高等教育:线性代数期末考试卷 (1)
线性代数期末考试试卷+答案.

×××大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 分,共 分)若022150131=---x ,则=χ 。
.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题 分,共 分) 若行列式D 中每个元素都大于零,则0〉D 。
( ) 零向量一定可以表示成任意一组向量的线性组合。
( )向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
( )⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
三、单项选择题 每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题 分,共 分设A 为n 阶矩阵,且2=A ,则=T A A ( )。
① n 2② 12-n③ 12+n④n 维向量组 s ααα,,, 21( )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示 ④ s ααα,,, 21中不含零向量 下列命题中正确的是 。
① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关设A ,B 均为 阶方阵,下面结论正确的是 。
大一线性代数期末试卷试题附有答案.docx

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _⋯⋯⋯⋯⋯⋯诚信应考 , 考试作弊将带来严重后果!⋯线性代数期末考试试卷及答案⋯⋯⋯号⋯注意事: 1.考前将密封内填写清楚;位⋯ 2.所有答案直接答在卷上( 或答上 ) ;座⋯3.考形式:开()卷;⋯4.本卷共五大,分100 分,考 120分。
题号一二三四五总分⋯⋯得分⋯评卷人⋯⋯⋯⋯一、(每小 2 分,共 40 分)。
⋯业⋯专⋯1.矩A为2 2矩阵, B为23矩阵 ,C为32矩阵,下列矩运算无意的是⋯⋯【】⋯⋯)⋯封A B.ABCC. BCAD.CAB⋯. BAC2答⋯+ E =0 ,其中 E是 n 位矩,必有【】2. n 方 A 足 A院不⋯A.矩 A 不是矩B. A=-EC. A=ED. det(A)=1⋯学内⋯⋯封⋯3. A n 方,且行列式det(A)= 1 ,det(-2A)=【】密⋯(⋯A. -2-2 n-2n⋯ B. C. D. 1⋯⋯4. A 3 方,且行列式det(A)=0,在 A的行向量中【】⋯⋯ A. 必存在一个行向量零向量⋯⋯ B. 必存在两个行向量,其分量成比例⋯C. 存在一个行向量,它是其它两个行向量的性合号⋯密D. 任意一个行向量都是其它两个行向量的性合学⋯⋯5.向量a1, a2,a3性无关,下列向量中性无关的是【】⋯⋯A.a1a2 , a2a3 , a3a1 B.a1, a2 ,2a13a2⋯C. a2,2a3,2a2a3a1- a3, a2 , a1⋯ D.⋯⋯名⋯6. 向量 (I):a1 ,, a m (m3)性无关的充分必要条件是【】姓⋯⋯⋯⋯⋯⋯A.(I)中任意一个向量都不能由其余m-1 个向量线性表出B.(I)中存在一个向量, 它不能由其余m-1 个向量线性表出C.(I)中任意两个向量线性无关D. 存在不全为零的常数k1,, k m ,使 k1 a1k m a m 07.设a为m n矩阵,则n元齐次线性方程组Ax 0存在非零解的充分必要条件是【】A.A的行向量组线性相关B. A 的列向量组线性相关C. A的行向量组线性无关D. A 的列向量组线性无关a1 x1a2 x2a3 x30 8. 设a i、b i均为非零常数(i =1, 2, 3),且齐次线性方程组b2 x2b3 x30b1 x1的基础解系含 2 个解向量,则必有【】a1a20 B.a1a20a1a2a3 D.a1 a3A.b3b1b2C.b2b3b1 b2b2b19. 方程组2 x1x2x31有解的充分必要的条件是【】x12x2x313 x13x22x3a1A. a=-3B. a=-2C. a=3D. a=110.设η1,η2,η3 是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是【】A. 可由η1,η2,η3线性表示的向量组B.与η 1,η2,η3 等秩的向量组C. η1-η2,η2-η3,η3-η1D.η1,η1-η3,η1-η2-η311.已知非齐次线性方程组的系数行列式为0,则【】A.方程组有无穷多解B.方程组可能无解,也可能有无穷多解C.方程组有唯一解或无穷多解D.方程组无解12.n阶方阵 A 相似于对角矩阵的充分必要条件是 A 有n 个【】A. 互不相同的特征值B.互不相同的特征向量C. 线性无关的特征向量D.两两正交的特征向量13. 下列子集能作成向量空间n的子空间的是【】RA. {( a1, a2,, a n ) | a1a20}B.12n n i,) |a0}{( a ,a, aC. {( a1, a2,, a n ) | a i z, i 1,2,,n}D.i n1{( a1 ,a2 ,, a n ) |a i1}i 114. 若 2 阶方阵 A 相似于矩阵 B12 ,E 为 2 阶单位矩阵 , 则方阵 E – A 必相似于矩阵- 3【 】1 0 -10 0 - 1A.4B. - 4C.4D.11 - 2- 2 - 41 015. 若矩阵 A02a 正定 , 则实数 a 的取值范围是 【】0 a8A . a < 8B. a > 4C . a < -4D. -4 < a < 4二、填空题 (每小题 2 分,共 20 分)。
线性代数期末试题

