精选2017人教版八年级数学上册期中考试解答题专项练习(新)
2017年上学期钟洞学区八年级数学期中测试题2

2017年上学期钟洞学区八年级数学期中测试题时量90分钟 班级___________ 姓名______________一、 选择题(总分30分,每小题3分)1、在直角三角形ABC 中,∠BCA=90°,∠A=30°,AB=6CM 那么BC 长为( ) A 、3CM B 、4CM C 、5CM D 、6CM2、在Rt △ABC 中,∠B=90°,AC=17CM ,BC=8CM ,则另一条直角边AB 的长是( ) A 、13CM B 、14CM C 、15CM D 、16CM3、如果一个多边形的内角和等于1440°,那么这个多边形为( )边形 A 、7 B 、8 C 、9 D 、104、四边形ABCD 中,∠A :∠B :∠C :∠D=1:2:4:5,则∠A 与∠D 的度数为( ) A 、15°、17° B 、20°、100° C 、30°、120° D 、30°、150°5、如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 为平行四边形,则应添加的条件是( )A 、AD ∥BCB 、AB=DC C 、∠A=∠CD 、6、已知三角形ABC 三边的长分别为10、12、16那么这个三角形的三条中线所围成的三角形 的周长等于( )A 、38B 、19C 、17D 、21 7、矩形具有而菱形不一定具有的性质是( )A 、对角线互相平分B 、对边平行且相等C 、对角线相等D 、对角相等8、如图所示,△ABC 中,∠C=90°,BE 平分∠ABC ,ED ⊥AB 于D ,若AC=3CM ,则AE+DE 等于( )A 、2CMB 、3CMC 、4CMD 、5CM 9、已知点A 的坐标为(-1-a ²,3),那么点A 一定在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限10、m 为整数,点P (3m-9,3-3m )是第三象的点,则点P 的坐标为( ) A 、(-3,-3) B 、(-3,-2) C 、(-2,-2) D 、(-2,-3)二、填空题(共30分,每小题3分) 1、已知点P (3,2),则点P 关于X 轴对称的点P ′的坐标为___________________2、如果点B (-2,2b+1)与点B ′(2,3)关于y 轴对称则b 的值为________________B3、把(0,-2)向上平移3个单位长度再向左平移1个单位长度所得到的像的坐标是__________4、一个多边形的每一个内角与相邻外角的度数比为4:1,则这个多边形是___________边形。
人教版八年级数学上江西省鄱阳县第二中学 期中考试试题

初中数学试卷灿若寒星整理制作鄱阳二中2016-2017学年度八年级期中考试数学试卷命题人:石霞来、高久鹏姓名:班级:一、选择题(本大题共6小题,每小题3分,共18分)1.在下列手机软件图标中是轴对称图形的是()A .B .C .D .2.若三角形的两条边长分别为6cm和10cm,则它的第三边长不可能为()A.5cm B.8cm C.10cm D.17cm3.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC(第3题图)(第4题图)(第5题图)(第6题图)4.已知AD是△ABC的角的平分线,AB=5,AC=3,则S△ABD:S△ACD=()A.1:1 B.2:1 C.5:3 D.3:55.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于21MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=16.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110° B.120° C.130° D.140°二、填空题(本大题共6小题,每小题3分,共18分)7.在直角坐标系中,若点A(m+1,2)与点B(3,n-2)关于y轴对称,则m=___,n=_____.8.△ABC≌△DEF,且△ABC的周长为12,若AB =3,EF =4,则AC=9.如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=8cm,DC=3cm,则AE= cm.10.如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P在线段AB上运动,当OP=CD时,点P的坐标为.11.如图,AB、AC垂直平分线相交于P点,∠BPC=110°,则∠A= .12.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.(第9题图)(第10题图)(第11题图)三、(本大题共5小题,每小题6分,共30分)13.一个多边形的内角和是900°,求这个多边形从一个顶点出发能引多少条对角线14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.15.如图,△ABC中,AB=AC,∠A=40°,DE是腰AB的垂直平分线,求∠DBC的度数.16.如图,△ABO ≌△CDO,点B在CD上,AO∥CD,∠D=70°,求∠A的度数.17.△ABC是格点三角形(顶点在网格线的交点),则在图中作出所有与△ABC全等且有一条公共边的格点三角形(不含△ABC)四、(本大题共4小题,每小题8分,共32分)18、已知,如图在△ABC中,AB=BC,点D是BC上的点,且BD=DA=AC,求∠B的度数。
山东省聊城市阳谷县2016-2017学年八年级(上)期中数学试卷(解析版)

2016-2017学年山东省聊城市阳谷县八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)在每小题给出的四个选项中,只有一项符合题目要求1.下列说法正确的是()A.全等三角形是指形状相同的两个三角形;B.全等三角形是指面积相等的两个三角形C.两个等边三角形是全等三角形D.全等三角形是指两个能完全重合的三角形2.如图,△ABC≌△CDA,AB=5,BC=6,AC=7,则AD的边长是()A.5 B.6 C.7 D.不能确定3.如图给出了四组三角形,其中全等的三角形有()组.A.1 B.2 C.3 D.44.下列图形中,△A′B′C′与△ABC关于直线MN成轴对称的是()A.B.C.D.5.如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是()A.PD=PE B.PE=OE C.∠DPO=∠EOP D.PD=OD6.如图,∠C=90°,DE垂直平分AB,DC=DE,则∠ADC的度数为()A.40°B.50°C.60°D.70°7.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接C D.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°8.如图,AE∥DF,AE=DF.则添加下列条件还不能使△EAC≌△FD B.()A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F9.如图,点A,B分别在∠COD的边OC,OD上,且OA=OB,OC=OD,连接AD,BC,若∠O=50°,∠D=35°,则∠OBC等于()A.70°B.80°C.85°D.95°10.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°11.如图,三条公路两两相交,现计划修建一个油库,要求油库到这三条公路的距离都相等,则满足条件的油库位置有()个.A.1 B.2 C.3 D.412.如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC其中正确的有()个.A.2 B.3 C.4 D.5二、填空题(共5小题,每小题3分,满分15分)13.等腰三角形的一个角是80°,则它的底角是.14.如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.15.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.16.如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C′,且BC′与AD交于E点,若∠ABE=40°,则∠ADB=.17.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E,某同学分析图形后得出以下结论,上述结论一定正确的是(填代号).①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.三、解答题(共8小题,满分69分)18.如图,已知房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.19.如图:△ABC中∠C=90°,AD平分∠BAC,交BC于点D,已知BC=32,BD:DC=9:7,求点D到AB的距离.20.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.21.尺规作图,要求:保留作图痕迹,不写作法,不用说明理由.如图,已知△ABC(AC<BC).(1)请依据“两边及其夹角分别相等的两个三角形全等”,作出△DEF,使△DEF≌△AB C.(2)在△ABC的边BC上,用尺规确定一点P,使PA+PC=B C.22.一个平分角的仪器如图所示,其中AB=AD,BC=D C.求证:∠BAC=∠DA C.23.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△AC D.24.如图,锐角三角形的两条高BD、CE相交于点O,且OB=O C.求证:△ABC是等腰三角形.25.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=C A.(1)试说明CD垂直于AB;(2)求证:DE平分∠BDC;(3)若点M在DE上,且DC=DM,求证:ME=B D.2016-2017学年山东省聊城市阳谷县八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)在每小题给出的四个选项中,只有一项符合题目要求1.下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.两个等边三角形是全等三角形D.全等三角形是指两个能完全重合的三角形【考点】全等图形.【分析】根据全等三角形的定义:能够完全重合的两个三角形叫做全等三角形求解即可.【解答】解:A、全等三角形是指形状相同、大小相等的两个三角形,故本选项错误;B、全等三角形的面积相等,但是面积相等的两个三角形不一定全等,故本选项错误;C、边长相等的两个等边三角形是全等三角形,故本选项错误;D、全等三角形是指两个能完全重合的三角形,故本选项正确.故选D.2.如图,△ABC≌△CDA,AB=5,BC=6,AC=7,则AD的边长是()A.5 B.6 C.7 D.不能确定【考点】全等三角形的性质.【分析】根据△ABC≌△CDA,可得CB=AD,已知BC的长,即可得解.【解答】解:∵△ABC≌△CDA,∴CB=AD,已知BC=6,∴AD=CB=6.故选B.3.如图给出了四组三角形,其中全等的三角形有()组.A.1 B.2 C.3 D.4【考点】全等三角形的判定.【分析】根据全等三角形的判定解答即可.【解答】解:图A可以利用AAS证明全等,图B可以利用SAS证明全等,图C可以利用SAS 证明全等,图D可以利用ASA证明全等..其中全等的三角形有4组,故选D.4.下列图形中,△A′B′C′与△ABC关于直线MN成轴对称的是()A.B.C.D.【考点】轴对称的性质.【分析】认真观察各选项给出的图形,根据轴对称的性质,对称轴垂直平分线对应点的连线进行判断.【解答】解:根据轴对称的性质,结合四个选项,只有B选项中对应点的连线被对称轴MN垂直平分,所以B是符合要求的.故选B.5.如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是()A.PD=PE B.PE=OE C.∠DPO=∠EOP D.PD=OD【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PD=PE.【解答】解:∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选A.6.如图,∠C=90°,DE垂直平分AB,DC=DE,则∠ADC的度数为()A.40°B.50°C.60°D.70°【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据角平分线的性质求出∠CAD=∠EAD,根据线段垂直平分线的性质证明∠DBA=∠EAD,根据直角三角形的两个锐角互余计算得到答案.【解答】解:∵∠C=90°,DE⊥AB,DC=DE,∴∠CAD=∠EAD,∵DE垂直平分AB,∴DA=DB,∴∠DBA=∠EAD,∵∠CAD+∠EAD+∠DBA=90°,∴∠ADC=∠EAD+∠DBA=60°,故选:C.7.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接C D.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°【考点】线段垂直平分线的性质;作图—基本作图.【分析】由CD=AC,∠A=50°,根据等腰三角形的性质,可求得∠ADC的度数,又由题意可得:MN是BC的垂直平分线,根据线段垂直平分线的性质可得:CD=BD,则可求得∠B的度数,继而求得答案.【解答】解:∵CD=AC,∠A=50°,∴∠ADC=∠A=50°,根据题意得:MN是BC的垂直平分线,∴CD=BD,∴∠BCD=∠B,∴∠B=∠ADC=25°,∴∠ACB=180°﹣∠A﹣∠B=105°.故选D.8.如图,AE∥DF,AE=DF.则添加下列条件还不能使△EAC≌△FD B.()A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F【考点】全等三角形的判定.【分析】判定三角形全等的方法主要有SAS、ASA、AAS、SSS等,根据所添加的条件判段能否得出△EAC≌△FDB即可.【解答】解:(A)当AB=CD时,AC=DB,根据SAS可以判定△EAC≌△FDB;(B)当CE∥BF时,∠ECA=∠FBD,根据AAS可以判定△EAC≌△FDB;(C)当CE=BF时,不能判定△EAC≌△FDB;(D)当∠E=∠F时,根据ASA可以判定△EAC≌△FDB;故选(C)9.如图,点A,B分别在∠COD的边OC,OD上,且OA=OB,OC=OD,连接AD,BC,若∠O=50°,∠D=35°,则∠OBC等于()A.70°B.80°C.85°D.95°【考点】全等三角形的判定与性质.【分析】由条件可证得△OBC≌△OAD,可得∠C=∠D=35°,在△OBC中利用三角形内角和可求得∠OB C.【解答】解:在△OBC和△OAD中∴△OBC≌△OAD(SAS),∴∠C=∠D=35°,∵∠O+∠C+∠OBC=180°,且∠O=50°,∴∠OBC=180°﹣50°﹣35°=95°,故选D.10.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°【考点】翻折变换(折叠问题).【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CB′D的度数,再由三角形外角的性质即可得出结论.【解答】解:∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°,∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°.故选D.11.