高二数学选修2-2导数及其应用测试题(含答案)
北京师范大学第一附属中学高中数学选修2-2第三章《导数应用》检测卷(含答案解析)

一、选择题1.已知定义在[1,)+∞上的函数()f x 满足()ln ()0f x x xf x '+<且(2021)0f =,其中()'f x 是函数()f x 的导函数,e 是自然对数的底数,则不等式()0f x >的解集为( )A .(1,2021)B .(2021,)+∞C .(1,)+∞D .[1,2021)2.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( )A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-3.等差数列{a n }中的a 2、a 4030是函数321()4613f x x x x =-+- 的两个极值点,则log 2(a 2016)=( ) A .2B .3C .4D .54.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .5.已知函数()f x '是函数()f x 的导函数,()11f e=,对任意实数都有()()0f x f x '->,设()()x f x F x e=则不等式()21F x e <的解集为( ) A .(),1-∞B .()1,+∞C .()1,eD .(),e +∞6.设12x <<,则ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小关系是( ) A .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭B .222ln ln ln x x x x x x⎛⎫<< ⎪⎝⎭C .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭D .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭7.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c 若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( ) A .6π B .4π C .3π D .2π 8.已知可导函数()()f x x R ∈满足()()f x f x '>,则当0a >时,()f a 和(0)a e f 的大小关系为( ) A .()(0)a f a e f > B .()(0)a f a e f <C .()(0)a f a e f =D .()(0)a f a e f ≤9.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤11.若121x x >>,则( ) A .1221x xx e x e > B .1221x xx e x e < C .2112ln ln x x x x >D .2112ln ln x x x x <12.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.若函数f (x )cosx a sinx +=在(0,2π)上单调递减,则实数a 的取值范围为___. 14.已知||()cos x f x e x =+,则不等式(21)(1)f x f x -≥-的解集为__________. 15.函数()()2ln 23f x x x =++在区间31,44⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为____________.16.若函数()sin 2xxf x e ex -=-+,则不等式()()2210f x f x -+>的解集为________.17.记函数(),,2ln ,0,xx s eH x x x s x⎧≥⎪⎪=⎨⎪<<⎪⎩若对任意的实数k ,总存在实数m ,使得()=H m k成立,则实数s 的取值集合______.18.若函数的()1,2ln ,x m x e f x x x x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,其中e 是自然对数的底数,则实数m 的最小值是______.19.已知a R ∈,设函数()2,1,1x x ax a x f x ae x x ⎧-+≥=⎨-<⎩(其中e 是自然对数的底数),若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为______. 20.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 三、解答题21.已知函数)(21ln 2f x x ax x =-+有两个极值点)(1212,x x x x <. (1)求a 的取值范围; (2)求证:21>x 且)(2132f x x <-. 22.已知函数()()ln 0af x x a a x=-+>. (1)若曲线()y f x =在点()()1,1f 处与x 轴相切,求a 的值; (2)求函数()f x 在区间()1,e 上的零点个数;(3)若1x ∀、()21,x e ∈,()()()12120x x f x f x ⎡⎤-->⎣⎦,试写出a 的取值范围.(只需写出结论)23.设函数()cos2sin f x x m x =+,()0,x π∈. (1)若函数()f x 在2x π=处的切线方程为1y =,求m 的值;(2)若()0,x π∀∈,()0f x >恒成立,求m 的取值范围. 24.已知函数()ln f x x ax =-,()2g x x =,a R ∈.(1)求函数()f x 的极值点;(2)若()()f x g x ≤恒成立,求a 的取值范围. 25.已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+.(1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 26.已知函数()xf x ax e =-(a R ∈,e 为自然对数的底数). (1)讨论()f x 的单调性;(2)当1x ≥-,()232f x a x ≤--恒成立,求整数a 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】令()ln ()g x xf x =,1≥x ,利用导数可知()g x 在[1,)+∞上为单调递减函数,将不等式()0f x >化为1x >且()(2021)g x g >,再利用()g x 的单调性可解得结果.【详解】令()ln ()g x xf x =,1≥x ,则1()ln ()()()()ln f x x xf x g x f x f x x x x'+''=+=, 因为1≥x ,()ln ()0f x x xf x '+<,所以()0g x '<,所以()g x 在[1,)+∞上为单调递减函数,当1x =时,由()ln ()0f x x xf x '+<可知(1)0f <,不满足()0f x >; 当1x >时,ln 0x >,所以()0f x >可化为()ln 0f x x >(2021)ln 2021f =,即()(2021)g x g >,因为()g x 在(1,)+∞上为单调递减函数,所以12021x <<, 所以不等式()0f x >的解集为(1,2021). 