转组合变形强度条件:][22σσ≤+=W M M T 圆轴的扭转角:P
T GI l M =ϕ, 扭转刚度条件:][1018030
max θπθ≤⨯⨯=P T GI M 梁弯曲的刚度条件:][, ][max max θθ≤≤y y 欧拉公式:2222 ,λ
πσπE l EI
F cr cr == 柔度:i
l μλ= 惯性半径:A I i = 直线公式(经验公式):λσb a cr -= 压杆稳定性条件:][w cr cr w n F F n ≥==σσ。

材料力学公式汇总完全版

1截面几何参数【2】2应力与应变3应力状况剖析4内力和内力争5强度盘算序号公式b* = bT(5.11a)(5.11b)(5.11c)(5.11d)=T = ---- < [b ]max七'(实用于脆性材料)b* = b -V( b +b ) _-v (0-T )= (1 +V)T < [b ] T莅] max '< - 一(实用于脆性材料)-(-TmaxL2Tmax](5.11e)(5.12a)(5.12b)(5.13)(5.14a)(5.14b)(5.15a)(5.15a)由强度理论树立的扭转轴的强度前提由扭转实验树立的强度前提平面曲折梁的正应力强度前提平面曲折梁的剪应力强度前提平面曲折梁的主应力强度前提圆截面弯扭组合变形构件的相当弯矩max J WT1 +v=b -b=T1 3maxT/ [b ]T =——-< -_-max ]W2Tb *3max(实用于塑性材料)Y 2 〜-b l + (b -b l + (b -b=1=\: 2=t 3T<[b ]max-0、+ G +Tmax max+Q T -Tmax maxT = T < 风max W T "(实用于塑性材料)T r _ T = <[T ]max WTbt maxbcmaxM r [ 祈Vb tZ|M 用< [b c ]ZVS * r .T = -- Z max <[T ]Zfb * = v'b 2 + 4T 2 <[b ]3b* = ■,:b 2 + 3T 2 <[b ]■M 2 + M 2 + T 2 M=b -b =——Z W y------- = ~W-b》+ G -b》+ G -bJ M2 + M 2 + 0.75T 2 M *~W6刚度校核7压杆稳固性校核8动荷载9能量法和简略超静定问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学重点及其公式

材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。

变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。

外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力

截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。

应力: dAdPAPpAlim0正应力、切应力。 变形与应变:线应变、切应变。

杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。

静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。

失效原因:脆性材料在其强度极限b破坏,塑性材料在其屈服极限s时失效。二者统称为极限应力理想情形。塑性材料、脆性材料的许用应力分别为:3ns,bbn,强度条件:maxmaxAN,等截面杆 

A

Nmax

轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:lll1,沿轴线方向的应变和横截面上的应力分别为:ll,APAN。横向应变为:bbbbb1',横向应变与轴向应变的关系为:'。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 E,这就是胡克定律。E为弹性模量。将应力与应变的表达式带入得:EA

Nll

静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。

圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dxd。物理关系——胡克定律dxdGG。力学关系dAdxdGdxdGdATAAA22 圆轴扭转时的应力:tpWTRITmax;圆轴扭转的强度条件: ][maxtWT ,可以进行强度校核、截面设计和确定许可载荷。

圆轴扭转时的变形:lplpdxGITdxGIT;等直杆:pGI

Tl

圆轴扭转时的刚度条件: pGITdxd,][maxmax

pGI

T

弯曲内力与分布载荷q之间的微分关系)()(xqdxxdQ;xQdxxdM;xqdxxdQdxxMd

2

2 Q、M图与外力间的关系 a)梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。 b)梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。 c)在梁的某一截面。0xQdxxdM,剪力等于零,弯矩有一最大值或最小值。 d)由集中力作用截面的左侧和右侧,剪力Q有一突然变化,弯矩图的斜率也发生突然变化形成一个转折点。