如图,三条公路两两相交,现计划修建一个油库,要求油库到这三条公路的距离都相等,则满足条件的油库位置有()个.A.1 B.2 C.3 D.4【考点】角平分线的性质;三角形的内切圆与内心.【分析】根据角平分的性质,即可得出油库的位置在角平分线的交点处,依此画出图形,由此即可得出结论.【解答】解:∵三条公路两两相交,要求油库到这三条公路的距离都相等,∴油库在角平分线的交点处,画出油库位置如图所示.故选D.12.如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC 其中正确的有()个.A.2 B.3 C.4 D.5【考点】全等三角形的性质.【分析】根据全等三角形的对应角相等得出∠ABD=∠EBD,即可判断①;先由全等三角形的对应边相等得出BD=CD,BE=CE,再根据等腰三角形三线合一的性质得出DE⊥BC,则∠BED=90°,再根据全等三角形的对应角相等得出∠A=∠BED=90°,即可判断②;根据全等三角形的对应角相等得出∠ABD=∠EBD,∠EBD=∠C,从而可判断∠C,即可判断③;根据全等三角形的对应边相等得出BE=CE,再根据三角形中线的定义即可判断④;根据全等三角形的对应边相等得出BD=CD,但A、D、C可能不在同一直线上,所以AD+CD可能不等于A C.【解答】解:①∵△ADB≌△EDB,∴∠ABD=∠EBD,∴BD是∠ABE的平分线,故①正确;②∵△BDE≌△CDE,∴BD=CD,BE=CE,∴DE⊥BC,∴∠BED=90°,∵△ADB≌△EDB,∴∠A=∠BED=90°,∴AB⊥AD,∵A、D、C可能不在同一直线上∴AB可能不垂直于AC,故②不正确;③∵△ADB≌△EDB,△BDE≌△CDE,∴∠ABD=∠EBD,∠EBD=∠C,∵∠A=90°若A、D、C不在同一直线上,则∠ABD+∠EBD+∠C≠90°,∴∠C≠30°,故③不正确;④∵△BDE≌△CDE,∴BE=CE,∴线段DE是△BDC的中线,故④正确;⑤∵△BDE≌△CDE,∴BD=CD,若A、D、C不在同一直线上,则AD+CD>AC,∴AD+BD>AC,故⑤不正确.故选:A.二、填空题(共5小题,每小题3分,满分15分)13.等腰三角形的一个角是80°,则它的底角是50°或80°.【考点】等腰三角形的性质.【分析】已知给出了一个内角是80°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【解答】解:由题意知,分两种情况:(1)当这个80°的角为顶角时,则底角=÷2=50°;(2)当这个80°的角为底角时,则另一底角也为80°.故答案为:50°或80°.14.如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是30.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到△ABC的面积等于周长的一半乘以3,代入求出即可.【解答】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=3,∵△ABC的周长是22,OD⊥BC于D,且OD=3,∴S△ABC=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×3=20×3=30,故答案为:30.15.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【考点】作图—复杂作图.【分析】能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个【解答】解:如图,可以作出这样的三角形4个.16.如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C′,且BC′与AD交于E点,若∠ABE=40°,则∠ADB=25°.【考点】翻折变换(折叠问题).【分析】首先根据矩形的性质可得∠ABC=90°,AD∥BC,进而可以计算出∠EBC,再根据折叠可得∠EBD=∠CBD=∠EBC,然后再根据平行线的性质可以计算出∠ADB的度数.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∵∠ABE=40°,∴∠EBC=90°﹣40°=50°,根据折叠可得∠EBD=∠CBD,∴∠CBD=25°,∵AD∥BC,∴∠ADB=∠DBC=25°,故答案为:25°.17.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E,某同学分析图形后得出以下结论,上述结论一定正确的是①③④(填代号).①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.【考点】全等三角形的判定.【分析】由AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,得出各相等的边角,再依据全等三角形的判定定理即可判定五个答案哪个一定成立.【解答】解:∵AB=AC,∴∠EBC=∠DCB,又∵BD平分∠ABC,∠CE平分∠ACB,∴∠DBC=∠ECB,∵∠BEC=180°﹣∠EBC﹣∠ECB,∠CDB=180°﹣∠DCB﹣∠DBC,∴∠BEC=∠CD B.在△EBC和△DCB中,,∴△EBC≌△DCB(AAS).即①成立;在△BAD和△BCD中,仅有,不满足全等的条件,即②不一定成立;∵△EBC≌△DCB,∴BD=CE.在△BDA和△CEA中,,∴△BDA≌△CEA(SAS).即③成立;∵△BDA≌△CEA,∴AD=AE,∵AB=AC,∴BE=C D.在△BOE和△COD中,,∴△BOE≌△COD(AAS).即④成立;在△ACE和△BCE中,仅有,不满足全等的条件,即⑤不一定成立.综上可知:一定成立的有①③④.故答案为:①③④.三、解答题(共8小题,满分69分)18.如图,已知房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质得出∠B=∠C,再由三角形内角和定理即可求出∠B的度数,根据等腰三角形三线合一的性质即可求出∠BAD的度数.【解答】解:∵△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C===40°;∵AB=AC,AD⊥BC,∠BAC=100°,∴AD平分∠BAC,∴∠BAD=∠CAD=50°.19.如图:△ABC中∠C=90°,AD平分∠BAC,交BC于点D,已知BC=32,BD:DC=9:7,求点D到AB的距离.【考点】角平分线的性质.【分析】先由BC=32,BD:DC=9:7计算出DC=14,再由∠C=90°,得到点D到AC的距离等于14,然后根据角平分线的性质求解.【解答】解:∵BC=32,BD:DC=9:7,∴DC=14,∵∠C=90°,∴点D到AC的距离等于14,∵AD平分∠BAC,∴点D到AB的距离等于14.20.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【考点】等腰三角形的判定与性质.【分析】(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE≌△CEF,然后即可求证△DEF是等腰三角形.(2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B==70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°21.尺规作图,要求:保留作图痕迹,不写作法,不用说明理由.如图,已知△ABC(AC<BC).(1)请依据“两边及其夹角分别相等的两个三角形全等”,作出△DEF,使△DEF≌△AB C.(2)在△ABC的边BC上,用尺规确定一点P,使PA+PC=B C.【考点】作图—复杂作图;全等三角形的判定;线段垂直平分线的性质.【分析】(1)先作一个∠E=∠B,然后在∠E的两边分别截取ED=BA,EF=BC,连结DF即可得到△DEF;(2)作AB的垂直平分线交BC于P点,连结PA,则根据线段垂直平分线定理PA=PB,所以PA+PC=PB+PC=B C.【解答】解:(1)如图1,△DEF为所求;(2)如图,点P为所求.22.一个平分角的仪器如图所示,其中AB=AD,BC=D C.求证:∠BAC=∠DA C.【考点】全等三角形的判定与性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DA C.23.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△AC D.【考点】全等三角形的判定.【分析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.【解答】证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).24.如图,锐角三角形的两条高BD、CE相交于点O,且OB=O C.求证:△ABC是等腰三角形.【考点】等腰三角形的判定.【分析】要证明△ABC是等腰三角形,只需要证明∠ABC=∠ACB即可,根据题目中的条件可以证明这两个角相等,本题得以解决.【解答】证明:∵锐角三角形的两条高BD、CE相交于点O,∴∠OEB=∠ODC=90°,∠EOB=∠DOC,∴∠EBO=∠DCO,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.25.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=C A.(1)试说明CD垂直于AB;(2)求证:DE平分∠BDC;(3)若点M在DE上,且DC=DM,求证:ME=B D.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)分别证明D在AB的垂直平分线上,C也在AB的垂直平分线上,即可解决问题.(2)只要证明∠CDE=∠BDE=60°即可.(3)首先证明△DCM是等边三角形,再证明△ADC≌△EMC,即可推出ME=AD=B D.【解答】证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∠ABD=∠ABC﹣15°=30°,∴∠BAD=∠ABD,∴BD=A D.∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,∴直线CD是线段AB的垂直平分线.(2)∵CD是线段AB的垂直平分线,∴∠ACD=∠BCD=45°,∴∠CDE=15°+45°=60°,∴∠BDE=∠DBA+∠BAD=60°,∴∠CDE=∠BDE,∴DE平分∠BD C.(3)如图,连接M C.∵DC=DM,∠MDC=60°,∴△DMC是等边三角形.∴CM=CD,∠DMC=∠CDM=60°,∴∠ADC=∠EMC=120°,在△ADC和△EMC中,,∴△ADC≌△EMC,∴ME=AD=B D.。
人教版八年级上册数学课本答案2017【四篇】

精心整理
人教版八年级上册数学课本答案2017【四篇】
导语:初二是初中阶段承上启下的一个时期,在这一学年中,学习难度较之前相比有了很大提升,许多学生出现了成绩两极分化的局面。
以下是整理的人教版八年级上册数学课本答案2017【四篇】,希望对
二、;(2),3.
一、选择题.1.D2.A
二、填空题.1.,2.3.三、解答题.1.(1),(2),(3),(4);2.,§17.2
分式的运算(二)
一、选择题.1.D2.B
二、当时,
17.3
无解
一、选择题.1.C2.D
二、填空题.1.,,2.,3.三、解答题.1.第一次捐款的人数是400人,第二次捐款的人数是800人
2.甲的速度为60千米/小时,乙的速度为80千米/小时17.4零指数与负整数指数(一)。
江西省赣州市八年级数学上学期段考试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

2016-2017学年某某省某某市兴国七中八年级(上)段考数学试卷一、选择题:(共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列图形中,△A′B′C′与△ABC成轴对称的是()A.B. C. D.2.下列计算错误的是()A.x2•x2=2x4B.(﹣2a)3=﹣8a3C.(﹣a3)2=a6D.(a3)2=a63.在△ABC中,已知∠A=∠B=∠C,则三角形是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处5.如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于D点,则∠DBC的度数是()A.15° B.20° C.25° D.30°6.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:(共6小题,每小题3分,共18分)7.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.8.若点P(m,m﹣1)在x轴上,点P关于y轴对称的点坐标为.9.已知:x m=2,x n=3,则x3m+2n=.10.等腰三角形一个角为50°,则此等腰三角形顶角为.11.如图,在△ABC中,D为三角形内一点,∠A=65°,∠ABD=20°,∠ACD=35°,BD∥CE,则∠DCE=.12.如图:AC=AD=DE=EA=BD,∠BDC=32°,∠ADB=38°,则∠BEC=.三、计算题:(共5小题,每小题6分,共30分)13.现有M和N两个村庄,欲在其旁两条公路OH、OF上建立A、B两个候车厅,使MA+AB+BN 距离最小,请你在OH、OF上确定A、B两点的位置(保留作图痕迹)14.化简:(﹣2a2b3)3+3a4b3×(﹣ab3)2.15.如图,已知AO=DO,∠OBC=∠OCB.求证:∠1=∠2.16.如图,AB=AC,∠A=100°,CE平分∠ACD,求∠ECD的度数.17.如图,在等腰三角形△ABC中,AB=AC,BD平分∠ABC,在BC的延长线上取一点E,使CE=CD,连接DE,求证:BD=DE.四、(共4小题,每小题8分,共32分)18.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=5,求DF的长.19.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)写出A′、B′、C′三点的坐标(直接写答案);(3)在(1)(2)条件下,连接OAB′三点,求△OAB′的面积.20.如图,OE平分∠AOB,EF∥OB,EC⊥OB.(1)求证:OF=EF(2)若∠BOE=15°,EC=5求:OF的值.21.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF.五、(共2小题,第22小题10分,第23题12分,共22分)22.如图,已知△ABC为等边三角形,P为BC上一点,△APQ为等边三角形.(1)求证:AB∥CQ;(2)AQ与CQ能否互相垂直?若能互相垂直,指出点P在BC上的位置,并给予证明;若AQ 与CQ不能互相垂直,请说明理由.23.如图,平面直角坐标系中,已知点A(a﹣b,2),B(a+b,0),AB=4,且+(a+b﹣4)2=0,C为x轴上点B右侧的动点,以AC为腰作等腰△ACD,使AD=AC,∠CAD=∠OAB,直线DB交y轴于点P.(1)求证:AO=AB;(2)求证:∠AOC=∠ABD;(3)当点C运动时,点P在y轴上的位置是否发生改变,为什么?(提示:在直角三角形中,若两直角边分别为a、b,斜边为c,则有a2+b2=c2)2016-2017学年某某省某某市兴国七中八年级(上)段考数学试卷参考答案与试题解析一、选择题:(共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列图形中,△A′B′C′与△ABC成轴对称的是()A.B. C. D.【考点】轴对称的性质.