故选:A 【点睛】关键点点睛:根据已知不等式构造函数()ln ()g x xf x =,利用导数判断其单调性是本题解题关键.2.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围. 【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--, 所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点; 在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.3.A解析:A 【解析】2240302016220162()86084,log log 42f x x x a a a a =-+=∴+=⇒='== ,选A.点睛:在解决等差、等比数列的运算问题时,注意利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.4.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.5.B解析:B 【解析】 ∵()()xf x F x e=∴2()()()()()x x x xf x e f x e f x f x F x e e''--'== ∵对任意实数都有()()0f x f x -'> ∴()0F x '<,即()F x 在R 上为单调减函数 又∵()11f e= ∴21(1)F e =∴不等式()21F x e <等价于()(1)F x F < ∴不等式()21F x e <的解集为(1,)+∞ 故选B点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<,构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等.6.A解析:A 【解析】 试题分析:令,则,所以函数为增函数,所以,所以,即,所以;又因为,所以222ln ln ln ()x x x x x x<<,故应选.考点:1、导数在研究函数的单调性中的应用.7.C解析:C 【解析】 函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=- ,22222210cos 22a cb b ac ac B ac +-=--+≤⇒=≥()0,(0,].3B B ππ∈∴∈故最大值为:3π.故答案为C .8.A解析:A 【分析】根据条件构造函数()()x f x g x e=,求导可知()g x 单调递增,比较(),(0)g a g 的大小,可得()f a 和(0)a e f 的大小关系.【详解】解:令()()x f x g x e =,则'''2()()()()()x x x xf x e f x e f x f xg x e e--==,因为()()f x f x '>,所以'()0g x >,所以()g x 在(),-∞+∞上单调递增;因为0a >,所以()(0)g a g >,即0()(0)af a f e e>,即()(0)a f a e f >. 故选:A. 【点睛】本题考查构造函数法比较大小,考查利用导数求函数的单调性,属于基础题.9.C解析:C 【解析】构造函数1ln ,0,10y x x x y x+='=>+> ,故函数ln y x x =+在0,上单调递增,即由“0a b >>” 可得到“ln ln a a b b +>+”,反之,由“ln ln a a b b +>+”亦可得到“0a b >>” 选C10.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x =+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x =+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 11.A解析:A 【分析】根据条件构造函数,再利用导数研究单调性,进而判断大小. 【详解】①令()()1x e f x x x =>,则()()21'0x x e f x x-=>,∴()f x 在1,上单调递增,∴当121x x >>时,1212x x e e x x >,即1221x xx e x e >,故A 正确.B 错误. ②令()()ln 1x g x x x =>,则()21ln 'xg x x-=,令()0g x =,则x e =, 当1x e <<时,()'0g x >;当x e >时,()'0g x <,∴()g x 在()1,e 上单调递增, 在(),e +∞上单调递减,易知C ,D 不正确, 故选A . 【点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题.12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦. 故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.a≥﹣1【分析】将函数f (x )在(0)上单调递减转化在(0)上恒成立即在(0)上恒成立再求最大值即可【详解】因为函数f (x )在(0)上单调递减所以在(0)上恒成立即在(0)上恒成立因为所以所以所以故解析:a ≥﹣1.【分析】 将函数f (x )cosx a sinx +=在(0,2π)上单调递减,转化()21cos 0sin a xf x x --'=≤在(0,2π)上恒成立 即1cos a x ≥-在(0,2π)上恒成立 再求1cos x -最大值即可.【详解】因为函数f (x )cosx asinx +=在(0,2π)上单调递减,所以()21cos 0sin a xf x x--'=≤在(0,2π)上恒成立 , 即1cos a x ≥-在(0,2π)上恒成立 , 因为0,2x π⎛⎫∈ ⎪⎝⎭, 所以()cos 0,1x ∈, 所以1(,1]cos x-∈-∞-, 所以1a ≥-. 故答案为:1a ≥- 【点睛】本题主要考查了导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.14.【分析】首先根据题意得到为偶函数利用导数求出的单调区间再根据单调区间解不等式即可【详解】又因为所以为偶函数当时因为所以故在为增函数又因为为偶函数所以在为减函数因为所以解得或故答案为:【点睛】本题主要解析:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【分析】首先根据题意得到()f x 为偶函数,利用导数求出()f x 的单调区间,再根据单调区间解不等式即可. 【详解】又因为x ∈R ,()()()||||cos cos x x f x e x e x f x --=+-=+=,所以()f x 为偶函数.