梁的正应力和剪应力强度条件WMmaxmax,

max

提高弯曲强度的措施:梁的合理受力(降低最大弯矩maxM,合理放置支座,合理布置载荷,合理设计截面形状

塑性材料:ct,上、下对称,抗弯更好,抗扭差。脆性材料:ct, 采用T字型或上下不对称的工字型截面。

等强度梁:截面沿杆长变化,恰使每个截面上的正应力都等于许用应力,这样的变截面梁称为等强度梁。

用叠加法求弯曲变形:当梁上有几个载荷共同作用时,可以分别计算梁在每个载荷单独作用时的变形,然后进行叠加,即可求得梁在几个载荷共同作用时的总变形。

简单超静定梁求解步骤:(1)判断静不定度;(2)建立基本系统(解除静不定结构的内部和外部多余约束后所得到的静定结构);(3)建立相当系统(作用有原静不定梁载荷与多余约束反力的基本系统);(4)求解静不定问题。 二向应力状态分析—解析法 (1)任意斜截面上的应力2sin2cos22xyyxyx;2cos2sin2xyyx

(2)极值应力 正应力:yxxytg220, 22minmax)2(2xyyxyx 切应力:xyyxtg221, 22minmax

)2(xyyx



(3)主应力所在的平面与剪应力极值所在的平面之间的关系 与1之间的关系为:4,2220101,即:最大和最小剪应力所在的平面与

主平面的夹角为45°

扭转与弯曲的组合(1)外力向杆件截面形心简化(2)画内力图确定危险截面(3)确定危险点并建立强度条件

按第三强度理论,强度条件为:31 或224, 对于圆轴,WWt2,其强度条件为:][22WTM。按第四强度理论,强度条件为:

2132322

212

1 ,经化简得出:223,对于圆

轴,其强度条件为:][75.022WTM。

欧拉公式适用范围(1)大柔度压杆(欧拉公式):即当1,其中PE21时,2

2



E

cr(2)中等柔度压杆(经验公式):即当12,其中bas2时,bacr(3)小柔度压杆(强度计算公式):即当2时,scrAF。

压杆的稳定校核(1)压杆的许用压力:stcrnPP,P为许可压力,stn为工作安全系数。(2)压杆的稳定条件:PP

提高压杆稳定性的措施:选择合理的截面形状,改变压杆的约束条件,合理选择材料

1. 外力偶矩计算公式 (P功率,n转速) 2. 弯矩、剪力和荷载集度之间的关系式 3. 轴向拉压杆横截面上正应力的计算公式 (杆件横截面轴力FN,横截面面积A,拉应力为正)

4. 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至

外法线的方位角为正)

5. 纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)

6. 纵向线应变和横向线应变 7. 泊松比 8. 胡克定律 9. 受多个力作用的杆件纵向变形计算公式 10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力 , 脆性材料 ,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g )

16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r )

19.圆截面周边各点处最大切应力计算公式 20.扭转截面系数 ,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式

22.圆轴扭转角与扭矩T、杆长l、 扭转刚度GHp的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时

或 24.等直圆轴强度条件 25.塑性材料 ;脆性材料

26.扭转圆轴的刚度条件 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28.平面应力状态下斜截面应力的一般公式

,

29.平面应力状态的三个主应力 , , 30.主平面方位的计算公式 31.面内最大切应力 32.受扭圆轴表面某点的三个主应力, , 33.三向应力状态最大与最小正应力 ,

34.三向应力状态最大切应力 35.广义胡克定律

36.四种强度理论的相当应力 37.一种常见的应力状态的强度条件 ,

38.组合图形的形心坐标计算公式 , 39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和

的关系式

40.截面图形对轴z和轴y的惯性半径 , 41.平行移轴公式(形心轴zc与平行轴z1的距离为a,图形面积为A) 42.纯弯曲梁的正应力计算公式 43.横力弯曲最大正应力计算公式 44.矩形、圆形、空心圆形的弯曲截面系数 , ,

45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度) 46.矩形截面梁最大弯曲切应力发生在中性轴处 47.工字形截面梁腹板上的弯曲切应力近似公式 48.轧制工字钢梁最大弯曲切应力计算公式 49.圆形截面梁最大弯曲切应力发生在中性轴处 50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处 51.弯曲正应力强度条件 52.几种常见截面梁的弯曲切应力强度条件 53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件

或 ,

相关文档
最新文档