【分析】根据中心对称,轴对称,平移变换的性质对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、是平移变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.故选B.2.下列计算错误的是()A.x2•x2=2x4B.(﹣2a)3=﹣8a3C.(﹣a3)2=a6D.(a3)2=a6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】结合同底数幂的乘法、幂的乘方与积的乘方的概念与运算法则进行求解即可.【解答】解:A、x2•x2=x4≠2x4,本选项错误;B、(﹣2a)3=﹣8a3,本选项正确;C、(﹣a3)2=a6,本选项正确;D、(a3)2=a6,本选项正确.故选A.3.在△ABC中,已知∠A=∠B=∠C,则三角形是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【考点】三角形内角和定理.【分析】根据三角形内角和定理求出三个内角的度数即可判断.【解答】解:设∠A=α,∴∠B=α,∠C=2α,∵∠A+∠B+∠C=180°,∴α+α+2α=180°,∴α=45°,∴∠C=90°,∴该三角形是等腰直角三角形.故选(D)4.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处【考点】线段垂直平分线的性质.【分析】要求到三个小区的距离相等,首先思考到A小区、C小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AC的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.【解答】解:A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在AC,BC两边垂直平分线的交点处.故选C.5.如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于D点,则∠DBC的度数是()A.15° B.20° C.25° D.30°【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC===65°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=50°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°.故选A.6.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】轴对称的性质.【分析】根据轴对称图形的性质,四边形ABCD沿直线l对折能够完全重合,再根据两直线平行,内错角相等可得∠CAD=∠ACB=∠BAC=∠ACD,然后根据内错角相等,两直线平行即可判定AB∥CD,根据等角对等边可得AB=BC,然后判定出四边形ABCD是菱形,根据菱形的对角线互相垂直平分即可判定AO=OC;只有四边形ABCD是正方形时,AB⊥BC才成立.【解答】解:∵l是四边形ABCD的对称轴,∴∠CAD=∠BAC,∠ACD=∠ACB,∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACB=∠BAC=∠ACD,∴AB∥CD,AB=BC,故①②正确;又∵l是四边形ABCD的对称轴,∴AB=AD,BC=CD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴AO=OC,故④正确,∵菱形ABCD不一定是正方形,∴AB⊥BC不成立,故③错误,综上所述,正确的结论有①②④共3个.故选C.二、填空题:(共6小题,每小题3分,共18分)7.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440 度.【考点】多边形内角与外角.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.8.若点P(m,m﹣1)在x轴上,点P关于y轴对称的点坐标为(﹣1,0).【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用x轴上点的坐标性质得出m的值,进而利用关于y轴对称的点坐标性质得出答案.【解答】解:∵点P(m,m﹣1)在x轴上,∴m﹣1=0,则m=1,故P(1,0),则点P关于y轴对称的点坐标为:(﹣1,0).故答案为:(﹣1,0).9.已知:x m=2,x n=3,则x3m+2n= 72 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法与除法,幂的乘方与积的乘方的运算法则计算即可.【解答】解:∵x m=2,x n=3,∴x3m+2n=x3m•x2n=(x m)3•(x n)2=8×9=72.故答案为72.10.等腰三角形一个角为50°,则此等腰三角形顶角为50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.【解答】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°﹣50°×2=80°故填50°或80°.11.如图,在△ABC中,D为三角形内一点,∠A=65°,∠ABD=20°,∠ACD=35°,BD∥CE,则∠DCE= 60°.【考点】平行线的性质.【分析】先根据三角形内角和定理求出∠DBC+∠DCB的度数,再由平行线的性质得出∠DBC=∠ECB,由此可得出结论.【解答】解:∵△ABC中,∠A=65°,∠ABD=20°,∠ACD=35°,∴∠DBC+∠DCB=180°﹣65°﹣35°﹣20°=60°.∵BD∥CE,∴∠DBC=∠ECB,∴∠DCE=∠DBC+∠DCB=60°.故答案为:60°.12.如图:AC=AD=DE=EA=BD,∠BDC=32°,∠ADB=38°,则∠BEC= 21°.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质和等边三角形的性质分别得出∠AEC,∠BED,∠AED的度数,由∠BEC=∠AEC+∠BED﹣∠AED即可求解.【解答】解:∵AC=AD=DE=EA=BD,∠BDC=32°,∠ADB=38°,∴∠ADC=38°+32°=70°,∠CAD=180°﹣2×70°=40°,∠DAE=∠ADE=∠AED=∠60°,在△ACE中,∠CAE=60°+40°=100°,∠AEC=÷2=40°.又∵在△BDE中,∠BDE=60°+38°=98°,∴∠BED=÷2=41°∴∠BEC=∠AEC+∠BED﹣∠AED=40°+41°﹣60°=21°.故答案为:21°.三、计算题:(共5小题,每小题6分,共30分)13.现有M和N两个村庄,欲在其旁两条公路OH、OF上建立A、B两个候车厅,使MA+AB+BN 距离最小,请你在OH、OF上确定A、B两点的位置(保留作图痕迹)【考点】作图—应用与设计作图;轴对称-最短路线问题.【分析】直接利用对称点的性质得出M,N分别关于OH,OF的对称点,进而连接得出答案.【解答】解:如图所示:A,B点即为所求.14.化简:(﹣2a2b3)3+3a4b3×(﹣ab3)2.【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】先算积的乘方,再算单项式乘单项式,最后合并同类项即可求解.【解答】解:(﹣2a2b3)3+3a4b3×(﹣ab3)2=﹣8a6b9+3a4b3×a2b6=﹣8a6b9+3a6b9=﹣5a6b9.15.如图,已知AO=DO,∠OBC=∠OCB.求证:∠1=∠2.【考点】全等三角形的判定与性质.【分析】欲证明∠1=∠2,只要证明△AOD≌△DOC即可.【解答】证明:∵∠OBC=∠OCB,∴OB=OC,在△AOB和△DOC中,,∴△AOB≌△DOC,∴∠1=∠2.16.如图,AB=AC,∠A=100°,CE平分∠ACD,求∠ECD的度数.【考点】等腰三角形的性质.【分析】利用等腰三角形的性质得到∠B的度数,再根据三角形外角的性质得出∠ACD的度数,进而利用角平分线的性质得出答案.【解答】解:∵AB=AC,∠A=100°,∴∠B=÷2=40°,∴∠ACD=100°+40°=140°,∵CE平分∠ACD,则∠ECD=70°.17.如图,在等腰三角形△ABC中,AB=AC,BD平分∠ABC,在BC的延长线上取一点E,使CE=CD,连接DE,求证:BD=DE.【考点】等腰三角形的性质.【分析】求出∠ABC=∠ACB,求出∠DBC=∠ABC,根据等腰三角形性质和三角形外角性质求出∠E=∠ACB,推出∠E=∠DBC即可.【解答】证明:∵AB=AC∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠DBC=∠ABC,∵CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴∠E=∠ACB,∴∠E=∠DBE,∴BD=DE.四、(共4小题,每小题8分,共32分)18.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=5,求DF的长.【考点】等边三角形的性质;平行线的性质.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=5,∵∠DEF=90°,∠F=30°,∴DF=2DE=10.19.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)写出A′、B′、C′三点的坐标(直接写答案);(3)在(1)(2)条件下,连接OAB′三点,求△OAB′的面积.【考点】作图-轴对称变换.【分析】(1)利用关于x轴对称的点的坐标特征写出A′、B′、C′三点的坐标,然后描点即可得到△A′B′C′;(2)由(1)得A′、B′、C′三点的坐标;(3)用一个矩形的面积减去三个三角形的面积可计算出△OAB′的面积.【解答】解:(1)如图,△A′B′C′为所作;(2)A′(1,﹣2)、B′(3,﹣1)、C′(﹣2,1);(3)△OAB′的面积=3×3﹣×3×1﹣×2×3﹣×2×1=3.5.20.如图,OE平分∠AOB,EF∥OB,EC⊥OB.(1)求证:OF=EF(2)若∠BOE=15°,EC=5求:OF的值.【考点】角平分线的性质;平行线的性质.【分析】(1)根据角平分线的定义得到∠BOE=∠AOE,由平行线的性质得到∠BOE=∠OEF,等量代换得到∠OEF=∠FOE,于是得到结论;(2)过E作ED⊥OA于D,根据三角形的外角的性质得到∠EFD=30°,根据直角三角形的性质即可得到结论.【解答】(1)证明:∵OE平分∠AOB,∴∠BOE=∠AOE,∵EF∥OB,∴∠BOE=∠OEF,∴∠OEF=∠FOE,∴OF=EF;(2)解:过E作ED⊥OA于D,∵∠BOE=15°,∴∠OEF=∠FOE=15°,∴∠EFD=30°,∵CE⊥OB,∴DE=CE=5,∴EF=2DE=10,∴OF=EF=10.21.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)根据等腰三角形三线合一的性质可得CH平分∠ACB,再证明△ACE和△BCF全等,然后根据全等三角形对应角相等可得结论;(2)证明△AEC≌△BFC,根据全等三角形对应边相等即可证明.【解答】(1)证明:在等腰△ABC中,∵CH是底边上的高线,∴∠ACH=∠BCH,在△ACP和△BCP中,,∴△ACP≌△BCP(SAS),∴∠CAE=∠CBF(全等三角形对应角相等);(2)在△AEC和△BFC中,∴△AEC≌△BFC(ASA),∴AE=BF(全等三角形对应边相等).五、(共2小题,第22小题10分,第23题12分,共22分)22.如图,已知△ABC为等边三角形,P为BC上一点,△APQ为等边三角形.(1)求证:AB∥CQ;(2)AQ与CQ能否互相垂直?若能互相垂直,指出点P在BC上的位置,并给予证明;若AQ 与CQ不能互相垂直,请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可.(2)根据等腰三角形性质求出∠BAP=30°,求出∠B AQ=90°,根据平行线性质得出∠AQC=90°,即可得出答案.【解答】(1)证明:∵△ABC和△APQ是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,∴∠BAP=∠CAQ=60°﹣∠PAC,在△ABP和△ACQ中∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B=60°=∠BAC,∴AB∥CQ.(2)AQ与CQ能互相垂直,此时点P在BC的中点,证明:∵当P为BC边中点时,∠BAP=∠BAC=30°,∴∠BAQ=∠BAP+∠PAQ=30°+60°=90°,又∵AB∥CQ,∴∠AQC=90°,即AQ⊥CQ.23.如图,平面直角坐标系中,已知点A(a﹣b,2),B(a+b,0),AB=4,且+(a+b﹣4)2=0,C为x轴上点B右侧的动点,以AC为腰作等腰△ACD,使AD=AC,∠CAD=∠OAB,直线DB交y轴于点P.(1)求证:AO=AB;(2)求证:∠AOC=∠ABD;(3)当点C运动时,点P在y轴上的位置是否发生改变,为什么?(提示:在直角三角形中,若两直角边分别为a、b,斜边为c,则有a2+b2=c2)【考点】三角形综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质.【分析】(1)根据算术平方根和平方的非负性质即可求得a、b的值,进而求得A,B点坐标,求得OA,AB长度即可;(2)易证∠OAC=∠BAD,即可证明△OAC≌△BAD,根据全等三角形的性质,可得对应角相等;(3)点P在y轴上的位置不发生改变,先判定△AOB是等边三角形,易证∠OBP=60°,根据OB长度固定和∠OPB=30°,即可求得OP的长为定值.【解答】解:(1)∵+(a+b﹣4)2=0,∴,解得,∴A(2,2),B(4,0),∴AO==4,又∵AB=4,∴AO=AB;(2)∵∠CAD=∠OAB,∴∠CAD+∠BAC=∠OAB+∠BAC,即∠OAC=∠BAD,在△OAC和△BAD中,,∴△OAC≌△BAD(SAS),∴∠AOC=∠ABD;(3)点P在y轴上的位置不发生改变.证明:由(1)可得,AB=BO=AO=4,∴∠AOB=∠ABO=60°,由(2)知△AOC≌△ABD,∴∠ABD=∠AOB=60°,∴∠OBP=60°,∵∠POB=90°,∴∠OPB=30°,∴Rt△BOP中,BP=2OB=8,∴OP==4,即OP长度不变,∴点P在y轴上的位置不发生改变.。
2017年八年级数学上册压轴试题精编