当0x >时,()cos x f x e x =+,()sin x f x e x '=-, 因为0x >,e 1x >,所以()sin 0x f x e x '=->, 故()f x 在()0,∞+为增函数.又因为()f x 为偶函数,所以()f x 在(),0-∞为减函数. 因为(21)(1)f x f x -≥-,所以211x x -≥-,解得23x ≥或0x ≤. 故答案为:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【点睛】本题主要考查利用导数研究函数的单调性,同时考查了函数的奇偶,属于中档题.15.【分析】利用导数求得函数的单调性进而求得极值和区间端点处的函数值值找出函数的最大值和最小值即可【详解】解:由题得的定义域为由得或因为所以时单调递增;时单调递减;所以为极小值点且又因为又所以所以所以故 解析:5ln 716+【分析】利用导数求得函数的单调性,进而求得极值和区间端点处的函数值值,找出函数的最大值和最小值即可. 【详解】解:由题得()f x 的定义域为3,2⎛⎫-+∞ ⎪⎝⎭, ()22(1)(21)22323x x f x x x x ++'=+=++ 由()0f x '=得,1x =-或12x =-,因为31,44x ⎡⎤∈-⎢⎥⎣⎦所以11,24⎛⎤- ⎥⎝⎦时,()0f x '>,()f x 单调递增;31,42x ⎡⎤∈--⎢⎥⎣⎦时,()0f x '<,()f x 单调递减;所以12x =-为极小值点,且11ln 224f ⎛⎫-=+ ⎪⎝⎭,又因为339ln 4216f ⎛⎫-=+ ⎪⎝⎭,171ln 4216f ⎛⎫=+ ⎪⎝⎭又13711ln ln 2044322f f ⎛⎫⎛⎫--=->->⎪ ⎪⎝⎭⎝⎭,所以max 171()ln 4216f x f ⎛⎫==+ ⎪⎝⎭所以()min 11ln 224f x f ⎛⎫=-=+ ⎪⎝⎭. 所以max min 7115()()ln ln 2ln 7216416f x f x +=+++=+. 故答案为:5ln 716+. 【点睛】本题主要考查用导数求函数的最值,属于中档题.16.【分析】根据奇偶性的定义可判断出为奇函数;利用导数可得到的单调性;将不等式转化为利用单调性可得自变量的大小关系解不等式可求得结果【详解】由题意得:为上的奇函数且不恒等于零在上单调递增等价于解得:故答解析:()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭【分析】根据奇偶性的定义可判断出()f x 为奇函数;利用导数可得到()f x 的单调性;将不等式转化为()()221f x f x ->-,利用单调性可得自变量的大小关系,解不等式可求得结果.【详解】由题意得:()()2sin2xx f x ee xf x --=--=- ()f x ∴为R 上的奇函数()2cos2x x f x e e x -'=++,2x x e e -+≥,2cos 22x ≤,()0f x '∴≥且不恒等于零 ()f x ∴在R 上单调递增()()2210f x f x -+>等价于()()()221f x f x f x ->-=-221x x ∴->-,解得:()1,1,2x ⎛⎫∈-∞-+∞ ⎪⎝⎭故答案为:()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭【点睛】本题考查利用函数的单调性和奇偶性解不等式的问题,关键是能够利用奇偶性的定义、导数的知识求得函数的单调性和奇偶性,从而将不等式转化为函数值的比较,利用单调性进一步得到自变量的大小关系.17.【分析】由题意得的值域为R 求出在单调递增其值域为然后求导求出函数的值域通过求解和的值域并分析是否满足题意可推出实数s 的取值集合【详解】因为对任意的实数总存在实数使得成立所以的值域为R 函数在单调递增其解析:【分析】由题意得()H x 的值域为R ,求出2x y e=在[,)s +∞单调递增,其值域为[,)2se +∞,然后求导,求出函数ln xy x=的值域,通过求解s e >和0s e <≤的值域,并分析是否满足题意,可推出实数s 的取值集合. 【详解】因为对任意的实数k ,总存在实数m ,使得()=H m k 成立, 所以()H x 的值域为R . 函数2x y e=在[,)s +∞单调递增,其值域为[,)2se +∞,函数ln x y x =,'21ln x y x -=, 当(0,)x e ∈时,'0y >,所以ln xy x=在(0,)e 单调递增; 当[,)x e ∈+∞时,'0y <,所以ln xy x=在(,)e +∞单调递减, ①当s e >时,函数ln x y x =在(0,)e 单调递增,(,)e s 单调递减,其值域为1(,]e-∞,又12s e e>,不符合题意; ②当0s e <≤时,函数ln xy x =在(0,)s 单调递增,其值域为ln (,]s s-∞,由题意得ln 2s se s≤,即22ln 0s e s -≤; 令22'222()2ln ,()2e s e u s s e s u s s s s-=-=-=,当s >'()0u s >,()u s 在)e 上单调递增;当0s <<'()0u s <,()u s 在上单调递减,所以当s =()u s 有最小值0u =,从而()0u s ≥恒成立,所以,()0u s =,所以s =故答案为:.【点睛】本题考查导数的综合应用,难点在于根据题意分析出()H x 的值域为R ,并由此求出2x y e=和ln x y x =的值域,进行分析,考查分类讨论的思想,属难题.18.【分析】利用导数可求得当时函数的值域是;当时函数的值域是从而可得进而可得结果【详解】当时此时函数在上递增值域是当时是减函数其值域是因为函数的值域是所以于是解得即实数的最小值是故答案为:【点睛】本题主解析:312e-【分析】利用导数可求得当x e ≥时,函数()f x 的值域是[)1,e -+∞;当x e <时,函数的值域是,2e m ⎛⎫-++∞ ⎪⎝⎭,从而可得,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞,进而可得结果. 【详解】当x e ≥时,'1(ln )10,x x x-=->此时函数()f x 在[),e +∞上递增,值域是[)1,e -+∞. 当x e <时,12x m -+是减函数,其值域是,2e m ⎛⎫-++∞ ⎪⎝⎭. 因为函数()1,2,x m x ef x x lnx x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,所以,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞. 于是1,2e m e -+≥-解得312e m ≥-,即实数m 的最小值是312e-. 故答案为:312e-. 【点睛】本题主要考查分段函数的值域问题,以及利用导数求函数的最值,考查对基础知识掌握的熟练程度以及灵活应用所学知识解答问题的能力,属于中档题.19.