第一章 行列式一、填空题:1、设A 为3阶方阵,|A | = 2,则 |23*1A A -⎪⎭⎫ ⎝⎛-|=_______, |*123⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-A A |=_______. 2、设A 为m 阶方阵,B 为n 阶方阵,且|A |=3,|B|=2,C=00A B⎛⎫⎪⎝⎭,则|C |=___________. 3、设四阶行列式3214214314324321,ij A 是其()j i ,元的代数余子式,则_______3331=+A A ,_______3432=+A A .4、线性方程组⎪⎩⎪⎨⎧=+-=+-=-+430302321321321ax x x x ax x x x ax 有非零解的充要条件是a 满足._____________二、选择题:1、设5阶方阵,()i j A a =的行列式展开式中应有一项为( )(A) 1123455344a a a a a (B) 1123344554a a a a a (C)1123355244a a a a a (D) 1123355144a a a a a2、设列向量组321,,ααα,则与三阶行列式|,,|321ααα等值的行列式是( ) (A )|,,|321311αααααα+++ (B )|3,,|31332ααααα++(C )|,,|123ααα (D )|,,|133221αααααα+++3、n 阶行列式D 不为零的充分必要条件是( )(A )D 中至少有n n -2个元素不为零 (B )D 中所以元素都不为零(C )D 的任意两列元素之间不成比例 (D )以D 为系数行列式的线性方程组有唯一解4、已知x 的一次多项式111111111111101-------=x D ,则式中一次项的系数为( )(A )4 (B )4- (C )1 (D )1-三、计算下列行列式:xxax xaa x x D n=、1 nn y y y d +++=111111111221、其中021≠n y y y .四、解下列线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+150651650651655454343232121x x x x x x x x x x x x x . 五、设a 、b 、c 、d 为互异实数,则0111144443333=d c b a dcbad c b a 的充要条件为0=+++d c b a .(一)填空题答案:1、16125,1;2、6)1(mn -;3、48,68-;4、01753=--a a ;(二)选择题答案:1、C ;2、C ;3、D ;4、B ;(三)解:.)))(1(()1()()1()1))(1((101100))1((111))1(()1(112)1(12/)1(1-++--+--+-=----+=---+=-+==n n n n n n nn x a n x a x a n x a xa x a n x a x ax a x x n x a xx ax x a a x x D,110111111111111011011111111111)2(111211212121---+=+=+++++=+++=n n n n n nnn y y d y y y d y y y y y y y y y d因为021≠n y y y ,令,21n n n y y y d c =则有n n n y c c 11+=-,1111y c +=,因此n n y y c 1111+++= ,从而.)111(211n nn y y y y y d +++= (四)解:由Cramer 法则知:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛66521213379353713322966515075432154321D D D D D D D D D D x x x x x . (五)证明:因,))()()()()()()()()((111111525352453554444443333322222M yM M y M y M y a b b c a c c d b d a d d y c y b y a y y d c b a y d c b a y d c b a yd c b a +-+-=----------=其中ij M 是),(j i 元的余子式,特别地,44443333451111d c b a dcbad c b a M =,比较上式中3y 的系数知,))()()()()()((45a b b c a c c d b d a d d c b a M ------+++=,又a 、b 、c 、d 为互异实数,从而.0045=+++⇔=d c b a M第二章 矩阵及其运算一、填空题:1、设)1,2,1(=α,)1,2,1(-=β,βαTA =,则________=nA ,________=n A .2、设⎪⎪⎪⎪⎪⎭⎫⎝⎛=0034001210001200A ,则__________1=-A ,___________)(*1=-A . 3、设⎪⎪⎪⎭⎫⎝⎛=101020101A ,则__________334=-A A .4、设方阵A 满足0323=-+E A A ,其中E 为单位矩阵,则________)(1=+-E A .二、选择题:1、设A 、B 、A +B 、11--+B A都是n 阶可逆阵,则111)(---+B A =( )。
(完整版)湖南大学线性代数期末试卷及答案,推荐文档