八年级数学上学期期中考试压轴试题经编①全等三角形性质和判定1.下列命题中,真命题的个数是( )① 如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等 ② 如果两个三角形有两条边和其中一边上的高对应相等,那么这两个三角形全等 ③ 如果两个直角三角形有一条边和这条边所对的角对应相等,那么这两个三角形全等 ④ 如果两个直角三角形有两个角对应相等,那么这两个三角形全等 A .1 个 B .2 个 C .3 个 D .4 个2.如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是以BC 为中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:① AE =CF ;② △EFP 是等腰直角三角形;③ S 四边形AEPF =21S △ABC ;④ 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),BE +CF =EF ,上述结论中始终正确的有( )A .1 个B .2 个C .3 个D .4 个3.如图,设△ABC 和△CDE 都是等边三角形,且∠EBD=65°,∠AEB 的度数是( )A.115°B.120°C.125°D.130°4.如图,CA ⊥AB ,垂足为点A , AB=24, AC=12,射线BM ⊥AB ,垂足为点B ,一动点E 从A 点出发以3 厘米/秒沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED=CB ,当点E 经过____________秒时,△DEB 与△BCA 全等.5.已知△ABC 和△ADE 的顶点公共,点B 、A 、E 在一条直线上.AB =AC ,AD =AE ,∠BAC =∠DAE ,PB =PD ,PC =PE(1) 如图1,若∠BAC =60°,则∠BPC +∠DPE =_________ (2) 如图2,若∠BAC =90°,则∠BPC +∠DPE =_________(3) 在图2 的基础上将等腰Rt △ABC 绕点A 旋转一个角度,得到图3,则∠BPC +∠DPE =_________,并证明你的结论6.在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE=30°,CD、BE 交于点O,连接OA (1) 如图1,求证:BE=CD(2) 如图1,求∠AOE 的大小(3) 当绕点A 旋转至如图2 所示位置时,若∠BAC=∠DAE=α,∠AOE=_________(直接写出答案)②角平分线辅助线用法1.如图,ΔABC中,点D是BC上一点,已知∠DAC = 30°,∠DAB= 75°,CE平分∠ACB交 AB 于点E ,连接DE ,则∠DEC =()A.10°B.15°C.20°D.25°2.如图,在ΔABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M 、N 、Q分别在射线DB、DC 、BC上,BE、CE分别平分∠MBC 、∠BCN,BF 、BF 分别平分∠EBC、∠ECQ,则∠F =_____ .3.如图,在四边形ABCD中, AB=AC ,∠ABD=60°,∠ADB = 78°,∠BDC = 24°,则∠DBC =()A.18°B.20°C.25°D.15°4.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠ACB =72°,∠ABC = 50°,并且∠BAD+∠CAD =180°,那么∠ADC的度数为()A.62°B.65°C. 68°D.70°5.已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB =72°,∠ABC=60°,并且∠BAD+∠CAD =180°,那么∠BDC的度数为_________.6.等腰直角三角形中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,过C 作CD⊥BE于D,过A 作AT⊥BE 于T 点,有下列结论:①∠ADC=135°;② BC=AB+AE;③ BE=2AT+TE;④ BD-CD=2AT,其中正确的是()A.①②③ B.①②④ C.②③④D.①③④7.如图,△ABC中,∠A=90°,角平分线BD、CE 交于点I,IF⊥CE 交CA 于F,IH⊥AB 于H,下列结论:①∠DIF=45°;②CF+BE=BC;③ AE+AF=2AH;④ S 四边形△BEDC=2S△IBC,其中正确结论的个数为()A.1 个 B.2 个 C.3 个D.48.在等腰ΔABC 中, AB=AC ,点D 是AC 上一动点,点E 在的BD 延长线上,且 AB=AE ,AF 平分∠CAE 交DE 于点F ,连接FC . (1)如图 1,求证:∠ABE=∠ACF ;(2)如图 2,当∠ABC=60°时,求证: AF + EF =FB ; (3)如图 3,当∠ABC=45°,且 AE//BC 时,求证:BD=2EF .9.如图,在ΔABC 中,∠BAC=90°, AB=AC ,D 是AC 边上一动点,CE ⊥BD 于E . (1)如图(1),若BD 平分∠ABC 时,①求∠ECD 的度数;②求证:BD=2EC ;(2)如图(2),过点 A 作 AF ⊥BE 于点F ,猜想线段BE 、CE 、 AF 之间的数量关系,并证明你的猜想.10.在ΔABC 中,∠BAC=90°, AB=AC .(1)如图 1,若A 、B 两点的坐标分别是A(0, 4),B(−2,0),求C 点的坐标;(2)如图 2,作∠ABC 的角平分线BD ,交AC 于点D ,过C 点作CE ⊥BD 于点E ,求证:CE=21BD ; (3)如图 3,点P 是射线 BA 上A 点右边一动点,以CP 为斜边作等腰直角 ΔCPF ,其中∠F=90°,点Q 为∠FPC 与∠PFC 的角平分线的交点.当点P 运动时,点Q 是否恒在射线BD 上?若在,请证明;若不在,请说明理由.11.如图1,已知线段AC ∥y 轴,点B 在第一象限,且AO 平分∠BAC ,AB 交y 轴于G ,连OB 、OC(1) 判断△AOG 的形状,并予以证明 (2) 若点B 、C 关于y 轴对称,求证:AO ⊥BO(3) 在(2)的条件下,如图2,点M 为OA 上一点,且∠ACM =45°,BM 交y 轴于P ,若点B 的坐标为(3,1),求点M 的坐标12.如图,在平面直角坐标系中,点B 与点C 关于x 轴对称,点D 为x 轴上一点,点A 为射线CE 上一动点,且∠BAC =2∠BDO ,过D 作DM ⊥AB 于M (1) 求证:∠ABD =∠ACD (2) 求证:AD 平分∠BAE (3) 当A 点运动时,AMACAB 的值是否发生变化?若不变化,请求出其值;若变化,请说明理由③中线辅助线用法1.已知点E 在等边ΔABC 的边AB 上,点P 在射线CB 上, AE=BP . (1)如图 1,求证:AP=CE ; (2)如图 2,求证:PE=EC ;(3)如图 3,若AE= 2BE ,延长AP 至点M 使PM=AP ,连接CM ,求证:CM = CE .FE CBAPECBA MPE CBA2.如图1,点A 、B 分别在x 轴负半轴和y 轴正半轴上,点C(2,-2),CA 、CB 分别交坐标轴于D 、E ,C A ⊥AB 且CA=AB (1)求点B 的坐标(2)如图2,连接DE ,求证:BD-AE=DE(3)如图3,若点F 为(4,0),点P 在第一象限内,连接PF ,过P 作PM ⊥PF 交y 轴于点M ,在PM 上截取PN=PF ,连接PO 、BN ,过P 作∠OPG=450交BN 于点G ,求证:点G 是BN 的中点3.如图,在平面直角坐标系中,A(0,a)、B(b ,0) 、 C(c,0),且2-a +| b-2|+2)2(+c =0(1)直接写出A 、B 、C 各点的坐标: A , B , C(2)过B 作直线MN ⊥AB ,P 为线段OC 上的一动点,AP ⊥PH 交直线MN 于点H ,证明:PA=PH (3))在(1)的条件下,若在点A 处有一个等腰Rt △APQ 绕点A 旋转,且AP=PQ ,∠APQ=900,连接BQ ,点G 为BQ 的中点,试猜想线段OG 与线段PG 的数量关系和位置关系,并证明你的结论4.如图1,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上(1) 如图1,点A 与点C 关于y 轴对称,点E 、F 分别是线段AC 、AB 上的点(点E 不与点A 、C 重合),且∠BEF =∠BAO .若∠BAO =2∠OBE ,求证:AF =CE (2) 如图2,若OA =OB ,在点A 处有一等腰△AMN 绕点A 旋转,且AM =MN ,∠AMN =90°.连接EN ,点P 为BN 的中点,试猜想OP 和MP 的数量关系和位置关系,说明理由图1xyFE C BA O5.在平面直角坐标系中,A、B、C、D四点在坐标轴上,如图所示,满足AO=BO,BC⊥AD,D(1,0)(1)求点C的坐标(2)点M、N分别是BC、AD的中点,连OM、ON,判断OM、ON的关系)(3))在(2)的条件下,连AM、BN,取BN的中点P,连OP,当点C、D分别以相同的速度沿着y轴、x轴向原点O运动过程中,求证:∠MAC+∠POA为定值图1 图2 图36.如图,点P(2,2),点A、B分别在x轴正半轴和y轴负半轴上,A(5,0), ∠APB=900(1)求点B的坐标(2)点C在y轴正半轴上,作PD⊥PC,且PD=PC,过点P作x轴的平行线交y轴于E,交AD于F,若C(0,m),求PF的长(用m表示)④截长补短辅助线用法1.CO是△ACE的高,点B在OE上,OB=OA,AC=BE(1)如图1,求证:∠A=2∠E(2))如图2,CF是△ACE的角平分线①求证:AC+AF=CE②判断三条线段CE、EF、OF之间的数量关系,并给出证明图1 图22.已知,在等腰三角形ABC中,AB=AC,AD⊥BC于D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC(1)如图1,当1200<∠BAC<1800,△ACE与△ABC在直线AC的异侧时,FC交AE于点M①求证:∠FEA=∠FCA②猜想线段FE、FA、FD之间的数量关系,并证明你的结论(2)当600<∠BAC<1200,△ACE与△ABC在直线AC的同侧时,利用图2画出图形探究FE、FA、FD之间的数量关系,并直接写出你的结论图1 图23.如图1,在平面直角坐标系中,已知A(a,0)、B(0,b),且8-+b a +|42|+-b a =0 (1)求证:∠OAB=∠OBA(2)如图2,点P 为第一象限内一点,且PA=OA,AC ⊥x 轴交OP 于点C ,AD 平分∠PAC 交OP 于点D ,求∠ODB 的度数(3)如图3,点A 关于y 轴对称点为F,点B 关于x 轴对称点为E, 点M 在AB 的延长线上,点N 在BF 的延长线上,且∠MEN=450,判断三条线段MN 、AM 、FN 之间的关系,并给出证明⑤等腰三角形性质及判定1.如图,在△ABC 中,AB=AC,AD ⊥BC 于点D ,AB=5,AD=4,点P 是BC 边上一动点,且不与B 、C 重合,则点P 到AB 、AC 的距离之和为( )A.4.8B.3C.2.4D.不确定 2. 如图,等腰Rt △ABC 中,∠BAC=900,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①DF=DN ;② △DMN 为等腰三角形; ③DM 平分∠BMN; ④AE=32EC ;⑤AE=NC.其中正确的结论的个数是( )A.2B.3C.4D.53. 如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 的延长线上一点,当PA=CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A. 21B. 31C. 32D.不确定NMFED CBA4.△ABC为等边三角形,在平面内找一点P,使△PAB、△PBC、△PAC均为等腰三角形,则这样的点P的个数为5. 如图,已知AB=AC=AD, ∠CBD=2∠BDC,∠BAC=440,则∠CAD的度数为6. 在平面直角坐标系中,点A(4,0) 、B(0,8),以AB为斜边作等腰直角△ABC,则点C的坐标为7. 如图,在平面直角坐标系中,已知A(0,4) 、B(2,0),在第一象限内的点C,使△ABC 为面积最小的等腰直角三角形,则点C的坐标为,最小面积为8. 已知A(0,2) 、B(4,0), 点C在x轴上,若△ABC为等腰三角形,则满足这样条件的点C有个9. 如图,点O为等边△ABC内一点,∠AOB=1100,∠BOC=ɑ,将△BOC绕点C按顺时针方向旋转600得到△ADC,连接OD(1)试说明:△COD是等边三角形(2)当ɑ=1500时,试判断△AOD的形状,并说明理由(3)探究:当ɑ为多少度时, △AOD是等腰三角形?10. 如图1,△ABC是等边三角形,点D为线段CA延长线上一动点,点E为射线CB上一动点,并且始终满足AD=CE(1)当点E在线段CB上时,求证:DB=DE(2)当点E在线段CB的延长线上时,其他条件不变,试在下图中补全图形,并猜想第(1)问的结论是否发生变化?判断并证明你的结论(3)在第(1)问的条件下,若点D 、E在运动时,恰好使DE平分∠BDC,则此时∠BDC= (直接写出答案)⑥垂直平分线的用法1.如图,在△ABC中,边AB、BC的垂直平分线相交于点P,下列结论:①PA=PB=PC ;②P点到△ABC三边的距离相等; ③若∠BAC=700,则∠BPC=1400; ④∠ABC+∠ACP为定值.其中正确的结论的个数是()A.1B.2C.3D.42.如图,在△ABC中,∠BAC=1100,MP、NQ分别垂直平分AB、AC,交BC于P、Q点,则∠PAQ等于()A.700B.450C.400D.5503.如图,在△DAE中,∠DAE=400, 线段AE、AD的中垂线分别交直线DE于B和C两点,则∠BAC的大小是()A.1000B.900C.800D.12004.如图,在四边形ABCD中,AD∥BC,∠ABC=900,点E是CD的中点,过点E作CD的垂线l交直线AB于点P,交直线BC于点M(1)如图1,若垂线l经过点B,求证:AD+AB>BC(2)如图2,若点M在线段BC上,且满足AD=BP,判断三条线段AD、BC、AB之间的关系,并给出证明(3)如图3,若点M在线段CB的延长线上,∠MPB=700, 点F在线段ME上,且满足CF=AD,MF=MA,则∠MCF= (填空,不需证明)⑦特殊角的应用1.如图,△ABC中,∠ABC=520,∠BAD=120,DC=AB, 则∠CAD=2.△ABC中,∠CAB=∠CBA=500,O为△ABC内一点,∠OAB=100,∠OBC=200,则∠OCA=A.550B.600C.700D.8003.如图,△ABC中,AB=CB,M为△ABC内一点,∠MAC+∠MCB=∠MCA=300(1)求证:△ABM为等腰三角形(2)求∠BMC的度数⑧利用轴对称求最值1.如图,等腰△ABC底边BC的长为4cm,面积是12cm,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最小值为 cm2.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=1100,则∠AOB=( )A.350B.400C.450D.5503.如图,∠AOB=300,在∠AOB内有一点P,OP=6,点M在OA上,点N在OB上,△PMN周长的最小值是4.如图,∠AOB=300,M、N分别是边OA、OB上的定点,P、Q分别是边OB、OA上的动点,记∠AMP=∠1,∠ONQ=∠2,当MP+PQ+QN最小时,则关于∠1、∠2的数量关系正确的是( ) A.∠1+∠2=900 B. 2∠2-∠1=300 C.2∠1+∠2=1800 D.∠1-∠2=9005.如图,Rt△ABC中,∠C=900,∠,B=300,BA=6,点E在边AB上,点D是边BC上一点,(不与点B、C重合),且AE=ED,线段AE的最小值是()⑨规律探究1.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺开得到的图形是()A B C D2.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为450,第1次碰到长方形边上的点的坐标为(3,0),则第3次碰到长方形边上的点的坐标为,第2015次碰到长方形边上的点的坐标为 .3.如图,在第1个△A1BC中,∠B=300,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A 2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是 .4.下图都是由同样大小的正三角形按一定规律组成的,其中第1个图中有1个正三角形,第2个图中共有5个正三角形,第3个图中共有13个正三角形……,按此规律第5个图中正三角形的个数为 .⑩几何综合1.