【分析】考虑和两种情况分别计算得到利用均值不等式得到;证明单调递增得到得到答案【详解】当时即对恒成立当时符合题意;当时参变分离得:因为当时等号成立故上式恒成立时;当时即对恒成立参变分离得:令故单调递解析:14a e≤≤【分析】考虑1x ≥和1x <两种情况,分别计算得到211211x a x x x ≤=-++--,利用均值不等式得到4a ≤;x x a e ≥,证明()xx p x e =单调递增,得到1a e ≥,得到答案. 【详解】当1x ≥时,()0f x ≥,即20x ax a -+≥对1x ≥恒成立, 当1x =时,符合题意;当1x >时,参变分离得:211211x a x x x ≤=-++--,因为11241x x -++≥-,当2x =时等号成立,故上式恒成立时4a ≤; 当1x <时,()0f x ≥,即0x ae x -≥对1x <恒成立, 参变分离得:x x a e ≥,令()x x p x e =,()10xxp x e-'=>,故()p x 单调递增, ∴()()11x x p x p e e=<= 要使0x ae x -≥对1x <恒成立,则1a e≥. 综上所述:a 的取值范围为14a e≤≤. 故答案为:14a e≤≤. 【点睛】本题考查了恒成立问题,参数分离转化为函数的最值问题是解题的关键.20.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值 解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x+=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】()1ln2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-.∴ln 1x a x+=在0x >时有两个根,令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==-当01x <<时,'()0g x >,当1x >时,'()0g x <,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<. 【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.三、解答题21.(1)2a >;(2)证明见解析. 【分析】(1)利用题中的条件函数有两个极值点,相当于导数等于零有两个解,对函数求导,对函数加以分析,最后求得结果;(2)构造相应的函数,研究函数的图像,找出其对应的最值,最后求得结果. 【详解】解:(1))(211x ax f x x a x x='-+=-+,即方程210x ax -+=有两相异正根,即方程1a x x =+有两相异正根,由1y x x=+图象可知2a >. (2)要证)(2132f x x <-,只要证2222113ln 22x ax x x -+<-, 1x 、2x 为方程210x ax -+=的两根,121=x x ,2221ax x =+.只要证)(2222221311ln 22x x x x -++<-;只要证3222213ln 22x x x x --+<-; 2x 为方程210x ax -+=的较大根,212ax >>. 令)()(32222221ln 12g x x x x x x =--+>. )()(222223ln 12g x x x x '=-+>,)()(222221301g x x x x =-+<'>';)(22223ln 2g x x x +'=-在)(1,+∞上单调减,所以)(()210g x g ''<<恒成立;)(2g x 在)(1,+∞上单调减,)(()2312g x g <=-.【点睛】:思路点睛:该题属于导数的综合题,在做题的过程中,紧紧抓住导数与函数性质的关系,导数大于零单调增,导数小于零,函数单调减,借用二阶导来进一步研究函数的性质,对于不等式的证明问题,注意转化为最值来处理. 22.(1)1a =;(2)答案见解析;(3)(][)0,1,e +∞.【分析】(1)由题意可得()10f '=,由此可解得实数a 的值; (2)求得()2x af x x-'=,对实数a 的取值进行分类讨论,分析函数()f x 在区间()1,e 上的单调性,结合零点存在定理可得出结论; (3)根据(2)中的讨论可写出实数a 的取值范围. 【详解】(1)()221a x a f x x x x'-=-=, 因为()y f x =在点()()1,1f 处与x 轴相切,且()10f =, 所以()110f a '=-=,解得1a =. 经检验1a =符合题意; (2)由(1)知()2x af x x-'=,令()0f x '=,得x a =. (i )当01a <≤时,()1,x e ∈,()0f x '>,函数()f x 在区间()1,e 上单调递增, 所以()()10f x f >=, 所以函数()f x 在区间()1,e 上无零点;(ii )当1a e <<时,若1x a <<,则()0f x '<,若a x e <<,则()0f x '>. 函数()f x 在区间()1,a 上单调递减,在区间(),a e 上单调递增, 且()10f =,()1ea f e a =-+. 当()10af e a e=-+>,即11e a e <<-时,函数()f x 在区间()1,e 上有一个零点;当()10af e a e=-+≤时,即当e e e 1a <-≤时,函数()f x 在区间()1,e 上无零点; (iii )当a e ≥时,()1,x e ∈,()0f x '<,函数()f x 在区间()1,e 上单调递减, 所以()()10f x f <=, 所以函数()f x 在区间()1,e 上无零点.综上:当01a <≤或ee 1a ≥-时,函数()f x 在区间()1,e 上无零点; 当11ea e <<-时,函数()f x 在区间()1,e 上有一个零点. (3)01a <≤或a e ≥. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题. 23.(1)2;(2)()1,+∞. 【分析】(1)利用已知条件求出切点坐标,代入到原函数即可得到m 的值;(2)利用已知条件得到cos 2sin x m x >-,令()cos 212sin sin sin x g x x x x=-=-,sin x t =,(]0,1t ∈,得到()12g t t t=-,求导分析函数()g t 的单调性即可得到m 的取值范围.【详解】(1)由题意,函数()cos2sin f x x m x =+,()0,x π∈, 且函数()f x 在2x π=处的切线方程为1y =,所以该函数过点,12π⎛⎫⎪⎝⎭,故cos 2sin 112222f m m m πππ⎛⎫⎛⎫=⨯+=-+=⇒=⎪ ⎪⎝⎭⎝⎭, 所以m 的值为2;(2)对()0,x π∀∈,()0f x >恒成立, 即cos 2sin 0x m x +>, 所以cos 2sin x m x >-,① 又因为()0,x π∈,所以sin 0x >, 故①可化简为cos 2sin xm x>-,② 令()2cos 212sin 12sin sin sin sin x x g x x x x x-=-=-=-,再令sin x t =,则(]0,1t ∈, 所以()12g t t t=-,()2120g t t '=+>, 所以()g t 在(]0,1上单调递增, 故()()max 1211g t g ==-=,又由②式可得,当(]0,1t ∈时,()m g t >恒成立, 所以()max 1m g t >=,综上所述:m 的取值范围是:()1,+∞. 