第一部分 选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式=m ,=n ,则行列式等于()a a a a 11122122aa a a 13112321aa a a a a 111213212223++ A. m+n B. -(m+n) C. n -mD. m -n2.设矩阵A =,则A -1等于()100020003⎛⎝ ⎫⎭⎪⎪⎪ A. B. 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪10001200013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ C. D. 13000100012⎛⎝⎫⎭⎪⎪⎪12000130001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A =,A *是A 的伴随矩阵,则A *中位于(1,2)的元素是()312101214---⎛⎝ ⎫⎭⎪⎪⎪ A. –6 B. 6 C. 2 D. –24.设A 是方阵,如有矩阵关系式AB =AC ,则必有( ) A. A =0 B. B C 时A =0≠ C. A 0时B =C D. |A |0时B =C ≠≠5.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ) A. 1 B. 2 C. 3 D. 46.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( )A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs +βs )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs (αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =07.设矩阵A 的秩为r ,则A 中( )A.所有r -1阶子式都不为0B.所有r -1阶子式全为0C.至少有一个r 阶子式不等于0D.所有r 阶子式都不为08.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( )A.η1+η2是Ax=0的一个解B.η1+η2是Ax=b 的一个解1212C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b 的一个解9.设n 阶方阵A 不可逆,则必有( )A.秩(A )<n B.秩(A )=n -1 C.A=0 D.方程组Ax=0只有零解10.设A 是一个n(≥3)阶方阵,下列陈述中正确的是( )A.如存在数λ和向量α使A α=λα,则α是A 的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE -A )α=0,则λ是A 的特征值C.A 的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A 的3个互不相同的特征值,α1,α2,α3依次是A 的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A 的特征方程的3重根,A 的属于λ0的线性无关的特征向量的个数为k ,则必有( ) A. k ≤3 B. k<3 C. k=3 D. k>312.设A 是正交矩阵,则下列结论错误的是( ) A.|A|2必为1 B.|A |必为1 C.A -1=A T D.A 的行(列)向量组是正交单位向量组13.设A 是实对称矩阵,C 是实可逆矩阵,B =C T AC .则( ) A.A 与B 相似 B. A 与B 不等价C. A 与B 有相同的特征值D. A 与B 合同14.下列矩阵中是正定矩阵的为( ) A. B.2334⎛⎝ ⎫⎭⎪3426⎛⎝ ⎫⎭⎪ C. D.100023035--⎛⎝ ⎫⎭⎪⎪⎪111120102⎛⎝ ⎫⎭⎪⎪⎪第二部分 非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
大学线性代数期末考试试卷+答案

大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。
① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。
① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。
线性代数期末试卷三套附答案解析

x1
x2 (1 k)x3 k.
k 取何值时,此方程组有唯一解、无解或有无限多解?并在有无限多解时求其通解.
四 证明题(本题 6 分) 设有向量组 α1, α2 , , αn 和 β1, β2 , , βn ,且 β1 α1 α2 , β2 α2 α3 , ,
βn1 αn1 αn , βn αn α1 .若向量组 α1, α2 , , αn 线性无关,问向量组 β1, β2 , , βn 是否一定线性
附录 A-----《线性代数》期末考试试题及解答(三套)
附录 A《线性代数》期末考试试题及解答(三套)
试卷一(2014 秋)
一 填空题 (本题共 10 小题,每小题 3 分,共 30 分)
1 2 3
1
1. 设 A 2 4 6 ,则 A 2( , , ).
3
6
9
3
2. 设 A 与 B 为同阶方阵,则 ( A B)2 A2 vvvvv
8.
2 k 1
k k2
1 1
,
(k 1)2 ,
无.
1 1 0 9. 6. 10. 1 2 1 .
0 1 1
二 单项选择题(每小题 4 分,共 20 分) CBADA
三 计算题 (共 44 分)
1.(本小题 9 分) 解 由 2AB 3B XX T 知 (2A 3E)B XX T .经计算得
.
a d f
6. 设 A 0 b e .若 A 的列向量组线性相关,则 a, b, c 应满足关系式
.
0 0 c
7. 设 A 为 m n 矩阵, R( A) r .已知 Ax (1, 0, 0)T 无解, Ax (0, 1, 0)T 有唯一解,则 m
线性代数期末考试试卷+答案.pdf
一、填空题
1. 5
2.