等腰Rt △ABC 中,AC=AB,∠BAC=900,点A 、B 分别是y 轴、x 轴上的两个动点(1)如图1,若A(0,2),B(1,0),求点C 的坐标(2)如图2,当等腰Rt △ABC 运动,直角边AC 交x 轴于点D ,斜边BC 交y 轴于点E ,且点D 恰为AC 中点时,连接DE ,求证:∠ADB=∠CDE(3)如图3,在等腰Rt △ABC 不断运动的过程中,直角边AC 交x 轴于点D ,斜边BC 交y 轴于点E ,若BD 始终是∠ABC 的角平分线,试探究:线段BD 与OA+OD 之间存在什么数量关系,并说明理由图1 图2 图32.在平面直角坐标系中,A(3,0) 、B(0,3),点P 为线段AB 上一点,且21 BP AP ,连接OP (1)求P 点的坐标(2)作直线AM ⊥x 轴,作PC ⊥OP 交AM 于点C ,求证:PC=OP(3)在(2)的条件下,在直线AM 上有一动点N ,连接ON 并在x 轴下方作OQ ⊥ON 且OQ=ON ,连接点D(3,3)与点Q 的线段交x 轴于点E ,当OE=2时,则Q 点坐标为 .(请自己画图并直接写出结果)3.如图,直线AB 交x 轴于点A(a,0),交y 轴于点B(0,b),且a 、b 满足0)5(||2=-++a b a(1)点A 的坐标为 .点B 的坐标为 .(2)如图,若点C 的坐标为(-3,-2),且BE ⊥AC 于点E ,OD ⊥OC 交BE 延长线于D ,求点D 的坐标(3)如图,M 、N 分别为OA 、OB 边上的点,OM=ON,OP ⊥AN 交AB 于点P ,过点P 作PG ⊥BM 交AN 的延长线于点G ,请写出线段AG 、OP 与PG 之间的数量关系并证明你的结论4.如图,已知A(a,0),B(0,b),且a 、b 满足2)2(-a +|2b-4|=0(1)如图1,求△AOB 的面积(2)如图2,点C 在线段AB 上(不与A 、B 重合)移动,A B ⊥BD,且∠COD=450,猜想线段A C 、BD 、CD 之间的数量关系并证明你的结论(3)如图3,若P 为x 轴上异于原点O 和点A 的一个动点,连接PB ,将线段PB 绕点P 顺时针旋转900至PE ,直线AE 交x 轴于点Q ,当点P 在x 轴上移动时,线段BE 和线段BQ 中,请判断哪一条线段长为定值,并求出该定值5.如图,在平面直角坐标系中,已知A(0,a)、B(b,0),且a、b满足a+|a-2b+2|=0+b-4(1) 求证:∠OAB=∠OBA(2) 如图1,若BE⊥AE,求∠AEO的度数(3) 如图2,若D是AO的中点,DE∥BO,F在AB的延长线上,∠EOF=45°,连接EF,试探究OE和EF的数量和位置关系6.如图,线段AC∥x轴,点B在第四象限,AO平分∠BAC,AB交x轴于G,连OB、OC (1)判断△AOG的形状并证明(2)如图1,若BO=CO且OG平分∠BOC,求证:OA⊥OB(3)如图2,在(2)条件下,点M为AO上一点,且∠ACM=45°,若点B(1,-2),求M点的坐标。
大学区校际联盟八年级数学上学期期中试卷(b卷,含解析) 新人教版-新人教版初中八年级全册数学试题
2016-2017学年某某省某某实验中学大学区校际联盟八年级(上)期中数学试卷(B)一、相信你的选择(每题3分,共30分)1.若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是()A.80° B.40° C.60° D.120°2.如图,虚线部分是小刚作的辅助线,你认为线段CD()A.是AC边上的高B.是BC边上的高C.是AB边上的高D.不是△ABC的高3.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等4.下列选项中不一定是轴对称图形的是()A.长3cm的线段 B.圆C.有60°角的三角形D.等腰直角三角形5.如图,湖泊对岸的凉亭B和C到大门A的距离分别是3和4,则BC的长不可能是()A.2 B.4 C.6 D.86.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组7.一个等腰三角形的周长为16,其中一边是4,则此三角形另两边长可能是()A.6,6 B.4,8 C.6,6或4,8 D.无法确定8.在△ABC中,下列哪个点与△ABC的任意两个顶点,围成的三角形都是等腰三角形()A.三条中线的交点B.三条高线的交点C.三条角平分线的交点D.三条垂直平分线的交点9.如图,在△ABC中,AB=AC,∠A=40°,CD⊥AB于D,则∠DCB等于()A.70° B.50° C.40° D.20°10.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF,下列结论错误的是()A.△ADE≌△BFE B.AD+BG=DG C.连接EG,EG∥DC D.连接EG,EG⊥DF二、试试你的身手(每题3分,共12分)11.正十二边形的外角和为.12.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=海里.13.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则∠AOC等于.14.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为40°,则∠B=.三、挑战你的技能(9小题,共58分)15.已知一个多边形的内角和是900°,则这个多边形是几边形?16.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.17.如图,过C画一条直线将△ABC的面积二等分.(保留作图痕迹)18.如图所示,太阳光线AC和A´C´是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?请说明理由.19.如图所示的四边形ABCD中,AB∥CD,AD∥BC,你能用全等三角形的知识证明出AB=CD 吗?20.已知:如图,已知△ABC,(1)分别画出与△ABC关于y轴对称的图形△A1B1C1(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.21.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.22.如图,等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CE=CD,DM⊥BC,垂足为M.求证:M是BE的中点.23.如图1,把一X长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.(1)求证:FB=FD;(2)如图2,连接AE,求证:AE∥BD;(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH垂直平分BD.2016-2017学年某某省某某实验中学大学区校际联盟八年级(上)期中数学试卷(B)参考答案与试题解析一、相信你的选择(每题3分,共30分)1.若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是()A.80° B.40° C.60° D.120°【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠C,根据全等三角形性质推出∠F=∠C,即可得出答案.【解答】解:∵∠A=80°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=60°,∵△ABC≌△DEF,∴∠F=∠C=60°,故选C.2.如图,虚线部分是小刚作的辅助线,你认为线段CD()A.是AC边上的高B.是BC边上的高C.是AB边上的高D.不是△ABC的高【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义解答即可.【解答】解:由图可知,线段CD是AB边上的高.故选C.3.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等【考点】全等三角形的判定与性质;作图—基本作图.【分析】连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案.【解答】解:连接NC,MC,在△ONC和△OMC中,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,故选A.4.下列选项中不一定是轴对称图形的是()A.长3cm的线段 B.圆C.有60°角的三角形D.等腰直角三角形【考点】轴对称图形.【分析】直接根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不一定是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误.故选:C.5.如图,湖泊对岸的凉亭B和C到大门A的距离分别是3和4,则BC的长不可能是()A.2 B.4 C.6 D.8【考点】三角形三边关系.【分析】根据三角形三边关系得出,任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值X围.【解答】解:∵此三角形且两边为3和4,∴第三边的取值X围是:1<x<7,在这个X围内的都符合要求.故选D.6.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.7.一个等腰三角形的周长为16,其中一边是4,则此三角形另两边长可能是()A.6,6 B.4,8 C.6,6或4,8 D.无法确定【考点】等腰三角形的性质;三角形三边关系.【分析】分4为等腰三角形的底边长与腰长两种情况进行讨论.【解答】解:当4为等腰三角形的底边长时,腰长==6,则这个等腰三角形的其余两边长分别为6,6;当4为等腰三角形的腰长时,底边长=16﹣4﹣4=8,4、4、8不能构成三角形.故选A.8.在△ABC中,下列哪个点与△ABC的任意两个顶点,围成的三角形都是等腰三角形()A.三条中线的交点B.三条高线的交点C.三条角平分线的交点D.三条垂直平分线的交点【考点】等腰三角形的判定.【分析】根据垂直平分线的性质和等腰三角形的判定解答即可.【解答】解:因为垂直平分线的交点到两边距离相等,所以能围成等腰三角形,故选D9.如图,在△ABC中,AB=AC,∠A=40°,CD⊥AB于D,则∠DCB等于()A.70° B.50° C.40° D.20°【考点】三角形内角和定理.【分析】根据等腰三角形的性质,求出∠B=70°,由垂直的定义,即得∠DCB的度数.【解答】解:∵AB=AC,∠A=40°,∴∠B=∠C=÷2=70°,又∵CD⊥AB,∴∠BDC=90°,∴∠DCB=90°﹣70°=20°.故选D.10.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF,下列结论错误的是()A.△ADE≌△BFE B.AD+BG=DG C.连接EG,EG∥DC D.连接EG,EG⊥DF【考点】全等三角形的判定与性质.【分析】先根据平行线的性质,由AD∥BC得到∠A=∠ABF,∠1=∠F,则可根据“AAS”判定△ADE≌△BFE,于是可对A选项进行判断;利用三角形全等得到AD=BF,再证明∠F=∠2得到DG=FG,所以AD+BG=BF+BG=FG=DG,则可对B选项进行判断;根据等腰三角形的性质,由GD=GF,DE=FE可得到GE⊥DF,则可对D选项进行判断;然后利用∠CDF不能确定为直角,则不能判断EG∥CD,于是可对C选项进行判断.【解答】解:∵E是AB的中点,∴DE=FE,∵AD∥BC,∴∠A=∠ABF,∠1=∠F,在△ADE和△BFE中,∴△ADE≌△BFE,所以A选项的结论正确;∴AD=BF,∵∠1=∠2,而∠1=∠F,∴∠F=∠2,∴DG=FG,∴AD+BG=BF+BG=FG,∴AD+BG=DG,所以B选项的结论正确;∵GD=GF,DE=FE,∴GE⊥DF,所以D选项的结论正确;而∠CDF不能确定为直角,∴不能判断EG∥CD,所以C选项不正确.故选C.二、试试你的身手(每题3分,共12分)11.正十二边形的外角和为360°.【考点】多边形内角与外角.【分析】根据多边形的外角和定理求解.【解答】解:正十二边形的外角和是:360°.故答案是:360°.12.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP= 7 海里.【考点】解直角三角形的应用-方向角问题.【分析】过P作AB的垂线PD,在直角△BPD中可以求的∠PAD的度数是30度,即可证明△APB是等腰三角形,即可求解.【解答】解:过P作PD⊥AB于点D.∵∠PBD=90°﹣60°=30°且∠PBD=∠PAB+∠APB,∠PAB=90﹣75=15°∴∠PAB=∠APB∴BP=AB=7(海里)故答案是:7.13.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则∠AOC等于60°.【考点】等边三角形的判定与性质.【分析】根据题意得出△ABC为等边三角形,从而得出∠AOC的度数.【解答】解:∵用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,∴OA=OB,∵以A为圆心,以OA为半径画弧,与弧AB交于点C,∴OA=AC,∴OA=OB=OC=AC,∴△AOC为等边三角形,∴∠AOC=60°.故答案为60°.14.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为40°,则∠B= 65°或25°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据△ABC中∠A为锐角与钝角分为两种情况解答.【解答】解:(1)当AB的中垂线MN与AC相交时,∵∠AMD=90°,∴∠A=90°﹣40°=50°,∵AB=AC,∴∠B=∠C==65°;(2)当AB的中垂线MN与CA的延长线相交时,∴∠DAB=90°﹣40°=50°,∵AB=AC,∴∠B=∠C=∠DAB=25°.故答案为65°或25°.三、挑战你的技能(9小题,共58分)15.已知一个多边形的内角和是900°,则这个多边形是几边形?【考点】多边形内角与外角.【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.16.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.【考点】等腰三角形的判定与性质;平行线的性质.【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行同旁内角互补,可求得∠DEA的度数,再由三角形外角和为360°求得∠BED度数.【解答】解:∵BE⊥AE∴∠AEB=90°∵AE平分∠BAC∴∠CAE=∠BAE=42°又∵ED∥AC∴∠AED=180°﹣∠CAE=180°﹣42°=138°∴∠BED=360°﹣∠AEB﹣∠AED=132°17.如图,过C画一条直线将△ABC的面积二等分.(保留作图痕迹)【考点】作图—复杂作图.【分析】作AB边的垂直平分线交AB于D,作直线CD即可.【解答】解:如图,直线CD即为所求.18.如图所示,太阳光线AC和A´C´是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?请说明理由.【考点】平行投影;平行线的性质.【分析】根据已知同一时刻两个建筑物在太阳下的影子一样长,即可得出BC=B′C′,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.【解答】解:建筑物一样高.证明:∵AB⊥BC,A′B′⊥B′C′,∴∠ABC=∠A′B′C′=90°,∵AC∥A′C′,∴∠ACB=∠A′C′B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(ASA)∴AB=A′B′.即建筑物一样高.19.如图所示的四边形ABCD中,AB∥CD,AD∥BC,你能用全等三角形的知识证明出AB=CD 吗?【考点】全等三角形的判定与性质.【分析】连接AC,先根据四边形ABCD中,AB∥CD,AD∥BC,可求出四边形ABCD为平行四边形,然后证明△ABC≌△CDA,求出AB=CD即可.