【点睛】结论点睛:利用导数研究不等式恒成立问题.(1)()f x a ≥恒成立()min f x a ⇔≥;()f x a ≥成立()max f x a ⇔≥; (2)()f x b ≤恒成立()max f x b ⇔≤;()f x b ≤成立()min f x b ⇔≤; (3)()()f x g x >恒成立,令()()()F x f x g x =-,则()min 0F x >. 24.(1)答案见解析;(2)[)1,-+∞. 【分析】(1)对实数a 分情况讨论,求导得到导函数的正负,进而得到函数的单调性和极值; (2)由条件可得()2ln 00x x ax x --≤>恒成立,则当0x >时,ln xa x x≥-恒成立,令()()ln 0xh x x x x=->,对此函数求导得到函数的单调性和最值即可得到结果. 【详解】(1)函数()ln f x x ax =-的定义域为()0,∞+,()1f x a x'=-. 当0a ≤时,()10f x a x'=->,所以()y f x =在()0,∞+上单调递增,无极值点; 当0a >时,解()10f x a x '=->得10x a <<;解()10f x a x '=-<得1x a>. 所以()y f x =在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以函数()y f x =有极大值点是1a,无极小值点; (2)由条件可得()2ln 00x x ax x --≤>恒成立,则当0x >时,ln xa x x≥-恒成立,令()()ln 0x h x x x x =->,则()221ln x x h x x--'=,令()()21ln 0k x x x x =-->, 则当0x >时,()120k x x x'=--<,所以()y k x =在()0,∞+上为减函数. 又(1)0k =,所以,当()0,1x ∈时,()0h x '>;当()1,x ∈+∞上,()0h x '<. 所以()y h x =在()0,1上为增函数,在()1,+∞上为减函数. 所以()()max 11h x h ==-,所以1a ≥-. 因此,实数a 的取值范围是[)1,-+∞. 【点睛】对于函数不等式恒成立或者有解求参的问题,常用方法有:参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.25.(1)见解析;(2)[1,+∞);(3)证明见解析. 【分析】(1)求导数可得2244(1)(2)ax a y ax x +-'=++,当1a 时函数在[)0+∞,上单调递增;当01a <<时易得函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,不等式()()1f x g x +在[0x ∈,)+∞时恒成立,当01a <<时,不等式00()()1f x g x +不成立,综合可得a 的范围; (3)由(2)的单调性易得11[(1)]122ln k lnk k <+-+,进而可得11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+,将上述式子相加可得结论. 【详解】解:(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增;当01a <<时,由0y '>可得x >∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立,当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立,综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k ∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.【点睛】本题考查导数的综合应用,涉及函数的单调性和恒成立以及不等式的证明,属于中档题. 26.(1)见解析;(2)1.【分析】(1)按照0a ≤、0a >分类,结合导函数的正负即可得解;(2)转化条件为2231ex x ax a ++-≤在[)1,-+∞上恒成立,令()223,1x x ax a g x x e++-=≥-,按照4a ≥、4a <分类,结合导数确定函数()g x 的最大值即可得解.【详解】(1)当0a ≤时,()f x 在R 上单调递减;当0a >时,()xf x a e '=-, 故当ln x a <时,有()0f x '>,所以()f x 在(),ln a -∞单调递增;当ln x a >时,有()0f x '<,所以()f x 在()ln ,a +∞上单调递减;所以当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞上单调递增,在()ln ,a +∞上单调递减;(2)因为当1x ≥-时,()232f x a x ≤--恒成立, 所以2231ex x ax a ++-≤在[)1,-+∞上恒成立,令()223,1x x ax a g x x e++-=≥-, 则()()()()22313e ex x x a x a x x a g x ⎡⎤-+-+--++-⎣⎦'==, ①当31a -≤-即4a ≥时,()0g x '≤,()g x 在[)1,-+∞单调递减, 则要使()()121g a e -=-≤,解得12a e ≤+(不合题意); ②当31a ->-即4a <时,则当()1,3x a ∈--时,()0g x '>,函数()g x 单调递增;当()3,x a ∈-+∞时,()0g x '<,函数()g x 单调递减;则要使()()()()233max 3323631a a a a a a a g x g a e e---+-+--=-==≤ 令31t a =->-,3a t =-,设()3,1t t h t t e +=>-,则要使()1h t ≤, 因为()20et t h t --'=<,所以()h t 在()1,-+∞单调递减, 而()11h >,()21h <,所以整数t 的最小值为2,故整数a 的最大值为1.【点睛】本题考查了利用导数研究函数的单调性及解决不等式恒成立问题,考查了运算求解能力与逻辑推理能力,属于中档题.。
高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

′
解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−
即
8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得
即
(x0 − 2)2 (x0 + 1) = 0.