1
3. s s , n n
4. 相关
5. A 3E
二、判断正误
1. ×
2. √
3. √
4.
√
5. ×
三、单项选择题
1. ③
2. ③
3. ③ 4.
② 5.
①
四、计算题
1.
xa b
c
d
a xb c
d
a b xc d
a
b
c xd
1b
1 xb (x a b c d)
1b
1b
xabcd b
求 B。
解 . (A 2E)B A
( A 2E) 1
2 11
2 2 1,
11 1
B (A 2E) 1 A
5 22 4 32 22 3
1 10 0
3.
设B
01 00
1 0, 11
00 0 1
求 。 X (C B)' E,
2134
C
0 0
2 0
1 2
3 1
且矩阵
0002
满足关系式
4. 问 a 取 何 值 时 , 下 列 向 量 组 线 性 相 关 ?
线性代数期末考试试卷 +答案
大学生校园网— 线性代数 综合测试题
×××大学线性代数期末考试题
一、填空题(将正确答案填在题中横线上。每小题
2
分,共 10 分)
1 31
1. 若 0 5 x 0 ,则
12 2
__________。
x1 x 2 x3 0
2.若齐次线性方程组 x1 x2 x3 0 只有零解,则 应
2 11
线性代数期末考试试题及答案
第一学期一.填空题(每小题3分,共15分)1.()013121221110⎛⎫ ⎪-=- ⎪⎝⎭()15202. 若n 阶方阵A 的秩 r n <, 则A = 0 .3.设0=x A ,A 是5阶方阵,且=)(A R 3, 则基础解系中含 2 个解向量.4.若3阶矩阵A 的特征值为2,2,3,则=A 12 .5.设21,λλ是对称阵A 的两个不同的特征值,21,p p 是对应的特征向量,则=],[21p p0 . 二.选择题(每小题3分,共15分)1.若A 为3阶方阵,且2=A ,则2A -=( C ). A.-4 B.4 C.-16 D.162.设B A ,为n 阶方阵,满足等式O AB =,则必有( B ).A.O A =或O B = B.0=A 或0=B C. O B A =+ D.0=+B A3.设n 元线性方程组b x A=,且n b A R A R ==),()( ,则该方程组( B )A.有无穷多解 B.有唯一解 C.无解 D.不确定 4.设P 为正交矩阵,则P 的列向量( A ) A .组成单位正交向量组 B. 都是单位向量 C. 两两正交 D. 必含零向量 5.若二次型()f '=x x Ax 为正定, 则对应系数矩阵A 的特征值( A )A.都大于0; B.都大于等于0; C.可能正也可能负 D.都小于0三.(8分)计算行列式2111121111211112D =的值. 解.21234314211111111111121112110100555112111210010111211120001r r D r r r r r r r r -=+++-=- 四.(8分)设⎪⎪⎭⎫⎝⎛=100210321A ,求1-A .解:⎪⎪⎪⎭⎫ ⎝⎛=100 010 001 100210321) (E A ⎪⎪⎪⎭⎫ ⎝⎛---100 010 021100210101221r r1323100 121010 0122001 001r r r r -⎛⎫+ ⎪- ⎪-⎝⎭ ⎪⎪⎪⎭⎫ ⎝⎛--=-1002101211A (或用伴随矩阵)五.(8分)求齐次线性方程组⎪⎩⎪⎨⎧=+--=-+-=+--03203 0432143214321x x x x x x x x x x x x 的基础解系及通解.解:⎪⎪⎪⎭⎫ ⎝⎛------=321131111111A ⎪⎪⎪⎭⎫⎝⎛----→210042001111⎪⎪⎪⎭⎫⎝⎛---→000021001111 通解方程组⎩⎨⎧=-=--02043421x x x x x ,基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00111ξ ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=12012ξ ,通解为2211ξξ k k +,(21,k k 为任意常数)六.(8分)已知向量⎪⎪⎪⎭⎫ ⎝⎛=32111α ,⎪⎪⎪⎭⎫ ⎝⎛-=11112α ,⎪⎪⎪⎭⎫⎝⎛=53313α ,求向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示.解:()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==513312311111,,321ααα A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→220110220111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→000000110111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→000000110201 极大无关组21,αα,且2132ααα -=.七.