【解答】解:连接AC,∵在四边形ABCD中,AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴AD=CB,∠DAC=∠BCA在△ABC和△CDA中,,∴△ABC≌△CDA∴AB=CD.20.已知:如图,已知△ABC,(1)分别画出与△ABC关于y轴对称的图形△A1B1C1(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(2)根据图示以及直角坐标系的特点写出个顶点的坐标;(3)用△ABC所在的矩形的面积减去周围小三角形的面积即可求解.【解答】解:(1)所作图形如图所示;(2)A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);(3)S△ABC=3×4﹣×2×3﹣×4×1﹣×2×2=12﹣3﹣2﹣2=5.21.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.【考点】全等三角形的判定.【分析】要证AD平分∠BAC,只需证DF=DE.可通过证△BDF≌△CDE(AAS)来实现.根据已知条件,利用AAS可直接证明△BDF≌△CDE,从而可得出AD平分∠BAC.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴Rt△BDF≌Rt△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.22.如图,等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CE=CD,DM⊥BC,垂足为M.求证:M是BE的中点.【考点】等边三角形的性质.【分析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.【解答】证明:连接BD,∵等边三角形ABC中,D是AC的中点,∴∠DCB=∠ABC=60°,∠DBC=∠ABC=30°∵CE=CD,∴∠DEC=∠EDC=∠DCB=30°,∴∠DBC=∠DEC,又∵DM⊥BC,垂足为M,∴M是BE的中点.23.如图1,把一X长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.(1)求证:FB=FD;(2)如图2,连接AE,求证:AE∥BD;(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH垂直平分BD.【考点】翻折变换(折叠问题);全等三角形的判定与性质.【分析】(1)由折叠的性质可得到△ABD≌△EDB,那么∠ADB=∠EBD,所以BF=DF;(2)根据长方形的性质可得和三角形内角和定理可得∠AEF=∠FBD,再根据平行线的判定即可求解;(3)先SSS证明△ABD≌△EDB,再根据全等三角形的性质和垂直平分线的性质即可求解.【解答】证明(1)∵△BCD≌△BED,∴∠DBC=∠EBD,又∵四边形ABCD是长方形,∴AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴BF=DF.(2)∵四边形ABCD是长方形,∴AD=BC=BE,又∵FB=FD,∴FA=FE,∴∠FAE=∠FEA,又∵∠AFE=∠BFD,且2∠AEF+∠AFE=2∠FBD+∠BFD=180°,∴∠AEF=∠FBD,∴AE∥BD;(3)∵四边形ABCD是长方形,∴AD=BC=BE,AB=CD=DE,BD=DB,在△ABD与△EDB中,∴△ABD≌△EDB(SSS),∴∠ABD=∠EDB,∴GB=GD,又∵FB=FD,∴GF是BD的垂直平分线,即GH垂直平分BD.。
吉林省白城市大安五中2016-2017学年八年级(上)期中数学试卷(解析版)
2016-2017学年吉林省白城市大安五中八年级(上)期中数学试卷一、单项选择题(每小题2分,共12分)1.下列每组数分别表示三根小木棒的长度(单位:cm),将它们首尾相接后能摆成三角形的是()A.1,2,3 B.5,7,12 C.6,6,13 D.6,8,102.如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是()A.15cm B.16cm C.17cm D.16cm或17cm3.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为()A.(3,2) B.(﹣2,﹣3)C.(﹣2,3)D.(2,﹣3)4.一个多边形的每一个内角都等于140°,则它的边数是()A.7 B.8 C.9 D.105.如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,AE是哪个三角形的角平分线()A.△ABE B.△ADF C.△ABC D.△ABC,△ADF6.如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是()A.d>h B.d<h C.d=h D.无法确定二、填空题(每题3分,共18分)7.以4cm,6cm为两边,第三边长为整数的三角形共有个.8.如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4cm,则△ABD的周长是.9.如图所示,已知∠1=∠2,AB=AD,要使△ABC≌△ADE,还需条件.10.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是.11.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.12.如图所示,∠A+∠B+∠C+∠D+∠E=.13.△ABC是等边三角形,M是AC上一点,N是BC上的一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON=.14.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.三、解答题(每小题5分,共20分)15.一个正多边形的一个内角的度数比相邻外角的6倍还多12°,求这个正多边形的内角和.16.如图,AE是△ABC的角平分线,已知∠B=45°,∠C=60°,求下列角的大小:(1)∠BAE;(2)∠AEB.17.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.18.如图,已知点A和点B关于某条直线成轴对称,请你用尺规作图的方法作出其对称轴.(保留作图痕迹,不写画法)四、解答题(每小题7分,共28分)19.已知△ABF≌△DCE,E与F是对应顶点.证明AF∥DE.20.如图,AD∥BC,BD平分∠ABC.求证:AB=AD.21.如图,在网格中有两个全等的图形(阴影部分),用这两个图形拼成轴对称图形,试分别在图(1)、(2)中画出两种不同的拼法.22.如图,在△ABC中,AB=AC,过BC上一点D作BC的垂线,交BA的延长线于点P.交AC于点Q.试判断△APQ的形状,并证明你的结论.23.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.24.如图,已知△ABC是等边三角形,D是边AC的中点,连接BD,EC⊥BC于点C,CE=BD.求证:△ADE是等边三角形.五、解答题(每小题10分,共20分)25.“等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合”的定理是将“等腰三角形”作为一个不变的已知条件参与组合得到的三个真命题,在学习了等腰三角形的判定后,可将该定理作如下的引伸.如图,已知△ABC,①AB=AC ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)已知:;求证:;证明:.26.(1)如图△ABC中,BD、CD分别平分∠ABC,∠ACB,过点D作EF∥BC交AB、AC于点E、F,试说明BE+CF=EF的理由.(2)如图,△ABC中,BD、CD分别平分∠ABC,∠ACG,过D作EF∥BC交AB、AC于点E、F,则BE、CF、EF有怎样的数量关系?并说明你的理由.2016-2017学年吉林省白城市大安五中八年级(上)期中数学试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.下列每组数分别表示三根小木棒的长度(单位:cm),将它们首尾相接后能摆成三角形的是()A.1,2,3 B.5,7,12 C.6,6,13 D.6,8,10【考点】三角形三边关系.【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:A、1+2=3,排除;B、5+7=12,排除;C、6+6<13,排除;D、6+8>10,8﹣6<10,符合.故选D.2.如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是()A.15cm B.16cm C.17cm D.16cm或17cm【考点】等腰三角形的性质.【分析】已知等腰三角形的两边长,但没指出哪个是腰哪个是底,故应该分两种情况进行分析.【解答】解:(1)当腰长是5cm时,周长=5+5+6=16cm;(2)当腰长是6cm时,周长=6+6+5=17cm.故选D.3.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为()A.(3,2) B.(﹣2,﹣3)C.(﹣2,3)D.(2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点(2,3)关于x轴对称的点的坐标.【解答】解:∵点(2,3)关于x轴对称;∴对称的点的坐标是(2,﹣3).故选D.4.一个多边形的每一个内角都等于140°,则它的边数是()A.7 B.8 C.9 D.10【考点】多边形内角与外角.【分析】首先求得每个外角的度数,然后利用360度除以外角的底数即可求解.【解答】解:外角的度数是:180﹣140=40°,则多边形的边数为:360÷40=9.故选:C.5.如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,AE是哪个三角形的角平分线()A.△ABE B.△ADF C.△ABC D.△ABC,△ADF【考点】三角形的角平分线、中线和高.【分析】根据三角形的角平分线的定义得出.【解答】解:∵∠2=∠3,∴AE是△ADF的角平分线;∵∠1=∠2=∠3=∠4,∴∠1+∠2=∠3+∠4,即∠BAE=∠CAE,∴AE是△ABC的角平分线.故选D.6.如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是()A.d>h B.d<h C.d=h D.无法确定【考点】等边三角形的性质.【分析】如图,连接BP,过点P做PD⊥BC,PE⊥AB,分别交于BC,AB于点D,E,则△ABC分成两个三角形:△BPC和△BPA,根据两三角形面积之和等于等边三角形的面积可推得:d=h.【解答】解:如图,连接BP,过点P做PD⊥BC,PE⊥AB,分别交BC,AB于点D,E,=S△BPC+S△BPA=BC•PD+AB•PE=BC•PD+BC•PE=BC(PD+PE)=d•BC=∴S△ABCh•BC∴d=h.故选:C.二、填空题(每题3分,共18分)7.以4cm,6cm为两边,第三边长为整数的三角形共有7个.【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,求得第三边的取值范围.【解答】解:根据三角形的三边关系,得第三边的取值范围是大于2而小于10.又第三边是整数,故第三边是3,4,5,6,7,8,9共7个.8.如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4cm,则△ABD的周长是22cm.【考点】翻折变换(折叠问题).【分析】首先根据折叠方法可得AE=CE,AD=CD,再根据AE的长可以计算出AB+CB,进而可得△ABD的周长.【解答】解:根据折叠方法可得AE=CE,AD=CD,∵AE=4cm,∴CE=4cm,∵△ABC的周长为30cm,∴AB+CB=30﹣8=22(cm),△ABD的周长是:AB+BD+AD=AB+BC=22cm,故答案为:22cm.9.如图所示,已知∠1=∠2,AB=AD,要使△ABC≌△ADE,还需条件∠B=∠D 或∠C=∠E或AC=AE.【考点】全等三角形的判定.【分析】要使要使△ABC≌△ADE,已知AB=AD,∠1=∠2得出∠BAC=∠DAE,若添加∠B=∠D或∠C=∠E可以利用ASA判定其全等,添加AC=AE可以利用SAS判定其全等.【解答】解:∵AB=AD,∠1=∠2,∴∠BAC=∠DAE,∴若添加∠B=∠D或∠C=∠E可以利用ASA判定△ABC≌△ADE,若添加AC=AE可以利用SAS判定△ABC≌△ADE,故答案为:∠B=∠D或∠C=∠E或AC=AE.10.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是90°或36°.【考点】等腰三角形的性质.【分析】根据已知条件,根据比先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.【解答】解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故答案为:36°或90°.11.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.12.如图所示,∠A+∠B+∠C+∠D+∠E=180°.【考点】多边形内角与外角;三角形内角和定理;三角形的外角性质.【分析】根据三角形的性质,可得答案.【解答】解:连接BC,∠A+∠B+∠C+∠D+∠E=∠A+∠ABC+∠ACB=180°,故答案为:180°.13.△ABC是等边三角形,M是AC上一点,N是BC上的一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON=110°.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形的性质可得∠A=∠B=60°,又因为AM=BN,AB=AB,所以△AMB≌△BNA,从而得到∠NAB=∠MBA=60°﹣∠MBC=35°,则∠MON=∠AOB=180°﹣2×35°=110°.【解答】解:∵△ABC是等边三角形∴∠A=∠B=60°∵AM=BN,AB=AB∴△AMB≌△BNA∴∠NAB=∠MBA=60°﹣∠MBC=35°∴∠AOB=180°﹣2×35°=110°∵∠MON=∠AOB∴∠MON=110°故答案为:110°.14.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为63°或27°.【考点】等腰三角形的性质.【分析】分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它的底角的度数.【解答】解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.三、解答题(每小题5分,共20分)15.一个正多边形的一个内角的度数比相邻外角的6倍还多12°,求这个正多边形的内角和.【考点】多边形内角与外角.【分析】设这个正多边形的一个外角的度数为x,利用一个内角与相邻外角互补得到180°﹣x=6x+12°,解得x=24°,再根据外角和定理计算出正多边形的边数,然后根据多边形内角和定理计算即可.【解答】解:设这个正多边形的一个外角的度数为x,根据题意得180°﹣x=6x+12°,解得x=24°,所以这个正多边形边数==15,所以这个正多边形的内角和=(15﹣2)×180°=2340°.16.如图,AE是△ABC的角平分线,已知∠B=45°,∠C=60°,求下列角的大小:(1)∠BAE;(2)∠AEB.【考点】三角形的外角性质;三角形内角和定理.【分析】(1)首先根据三角形的内角和定理求出∠BAC的度数,再根据角平分线的定义求出∠BAE的度数.