高二数学选修2-2导数单元测试题(有答案)

导数复习一.选择题(1) 函数13)(23+-=x x x f 是减函数的区间为( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2) (2)曲线3231y x x =-+在点(1,-1)处的切线方程为( )A .34y x =-B 。
32y x =-+C 。
43y x =-+D 。
45y x =- a(3) 函数y =a x 2+1的图象与直线y =x 相切,则a = ( )A . 18B .41C .21D .1(4) 函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4D .5(5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3()1f x ax x =++有极值的充要条件是 ( )A .0a >B .0a ≥C .0a <D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( )A . 12B . -1C .0D .1(8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002C 、200D 、100!(9)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( )A.19 B.29 C.13 D.23.10设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++=12函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个D . 4个 13. y =e sin xcos(sin x ),则y ′(0)等于( ) A.0B.1C.-1D.214.经过原点且与曲线y =59++x x 相切的方程是( ) A.x +y =0或25x +y =0B.x -y =0或25x +y =0 C.x +y =0或25x -y =0D.x -y =0或25x -y =0 15.设f (x )可导,且f ′(0)=0,又xx f x )(lim 0'→=-1,则f (0)( )A.可能不是f (x )的极值B.一定是f (x )的极值C.一定是f (x )的极小值D.等于016.设函数f n (x )=n 2x 2(1-x )n (n 为正整数),则f n (x )在[0,1]上的最大值为( ) A.0B.1C.n n)221(+-D.1)2(4++n n n 17、函数y=(x 2-1)3+1在x=-1处( )A 、 有极大值B 、无极值C 、有极小值D 、无法确定极值情况18.f(x)=ax 3+3x 2+2,f ’(-1)=4,则a=( )A 、310 B 、313 C 、316 D 、31919.过抛物线y=x 2上的点M (41,21)的切线的倾斜角是( )A 、300B 、450C 、600D 、90020.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则实数b 的取值范围是( )abxy)(x f y ?=OA 、(0,1)B 、(-∞,1)C 、(0,+∞)D 、(0,21)21.函数y=x 3-3x+3在[25,23-]上的最小值是( )A 、889 B 、1C 、833 D 、522、若f(x)=x 3+ax 2+bx+c ,且f(0)=0为函数的极值,则( ) A 、c ≠0 B 、当a>0时,f(0)为极大值 C 、b=0 D 、当a<0时,f(0)为极小值23、已知函数y=2x 3+ax 2+36x-24在x=2处有极值,则该函数的一个递增区间是( ) A 、(2,3) B 、(3,+∞) C 、(2,+∞) D 、(-∞,3)24、方程6x 5-15x 4+10x 3+1=0的实数解的集合中( ) A 、至少有2个元素 B 、至少有3个元素 C 、至多有1个元素 D 、恰好有5个元素二.填空题25.垂直于直线2x+6y +1=0且与曲线y = x 3+3x -5相切的直线方程是 。
高二数学 人教A版选修2-2习题 第1章 导数及其应用1.2.2 Word版含答案

选修2-2 第一章 1.2 1.2.2一、选择题1.若f (x )=sin π3-cos x ,则f ′(α)等于( )A .Sin αB .Cos αC .sin π3+cos αD .cos π3+sin α[答案] A[解析] ∵f (x )=sin π3-cos x ,∴f ′(x )=sin x , ∴f ′(α)=sin α,故选A.2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( )A.n n +1 B .n +2n +1 C.nn -1 D .n +1n[答案] A[解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1, ∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1f (n )}(n ∈N *)的前n 项和为:S n =11×2+12×3+13×4+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=nn +1,故选A.3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( )[答案] B[解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B.4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( )A .e-1B .-1C .-e -1D .-e[答案] C[解析] ∵f (x )=2xf ′(e)+ln x , ∴f ′(x )=2f ′(e)+1x,∴f ′(e)=2f ′(e)+1e ,解得f ′(e)=-1e,故选C.5.曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为( )A.π22 B .π2 C .2π2 D .12(2+π)2[答案] A[解析] 曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的顶点为O (0,0),A (π,0),C (π,-π),∴三角形面积为π22.6.已知f (x )=log a x (a >1)的导函数是f ′(x ),记A =f ′(a ),B =f (a +1)-f (a ),C =f ′(a +1),则( )A .A >B >C B .A >C >B C .B >A >CD .C >B >A [答案] A[解析] 记M (a ,f (a )),N (a +1,f (a +1)),则由于B =f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a ,表示直线MN 的斜率,A =f ′(a )表示函数f (x )=log a x 在点M 处的切线斜率;C =f ′(a +1)表示函数f (x )=log a x 在点N 处的切线斜率.