(10分)讨论λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=++2321321321)1( )1(0)1( λλλλλx x x x x x x x x(1) 有唯一解; (2) 无解; (3) 有无穷多解.解:法1 )3(1111111112+-=+++=λλλλλA(1) 当0≠λ且3-≠λ时,有0≠A ,方程组有惟一解;(2)当3-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=93 0 112121211A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→600033300211,3)(2)(=<=A R A R ,所以无解;(3)当0=λ时,⎥⎥⎦⎤⎢⎢⎣⎡→000000000111A , 1)()(==A R A R ,方程组有无穷多解.法2⎪⎪⎪⎭⎫ ⎝⎛--+→⎪⎪⎪⎭⎫ ⎝⎛+++=220001111111110111λλλλλλλλλλλλA ⎪⎪⎪⎭⎫⎝⎛+---+→2)2(000111λλλλλλλλ⎪⎪⎪⎭⎫ ⎝⎛++--+→)1()3(0000111λλλλλλλλ 八.(8分)用配方法将二次型31232221321422),,(x x x x x x x x f +--=化为标准形,并求可逆的线性变换.(或上届题?)解:232223312132162)44(),,(x x x x x x x x x f --++=232223162)2(x x x x --+=,令⎪⎩⎪⎨⎧==+=33223112x y x y x x y ,即⎪⎩⎪⎨⎧==-=3322311 2y x y x y y x ,所以⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛321321100010201y y y x x x , 变换矩阵,100010201⎪⎪⎪⎭⎫ ⎝⎛-=C .01≠=C 标准形23222162y y y f --= .九.(10分)求矩阵⎪⎪⎪⎭⎫⎝⎛=400032020A 的特征值与最大特征值所对应的特征向量.解:)1()4(2+--=-λλλE A ,特征值.1,4321-===λλλ当421==λλ时,解0)4(=-x E A 得⎪⎪⎪⎭⎫ ⎝⎛=0211ξ ,⎪⎪⎪⎭⎫ ⎝⎛=1002ξ ,A 的对应于421==λλ的全体特征向量为2221ξξη k k +=, 0(2221≠+k k ).十.(每小题5分,共10分)1. 设向量组321,,ααα线性无关,讨论向量组 112123,,αααααα+++的线性相关性. 解:令112123123()()0,k k k αααααα+++++= 即 123123233()()0k k k k k k ααα+++++=因为321,,ααα 线性无关,所以有123223 000k k k k k k ++=⎧⎪+=⎨⎪=⎩,由于方程组只有零解,故112123,,αααααα+++线性无关。
西南交通大学2022-2023(1) 线性代数A 期末试题
西南交通大学2022-2023学年第(1)学期考试试卷课程代码 MATH000212 课程名称 线性代数A (A 卷) 考试时间 120分钟阅卷教师签字:一、选择题(每小题4分,共20分)1、设A ,B 均为n 阶可逆方阵,则下列等式成立的是( ) (A )|()|||||AB A B 111;(B )||||AB AB ; (C )||||||A B A B A B 22; (D )||||A A 22.2、设x A x 9140321,*A 为方阵A 的伴随矩阵,且*A x 0只有零解,则( ). (A )x 4;(B )x6;(C )x4或x6;(D )x4且x6.3、下列命题中正确的是( ).(A )若向量组,,...,m ααα12(m 1)线性相关,则任一向量()i i m α1可由其余向量线性表出.(B )若有不全为的数,,...,mλλλ12(m 1),使m m m mo λαλαλαλβλβλβ11221122成立,则向量组,,...,m ααα12线性相关,向量组,,...,m βββ12亦线性相关.(C )若,,...,m ααα12(m 1)中任意两个向量线性无关,则,,...,m ααα12线性无关. (D )若向量组,,...,m ααα12(m 1)中任意一个向量都不能用其余向量线性表出,则向量组,,...,m ααα12线性无关.班 级 学 号 姓 名密封装订线 密封装订线 密封装订线4、设矩阵(,,,)A αααα1234,其中,,ααα123线性无关,αααα12340,向量b αααα1234,,c c 12表示任意常数,则非齐次线性方程组Ax b 的通解为( ).(A )c 111111111;(B )c c 1211111111;(C )c 211111111;(D )c 111111111.5、已知A 为三阶矩阵,三阶可逆矩阵P 按列分块为(,,)P p p p 123,且P AP1100010002,设(,,)Q p p p p 31122,则Q AQ1( ).(A )100010002;(B )200010001;(C )400010002;(D )400020002.