(2)在(1)的基础上根据三角形的内角和定理求∠AEB的度数.【解答】解:(1)∵∠B=45°,∠C=60°∴∠BAC=180°﹣∠B﹣∠C=180°﹣45°﹣60°=75°.∵AE是∠BAC的角平分线,∴∠BAE=∠BAC=×75°=37.5°;(2)∠AEB=180°﹣∠BAE﹣∠B=180°﹣37.5°﹣45°=97.5°.17.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.【考点】线段垂直平分线的性质.【分析】先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.【解答】解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).18.如图,已知点A和点B关于某条直线成轴对称,请你用尺规作图的方法作出其对称轴.(保留作图痕迹,不写画法)【考点】作图-轴对称变换.【分析】根据垂直平分线的性质,找到中垂线上的两点连接即可.【解答】解:所作图形如下所示:四、解答题(每小题7分,共28分)19.已知△ABF≌△DCE,E与F是对应顶点.证明AF∥DE.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠B=∠C,∠BAF=∠CDE,根据三角形外角性质求出∠AFE=∠DEF,根据平行线的判定得出即可.【解答】证明:∵△ABF≌△DCE,∴∠B=∠C,∠BAF=∠CDE,∴∠B+∠BAF=∠C+∠CDE,∴∠AFE=∠DEF,∴AF∥DE.20.如图,AD∥BC,BD平分∠ABC.求证:AB=AD.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据AD∥BC,可求证∠ADB=∠DBC,利用BD平分∠ABC和等量代换可求证∠ABD=∠ADB,然后即可得出结论.【解答】证明:∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.21.如图,在网格中有两个全等的图形(阴影部分),用这两个图形拼成轴对称图形,试分别在图(1)、(2)中画出两种不同的拼法.【考点】利用轴对称设计图案.【分析】本题为开放性问题,答案不唯一.只要是根据轴对称图形的性质画出了轴对称图形即可.【解答】解:不同的画法例举如下:22.如图,在△ABC中,AB=AC,过BC上一点D作BC的垂线,交BA的延长线于点P.交AC于点Q.试判断△APQ的形状,并证明你的结论.【考点】等腰三角形的判定与性质.【分析】根据等腰三角形的性质可得∠B=∠C,然后根据三角形的外角的性质可以证明∠P=∠DQC=∠AQP,则以及等角对等边即可证得.【解答】解:△APQ是等腰三角形.证明:∵∠QDB=∠DQC+∠C,∠PDC=∠B+∠P,又∵AB=AC,∴∠B=∠C,∴∠P=∠DQC=∠AQP,∴AP=AQ,∴△APQ是等腰三角形.23.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】根据在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证△AED≌△ACD,然后利用等量代换即可求的结论.【解答】证明:∵AD平分∠EDC,∴∠ADE=∠ADC,在△AED和△ACD中,∵∴△AED≌△ACD(SAS),∴∠C=∠E,又∵∠E=∠B.∴∠C=∠B,∴AB=AC.24.如图,已知△ABC是等边三角形,D是边AC的中点,连接BD,EC⊥BC于点C,CE=BD.求证:△ADE是等边三角形.【考点】等边三角形的判定与性质.【分析】利用△ABC是等边三角形,D为边AC的中点,求得∠ADB=90°,再用(HL)证明△CBD≌△ACE,推出AE=CD=AD,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD,即可得出答案.【解答】证明:∵△ABC是等边三角形,D为边AC的中点,∴BD⊥AC,即∠ADB=90°,∵EC⊥BC,∴∠BEC=90°,∴∠DBC+∠DCB=90°,∠ECD+∠BCD=90°,∴∠ACE=∠DBC,∵在△CBD和△ACE中∴△CBD≌Rt△ACE(SAS),∴CD=AE,∠AEC=∠BDC=90°,∵D为边AC的中点,∠AEC=90°,∴AD=DE,∴AD=AE=DE,即△ADE是等边三角形,五、解答题(每小题10分,共20分)25.“等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合”的定理是将“等腰三角形”作为一个不变的已知条件参与组合得到的三个真命题,在学习了等腰三角形的判定后,可将该定理作如下的引伸.如图,已知△ABC,①AB=AC ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)已知:②∠1=∠2,④BD=DC,;求证:①AC=AB;证明:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中∴△ABD≌△ECD(SAS)…∴AB=EC,∠1=∠E∵∠1=∠2,∴∠E=∠2∴CE=AC=AB.【考点】等腰三角形的性质;全等三角形的判定与性质.【分析】(1)选择②∠1=∠2,④BD=DC,证明①AC=AB.延长AD至E,使DE=AD,连接CE.通过证明△ABD≌△ECD,得出∠E=∠2,从而得证;(2)选择①AB=AC ②∠1=∠2,证明③AD⊥BC.根据等腰三角形的三线合一定理即可得证.【解答】证明:(1)延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中∴△ABD≌△ECD(SAS)…∴AB=EC,∠1=∠E∵∠1=∠2,∴∠E=∠2∴CE=AC=AB…(2)∵AB=AC,∠1=∠2,∴AD⊥BC.…(注:此题采用本证法的得,否则满分为4分)26.(1)如图△ABC中,BD、CD分别平分∠ABC,∠ACB,过点D作EF∥BC交AB、AC于点E、F,试说明BE+CF=EF的理由.(2)如图,△ABC中,BD、CD分别平分∠ABC,∠ACG,过D作EF∥BC交AB、AC于点E、F,则BE、CF、EF有怎样的数量关系?并说明你的理由.【考点】等腰三角形的判定与性质.【分析】(1)根据BD平分∠ABC,可得∠ABD=∠CDB,再利用EF∥BC,可证BE=ED 和DF=CF,然后即可证明BE+CF=EF.(2)由(1)知BE=ED,同理可得CF=DF,然后利用等量代换即可证明BE、CF、EF有怎样的数量关系.【解答】解:(1)∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴BE=ED,同理DF=CF,∴BE+CF=EF;(2)BE﹣CF=EF,由(1)知BE=ED,∵EF∥BC,∴∠EDC=∠DCG=∠ACD,∴CF=DF,又∵ED﹣DF=EF,∴BE﹣CF=EF.2017年2月6日。
2017-2018年安徽省蚌埠实验中学、高新实验学校等八年级(上)数学期中试卷及参考答案
2017-2018学年安徽省蚌埠实验中学、高新实验学校、蚌埠九中等八年级(上)期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分)1.(3分)在平面直角坐标系中,点A(2,﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列函数(1)y=πx(2)y=﹣2x+1(3)y=(4)y=2﹣1﹣3x(5)y=x2﹣1中,是一次函数的有()A.1个 B.2个 C.3个 D.4个3.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°4.(3分)如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0) D.(0,1)5.(3分)在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个 B.3个 C.4个 D.5个6.(3分)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A. B.C. D.7.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.图象与直线y=﹣2x+3平行D.y随x的增大而增大8.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.89.(3分)已知一次函数y=ax+4与y=bx﹣2的图象在x轴上相交于同一点,则的值是()A.4 B.﹣2 C.D.﹣10.(3分)某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟B.48分钟C.46分钟D.33分钟二.填空题(本大题共8小题,每小题3分,共24分)11.(3分)函数的自变量x的取值范围是.12.(3分)点P在第二象限内,并且到x轴的距离为2,到y轴的距离为3,则点P的坐标为.13.(3分)在△ABC中,∠A=80°,∠B=∠C,求∠B=.14.(3分)点P(﹣5,1)沿x轴正方向平移2个单位,再沿y轴负方向平移4个单位,所得到的点的坐标为.15.(3分)已知y﹣2与x成正比,且当x=1时,y=﹣6,则y与x的关系式是.16.(3分)直线y=kx+b与y=2x+1平行,且在y轴上的截距是2,则该直线是.17.(3分)点(,y1),(2,y2)是一次函数y=x﹣3图象上的两点,则y1 y2.(填“>”、“=”或“<”).18.(3分)已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=.三、解答题(本大题共6小题,第19题8分,20题10分,21题10分,22题12分,23题12分,24题14分,共66分)19.(8分)已知函数y=(m+1)x2﹣|m|+n+4.(1)当m,n为何值时,此函数是一次函数?(2)当m,n为何值时,此函数是正比例函数?20.(10分)如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)21.(10分)已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.22.(12分)已知函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x﹣3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.23.(12分)某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:设从甲养殖场调运鸡蛋x斤,总运费为W元(1)试写出W与x的函数关系式.(2)怎样安排调运方案才能使每天的总运费最省?24.(14分)如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.2017-2018学年安徽省蚌埠实验中学、高新实验学校、蚌埠九中等八年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分)1.(3分)在平面直角坐标系中,点A(2,﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵2>0,﹣1<0,∴点M(2,﹣1)在第四象限.故选:D.2.(3分)下列函数(1)y=πx(2)y=﹣2x+1(3)y=(4)y=2﹣1﹣3x(5)y=x2﹣1中,是一次函数的有()A.1个 B.2个 C.3个 D.4个【解答】解:(1)y=πx是正比例函数,是特殊的一次函数;(2)y=﹣2x+1是一次函数;(3)y=是分比例函数;(4)y=2﹣1﹣3x是一次函数,(5)y=x2﹣1是二次函数,故选:C.3.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°【解答】解:如图,∵∠2=50°,并且是直尺,∴∠4=∠2=50°(两直线平行,同位角相等),∵∠1=30°,∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:D.4.(3分)如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0) D.(0,1)【解答】解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.5.(3分)在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个 B.3个 C.4个 D.5个【解答】解:①、∵∠A+∠B=∠C=90°,∴△ABC是直角三角形,故小题正确;②、∵∠A:∠B:∠C=1:2:3,∴∠A=30°,∠B=60°,∠C=90°,△ABC是直角三角形,故本小题正确;③、设∠A=x,∠B=2x,∠C=3x,则x+2x+3x=180°,解得x=30°,故3x=90°,△ABC 是直角三角形,故本小题正确;④∵设∠C=x,则∠A=∠B=2x,∴2x+2x+x=180°,解得x=36°,∴2x=72°,故本小题错误;⑤∠A=2∠B=3∠C,∴∠A+∠B+∠C=∠A+∠A+A=180°,∴∠A=°,故本小题错误.综上所述,是直角三角形的是①②③共3个.故选:B.6.(3分)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A. B.C. D.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选:D.7.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过点(﹣2,1)B.图象经过第一、二、三象限C.图象与直线y=﹣2x+3平行D.y随x的增大而增大【解答】解:A、当x=﹣2,y=﹣2x+1=﹣2×(﹣2)+1=5,则点(﹣2,1)不在函数y=﹣2x+1图象上,故本选项错误;B、由于k=﹣2<0,则函数y=﹣2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;C、由于直线y=﹣2x+1与直线y=﹣2x+3的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;D、由于k=﹣2<0,则y随x增大而减小,故本选项错误;故选:C.8.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.8【解答】解:∵|a﹣4|+=0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选:A.9.(3分)已知一次函数y=ax+4与y=bx﹣2的图象在x轴上相交于同一点,则的值是()A.4 B.﹣2 C.D.﹣【解答】解:在y=ax+4中,令y=0,得:x=﹣;在y=bx﹣2中,令y=0,得:x=;由于两个一次函数交于x轴的同一点,因此﹣=,即:=﹣.故选:D.10.(3分)某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟B.48分钟C.46分钟D.33分钟【解答】解:由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟.故选:A.二.填空题(本大题共8小题,每小题3分,共24分)11.(3分)函数的自变量x的取值范围是x≥﹣2且x≠1.【解答】解:根据题意得,2x+4≥0且x﹣1≠0,解得x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.12.(3分)点P在第二象限内,并且到x轴的距离为2,到y轴的距离为3,则点P的坐标为(﹣3,2).【解答】解:∵点P在第二象限内,∴点的横坐标小于0,纵坐标大于0,∵点到x轴的距离为2,到y轴的距离为3,∴点的横坐标是﹣3,纵坐标是2.