所以,A >B >C . 二、填空题7.已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是__________________.[答案] y =2x[解析] 当x >0时,-x <0,则f (-x )=e x -1+x .又f (x )为偶函数,所以f (x )=f (-x )=e xe+x ,所以当x >0时,f ′(x )=e x -1+1,则曲线y =f (x )在点(1,2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即y =2x .8.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ=________.[答案] π6[解析] f ′(x )=-3sin(3x +φ), f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ) =2sin ⎝⎛⎭⎫3x +φ+5π6. 若f (x )+f ′(x )为奇函数,则f (0)+f ′(0)=0, 即0=2sin ⎝⎛⎭⎫φ+5π6,∴φ+5π6=k π(k ∈Z ). 又∵φ∈(0,π),∴φ=π6.9.已知直线y =2x -1与曲线y =ln(x +a )相切,则a 的值为________.[答案] 12ln2[解析] ∵y =ln(x +a ),∴y ′=1x +a ,设切点为(x 0,y 0),则y 0=2x 0-1,y 0=ln(x 0+a ),且1x 0+a=2,解之得a =12ln2.三、解答题10.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1);(3)y =sin 4x 4+cos 4x4;(4)y =1+x 1-x +1-x 1+x.[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x 2, ∴y ′=3x 2-2x 3.(2)∵y =(x +1)⎝⎛⎭⎫1x -1=-x 12+x -12,∴y ′=-12x -12-12x -32=-12x ⎝⎛⎭⎫1+1x . (3)∵y =sin 4x 4+cos 4x4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x .(4)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2, ∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.一、选择题1.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3[答案] D[解析] 本题考查导数的基本运算及导数的几何意义.令f (x )=ax -ln(x +1),∴f ′(x )=a -1x +1.∴f (0)=0,且f ′(0)=2.联立解得a =3,故选D.2.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2017(x )等于( )A .Sin xB .-sin xC .cos xD .-cos x[答案] C[解析] f 0(x )=sin x ,f 1(x )=f 0′(x )=(sin x )′=cos x , f 2(x )=f 1′(x )=(cos x )′=-sin x , f 3(x )=f 2′(x )=(-sin x )′=-cos x , f 4(x )=f 3′(x )=(-cos x )′=sin x ,∴4为最小正周期,∴f 2017(x )=f 1(x )=cos x .故选C. 二、填空题3.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.[答案] (1,1)[解析] 设f (x )=e x ,则f ′(x )=e x ,所以f ′(0)=1,因此曲线f (x )=e x 在点(0,1)处的切线方程为y -1=1×(x -0),即y =x +1;设g (x )=1x (x >0),则g ′(x )=-1x 2,由题意可得g ′(x P )=-1,解得x P =1,所以P (1,1).故本题正确答案为(1,1).4.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=________.[答案] 212[解析] f ′(x )=x ′·[(x -a 1)(x -a 2)…(x -a 8)]+[(x -a 1)(x -a 2)…(x -a 8)]′·x =(x -a 1)(x -a 2)…(x -a 8)+[(x -a 1)(x -a 2)…(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)…(0-a 8)+[(0-a 1)(0-a 2)…(0-a 8)]′·0=a 1a 2…a 8. 因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212. 三、解答题5.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求y =f (x )的解析式.[解析] ∵f (x )的图象过点P (0,1),∴e =1. 又∵f (x )为偶函数,∴f (-x )=f (x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e . ∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2,∴切点为(1,-1).∴a +c +1=-1. ∵f ′(x )|x =1=4a +2c ,∴4a +2c =1. ∴a =52,c =-92.∴函数y =f (x )的解析式为f (x )=52x 4-92x 2+1.6.已知f (x )=13x 3+bx 2+cx (b ,c ∈R ),f ′(1)=0,x ∈[-1,3]时,曲线y =f (x )的切线斜率的最小值为-1,求b ,c 的值.[解析] f ′(x )=x 2+2bx +c =(x +b )2+c -b 2, 且f ′(1)=1+2b +c =0.①(1)若-b ≤-1,即b ≥1,则f ′(x )在[-1,3]上是增函数,所以f ′(x )min =f ′(-1)=-1, 即1-2b +c =-1.②由①②解得b =14,不满足b ≥1,故舍去.(2)若-1<-b <3,即-3<b <1,则f ′(x )min =f ′(-b )=-1, 即b 2-2b 2+c =-1.③由①③解得b =-2,c =3或b =0,c =-1.(3)若-b ≥3,即b ≤-3,则f ′(x )在[-1,3]上是减函数, 所以f ′(x )min =f ′(3)=-1, 即9+6b +c =-1.④由①④解得b =-94,不满足b ≤-3,故舍去.综上可知,b =-2,c =3或b =0,c =-1.。
人教A版选修2-2高二数学测试(2-2,导数及其应用).docx