二、填空题(每小题4分,共20分)6、已知四阶行列式D 的第三行元素分别为:,,,1024;第四行元素对应的代数余子式依次是,,,x 2104,则x .7、设A101010001,则()()A E A E 1239 .8、已知3R 的两组基分别为123(1,1,1),(1,0,-1)(1,0,1)T T T ααα===,和1(1,2,1)T β=,23(2,3,4)(3,4,3)T T ββ==,,则基123ααα,,到基123βββ,,的过渡矩阵P .9、设n (n 2)阶方阵A 的特征值分别为整数(),(),...,,,n n 12210,且方阵B 与方阵A 相似,E 为n 阶单位矩阵,则||B nE = .10、已知二次型(,,)()f x x x t x x x x x 222123123122为正定二次型,则参数t 的取值范围为 .三、计算题(5小题,共52分)11、(10分)求向量组,,αααα12341114113221353156,的秩和一个极大线性无关组,并把其余向量用极大线性无关组线性表出.12、(10分)设A 1100010000210042⎛⎫ ⎪⎪= ⎪⎪−−⎝⎭,计算:(1)||A ;(2)A 2;(3)2023A .13、(12分)问t 取何值时,线性方程组12312312322121,,tx x x x tx x x x x 无解,有唯一解或有无穷多解?并在有无穷多解时求出方程组的通解。
2020-2021学年第一学期线性代数期末考试卷(含答案)
《线性代数》期末考试卷(2020—2021学年第一学期)一、 单项选择题(每题3分,共18分)1.设A 、B 为n 阶方阵,当( )时,22()()A B A B A B +-=-不成立。
A . A E = B. ,AB 为任意矩阵C . AB BA =D .A B = 2.下列命题正确的是 ( )。
A .如果有全为零的数12,,,n k k k 使得11220n n k k k ααα+++=,则12,,,n ααα线性无关 B. 向量组12,,,n ααα,若其中有一个向量可由该向量组线性表示,则12,,,n ααα线性相关C .向量组12,,,n ααα的一个部分组线性相关,则原向量组线性相关D .向量组12,,,n ααα线性相关,则每一个向量都可由其余向量线性表示3.若方程13213602214x x xx -+-=---,则x =( )。
A. 2-或3B.3-或2C.2-或3-D.2或3 4.设A 是n 阶可逆矩阵,则()**A =( )。
A.n A EB. AC. nA A D. 2n AA -5.设A 为m n ⨯矩阵,则n 元齐次方程组0Ax =有非零解的充分必要条件是( )。
A. A 的行向量组线性相关 B. A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关6.下列( )是初等矩阵。
A.100002⎛⎫ ⎪⎝⎭B. 100010011⎛⎫ ⎪ ⎪ ⎪⎝⎭C. 011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭D. 010002100⎛⎫⎪- ⎪ ⎪⎝⎭二、 填空题(每题3分,共24分)1. 排列975824361的逆序数为__________。
2. 行列式222111ab c a b c =__________。
3. 设()33ijA a ⨯=,且2A =-,则22112112221323212122222323()()a A a A a A a A a A a A ++++++ 2312132223323()a A a A a A ++=__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题:
1、排列3427561的逆序数是 ;
2、已知某三阶行列式D的第二行的元素依此为1、2、3,其对应的余子式分别是3、2、1,则D ;
3、已知0441xx,则x ;
4、已知A是二阶方阵且1A,则A2 ;
5、已知521101A,则A的秩)(Ar ;
6、已知3121A,则*A ;
7、已知二阶1213A,则1A ;
8、已知1)(Ar且321,,是三元线性方程组bAX的三个线性无关的解,则该方程组的结构通解为 ;
9、已知向量组321,,是线性无关向量组,则向量组1,32121,的线性相关性为 ;
10、已知三阶矩阵A的特征值为1,0,1,则矩阵IA2的全部特征值是 ;
二、计算题
1、计算行列式6701243600504012
2、设111111111A,150421321B,求①BA23;②BAT。
三、
计算题
1、解矩阵方程BAX ,其中320100021A,121021B。
2、已知T1,0,11、T0,1,12、T0,1,03、T1,0,14、T1,1,15,①求
该向量组的秩;②求该向量组的一个极大线性无关组;③将其余向量用该极大无关组线性表示。
四、计算题
1、求方程组63112124531343123214321xxxxxxxxxxx的解。
2、已知233222213212222,,xxxxxxxxf,①求二次型f的矩阵A;②求A的特征值;③写出f的标
准型。