则点P的坐标为(﹣3,2).故答案填(﹣3,2).13.(3分)在△ABC中,∠A=80°,∠B=∠C,求∠B=50°.【解答】解:∵∠A+∠B+∠C=180°,∠A=80°,∠B=∠C,∴80°+2∠B=180°,∴∠B=50°,故答案为:50°.14.(3分)点P(﹣5,1)沿x轴正方向平移2个单位,再沿y轴负方向平移4个单位,所得到的点的坐标为(﹣3,﹣3).【解答】解:∵将点P(﹣5,1)沿x轴的正方向平移2个单位长度,∴平移后点P的横坐标为﹣5+2=﹣3,∵再沿y轴的负方向平移4个单位长度,∴平移后点P的纵坐标为1﹣4=﹣3.故答案为:(﹣3,﹣3).15.(3分)已知y﹣2与x成正比,且当x=1时,y=﹣6,则y与x的关系式是y=﹣8x+2.【解答】解:设y﹣2=kx根据题意得:﹣6﹣2=k则k=﹣8则函数的解析式是:y=﹣8x+2.故答案为y=﹣8x+216.(3分)直线y=kx+b与y=2x+1平行,且在y轴上的截距是2,则该直线是y=2x+2.【解答】解:∵直线y=kx+b与y=2x+1平行,∴k=2,∵在y轴上的截距是2,∴b=2,则该直线解析式为y=2x+2.17.(3分)点(,y1),(2,y2)是一次函数y=x﹣3图象上的两点,则y1<y2.(填“>”、“=”或“<”).【解答】解:∵一次函数y=x﹣3中,k=>0,∴一次函数y=x﹣3是增函数,∵<2,∴y1<y2.18.(3分)已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=﹣3或﹣2.【解答】解:∵一次函数y=(m+4)x+m+2的图象不过第二象限,∴,解得﹣4<m≤﹣2,而m是整数,则m=﹣3或﹣2.故填空答案:﹣3或﹣2.三、解答题(本大题共6小题,第19题8分,20题10分,21题10分,22题12分,23题12分,24题14分,共66分)19.(8分)已知函数y=(m+1)x2﹣|m|+n+4.(1)当m,n为何值时,此函数是一次函数?(2)当m,n为何值时,此函数是正比例函数?【解答】解:(1)根据一次函数的定义,得:2﹣|m|=1,解得:m=±1.又∵m+1≠0即m≠﹣1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2﹣|m|=1,n+4=0,解得:m=±1,n=﹣4,又∵m+1≠0即m≠﹣1,∴当m=1,n=﹣4时,这个函数是正比例函数.20.(10分)如图,已知四边形ABCD.(1)写出点A,B,C,D的坐标;(2)试求四边形ABCD的面积.(网格中每个小正方形的边长均为1)【解答】解:(1)A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2);(2)S=3×3+2××1×3+×2×4=16.四边形ABCD21.(10分)已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.【解答】解:∵在△ABC中,∠A:∠B:∠C=2:3:4,∠A+∠ACB+∠B=180°,∴∠A=×180°=40°,∠ACB=×180°=80°,∵CD是∠ACB平分线,∴∠ACD=∠ACB=40°,∴∠CDB=∠A+∠ACD=40°+40°=80°.22.(12分)已知函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x﹣3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【解答】解:(1)∵函数y=(2m+1)x+m﹣3的图象经过原点,∴当x=0时y=0,即m﹣3=0,解得m=3;(2)∵函数y=(2m+1)x+m﹣3的图象与直线y=3x﹣3平行,∴2m+1=3,解得m=1;(3)∵这个函数是一次函数,且y随着x的增大而减小,∴2m+1<0,解得m<﹣.23.(12分)某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:设从甲养殖场调运鸡蛋x斤,总运费为W元(1)试写出W与x的函数关系式.(2)怎样安排调运方案才能使每天的总运费最省?【解答】解:(1)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:解得:300≤x≤800.总运费W=200×0.012x+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800)(2)∵W随x的增大而增大,=2610元,∴当x=300时,W最小∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.24.(14分)如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.【解答】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,,代入表达式y=kx+b,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,=×3×|﹣3|=;∴S△ADC(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD的距离,即C纵坐标的绝对值=|﹣3|=3,则P到AD距离=3,∴P纵坐标的绝对值=3,点P不是点C,∴点P纵坐标是3,∵y=1.5x﹣6,y=3,∴1.5x﹣6=3x=6,所以P(6,3).。
每日一学:浙江省杭州市西湖区第十三中学2017-2018学年八年级上学期数学期中考试试卷 _压轴题解答
~~ 第3题 ~~
(2018西湖.八上期中) 已知下列四个命题:
①已知三条线段的长为 、 、 ,且
,则以这三条线段为三边可以组成三角形;②有两边和其中一边上的
高线对应相等的两个三角形全等;③顶角相等的两个等腰三角形全等;④有两边和其中一边上的中线对应相等的两个三角
形全等.其中真命题是( ).
A . ①②③ B . ①③ C . ②④ D . ④
浙江省杭州市西湖区第十三中学2017-2018学年八年级上学期数学期中考试试卷 _压轴题解答
~~ 第1题 ~~
答案: 解析:
~~ 第3题 ~~
答案:D
解析:
每日一学:浙江省杭州市西湖区第十三中学2017-2018学年八年级上学期数学 期中考试试卷 _压轴题解答
浙江省杭州市西湖区第十三中学2017-2018学年八年级上学期数学期中考试试卷 _压轴题
~~ 第1题 ~~ (2018西湖.八上期中) 如图
(1) 如图 中,
,请用直尺和圆规作一条直线,把
分割成两个等腰三角形(不写作法,但须保
留作图痕迹).
(2) 如图 中,
的三个内角分别为 , ,
,若
,
,
,在 上找一个
点 ,使
为等腰三角形,求出 的长(可用含 的代数式表示).
考点: 等腰三角形的判定与性质;作图—复杂作图;
答案
~~ 第2题 ~~
(2018西湖.八上期中) 如图,
,
,
, 、 、 在同一条直线上,若
,则
________,
________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 同是寒窗苦读,怎愿甘拜下风! 1 人教版八年级上册期中(11-13章)解答证明题专练 已知:如图,在△ABC中,AB=AC,∠BAC=120o,AC的垂直平分线EF交AC于点E,交BC于点F。 求证:BF=2CF。 22、(8分)已知:E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB ,垂足分别为C、D.求证:(1)∠ECD=∠EDC ;(2)OE是CD的垂直平分线 23、(10分)(1)如图(1)点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R。请观察AR与AQ,它们相等吗?并证明你的猜想。 (2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图 (2)中完成图形,并给予证明。
20.(6分)已知△ABC中,AD平分∠BAC,AE为BC边上的高,∠B=40,∠C=60,求∠DAE的度数 21. (6分)在ABC△中,ABCB,AB⊥CB,E为CB延长线上一点, 点F在AB 上,且AECF. (1)求证:RtRtABECBF△≌△; (2)判断直线CF和直线AE的位置关系,并说明理由。 所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。
同是寒窗苦读,怎愿甘拜下风! 2 22.(本题10分)问题情境:如图①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于 点D,可知:∠BAD=∠C(不需要证明);
(1)特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC, CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF; (1)归纳证明:如图③,点B、C在∠MAN的边AM、AN上, 点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、
△CAF的外角.已知AB=AC, ∠1=∠2=∠BAC. 求证:△ABE≌△CAF; (3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为 .(直接写出答案) 23.(11分)如图,在直角坐标系xOy中,直线AB交x轴于A(1,0),交y轴负半轴于 B(0,-5),C为x轴正半轴上一点,且OC=5OA. (1)求△ABC的面积. (2)延长BA到P(自己补全图形),使得PA=AB,求P点的坐标. (3)如图,D是第三象限内一动点,直线BE⊥CD于E, OF⊥OD交BE延长线于F.当D点运动时,OFOD的大小是否发 生变化?若改变,请说明理由;若不变,求出这个比值. 所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 同是寒窗苦读,怎愿甘拜下风! 3 24、(10分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。 求证:(1)AD=AG,(2)AD与AG的位置关系如何。 25.(8分)如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE,试说明:△ABC≌△ADE. 26.(10分)某产品的商标如图所示,O是线段AC、DB的交点,且AC=BD,AB=DC,小林认为图中的两个三角形全等,他的思考过程是: ∵ AC=DB,∠AOB=∠DOC,AB=AC, ∴ △ABO≌△DCO.
你认为小林的思考过程对吗? 如果正确,指出他用的是哪个判别三角形全等的方法;如果不正确,写出你的思考过程. 22.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D. (1)求证△ADC≌△CEB. (2)AD=5cm,DE=3cm,求BE的长度. 24.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF 的延长线上截取CG=AB,连结AD、AG. 猜想AD与AG有何关系?并证明你的结论
GHFED
CB
A所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。
同是寒窗苦读,怎愿甘拜下风! 4 25.两个等腰直角三角形的三角板如图①所示放置,图②是由它抽象出的几何图形,点B、C、E在同一条直线上,连接DC、EC. (1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)求证:DC⊥BE. 26.如图,△ABC是等边三角形,点M是BC上任意一点,点N是CA上任意一点, 且BM=CN,直线BN与AM相交于点Q,就下面给出的两种情况,猜测∠BQM等于多少度,并利用图②说明结论的正确性 23.(10分)在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30º,求∠ACF度数.
24.(10分)数学课上,李老师出示了如下框中的题目. 在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由.
E
A
BC
D 所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 同是寒窗苦读,怎愿甘拜下风! 5 EABC
D
EABC
D
小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论 当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”). (2)特例启发,解答题目 解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作//EFBC,交AC于点F. (请你完成以下解答过程) (3)拓展结论,设计新题 在等边三角形ABC中,点E在直线AB上,点D在直线BC
上,且EDEC.若ABC的边长为1,2AE,求CD的长(请你直接写出结果). 29、(本题10分) 如图7,在等边△ABC中,点D、E分别在边BC,AB上,且BD=AE,AD与CE交于点F. (1) 求证:AD=CE (2) 求∠DFC的度数.
25、如图,点E是AOB平分线上一点,OBEDOAEC,,垂足分别是DC,. 求证:(1)EDCECD;
F 所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 同是寒窗苦读,怎愿甘拜下风! 6 (2)ODOC (3)OE是线段CD的垂直平分线。 20、如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD, AD与BE相交于点F. (1)求证:ABE≌△CAD;(6分) (2)求∠BFD的度数.(4分) 22、如图甲,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE。(不需要证明) (1)如图乙,若点E、F不是正方形ABCD的边BC、CD的中
点,但满足CE=DF。则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)(3分) (2)如图丙,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,说明理由。
23.如图,已知△ABC和△DEC都是等边三角形,∠ACB=∠ C 图丙
G G A A A B B B C D D E F E E F G
图甲 图乙 C
D
F
H G F
AD
E所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 同是寒窗苦读,怎愿甘拜下风! 7 PED
CBA
DCE=60°,B、C、E在同一直线上,连结BD和AE. ⑴求证:AE=BD(3分) ⑵求∠AHB的度数;(3分) ⑶求证:DF=GE(4分) 25.点P是△ABC内一点,PG是BC的垂直平分线,∠PBC=21∠A,BP、CP的延长线交AC、 AB于D、E,求证:BE=CD 1、(本题8分)已知,如图,AD∥BC,∠A=90°,AD=BE ,∠EDC=∠ECD ,请你说明下列结论成立的理由:(1)△AED ≌△BCE,(2)AB=AD+BC. 25.(8分)如图,△ABC为任意三角形,以边AB、AC为边分别向外作等边三角形ABD和等边三角形ACE,连接CD、BE并且相交于点P. 求证:⑴CD=BE. ⑵∠BPC=120°
26(10分)在△ABC中,,AB=AC, 在AB边上取点D,在AC延长线上了取点E ,使CE=BD , 连接DE交BC于点F,求证DF=EF .(提示:过点D作DG∥AE交BC于G)
_ C_ E_ B
_ D_ A
A D E C B
图14
F