高中数学学习材料鼎尚图文*整理制作东至三中2007-2008学年度高二数学单元试题(1)(选修2-2)导数及其应用测试题得分一、选择题(共12小题,每小题5分,共60分)1. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为 A.1 B.2 C.-1 D. 0 【 】2. 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 【 】 A .(x-1)3+3(x-1) B .2(x-1)2C .2(x-1)D .x-1 3. 已知函数()f x 在1x =处的导数为1,则(1)(1)3limx f x f x x→--+= 【 】A .3B .23-C . 13D .32- 4.已知对任意实数x ,有()()f x f x -=-,()()g x g x -=,且0x >时,()0f x '>,()0g x '>,则0x <时 【 】A.()0f x '>,()0g x '> B.()0f x '>,()0g x '< C.()0f x '<,()0g x '> D.()0f x '<,()0g x '<5.函数)0,4(2cos π在点x y =处的切线方程是 【 】A .024=++πy xB .024=+-πy xC .024=--πy xD .024=-+πy x6. 设)(,)(3bx a f x x f -=的导数是 【 】 A )(3bx a - B 2)(32bx a b -- C 2)(3bx a b - D 2)(3bx a b -- 7.一质点做直线运动,由始点起经过ts 后的距离为s=41t 4-4t 3+16t 2,则速度为零的时刻是 A. 4s 末 B.8s 末 C.0s 与8s 末 D.0s,4s,8s 末 【 】8.函数313y x x =+- 有 【 】A.极小值-1,极大值1B. 极小值-2,极大值3C.极小值-1,极大值3D. 极小值-2,极大值2 9. 点P 在曲线323+-=x x y 上移动时,过点P 的切线的倾斜角的取值范围是 【 】 A ],0[π B ),43[)2,0(πππ⋃ C ]43,2[]2,0[πππ⋃ D ),43[]2,0[πππ⋃10.函数12)(2++=ax ax x f 在[-3,2]上有最大值4。
(完整版)高二数学选修2-2导数单元测试题(有答案)

2
(1)当 a 2 时,求函数 f ( x) 极小值;( 2)试讨论曲线 y
f (x) 与 x 轴公共点的个数。
为 1 ,则 a _________ 。 6
2
39.已知 x 1 是函数 f ( x) mx3 3(m 1)x2 nx 1的一个极值点, 其中 m,n R, m 0 ,
( I )求 m 与 n 的关系式;
A、(2,3) B、(3,+∞)
C、(2,+∞)
24、方程 6x 5-15x 4+10x3+1=0 的实数解的集合中 ( )
D、(- ∞, 3)
A、至少有 2 个元素 B 、至少有 3 个元素 C、至多有 1 个元素 D 、恰好有 5 个元素
二.填空题
25.垂直于直线 2x+6y+1=0 且与曲线 y = x 3+ 3x-5 相切的直线方程是
A、 有极大值 B 、无极值 C 、有极小值
D、无法确定极值情况
18.f(x)=ax 3+3x2+2, f ’ (-1)=4 ,则 a=( )
A、 10 B 、 13
3
3
C 、 16
3
D
、 19
3
19. 过抛物线 y=x2 上的点 M( 1 , 1 )的切线的倾斜角是 (
)
24
A、300
B 、450 C 、600
解得
x1 1 2 , x2 1 2.
当 x 1 2,或 x 1 2时 , f (x) 0; 当
1 2 x 1 2时, f (x) 0. 故 f ( x) x 3 3x 2 3x 2在 ( ,1 2) 内 是 增 函 数 , 在
因 f ( x0 )
3( x02 1) ,故切线的方程为 y
高二数学选修2-2导数检测题(二)(含答案)
高二数学选修2-2导数检测题一、选择题 1.函数21ln 2y x x =-的单调递减区间为( ) A .(]1,1- B .(]0,1 C .[)1,+∞ D .()0,+∞ 2.若f ′(x )=3,则 f (x 0-m )-f (x 0)3m等于( )A .3B .13C .-1D .13.若曲线2y x ax b =++在点(1,)b 处的切线方程是10x y -+=,则( )A .1,2a b =-=B .1,2a b ==C .1,2a b ==-D .1,2a b =-=- 4.函数3()34f x x x =-, []0,1x ∈ 的最大值是 ( ) A .12B .1-C .0D .1 5.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为 ( )A .e 2B .eC .ln 22D .ln 26.已知ax x x f -=3)(在[1,+∞)上是单调增函数,则a 的最大值是 ( )A .0B .1C .2D .37.已知函数f (x )=x -sin x ,若x 1,x 2∈⎣⎡⎦⎤-π2,π2,且f (x 1)+f (x 2)>0,则下列不等式中正确的是( ) A .x 1>x 2 B .x 1<x 2 C .x 1+x 2>0 D .x 1+x 2<08.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( )A .0≤a <1B .0<a <1C .-1<a <1D .0<a <129.设函数f (x )在R 上可导,其导函数为()f x ',且函数y =(1-x )()f x '的图象如图所示,则下列结论中一定成立的是 ( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)10.已知(),()f x g x 都是定义在R 上的函数,()0g x ≠,()()()()f x g x f x g x ''>,且()()xf x ag x =(0a >,且1)a ≠,(1)(1)5(1)(1)2f f g g -+=-.若数列(){}()f ng n 的前n 项和大于62,则n 的最小值为( )A .6B .7C .8D .911.已知函数1(),()ln22x x f x e g x ==+的图象分别与直线y m =交于,A B 两点,则||AB 的最小值为( ) A .2 B .2ln2+ C .212e + D .32ln 2e -12.定义在R 上的函数()f x ,当2x ≠-时,恒有(2)()0x f x '+<(其中()f x '是函数()f x 的导数),又13(log 3)a f =,0.11(())3b f =,(ln 3)c f =,则 ( ) A .a c b >> B .a b c >> C .c b a >> D .c a b >>二、填空题 13.()2321d xx -+=⎰ .14.已知函数)(x f 是R 上的偶函数,且在(0,+∞)上有()x f '>0,若0)1(=-f ,那么关于x 的不等式()0<x xf 的解集是_________15.直线y =a 与函数f (x )=x 3-3x 的图象有三个相异的公共点,则a 的取值范围是________16.已知函数()f x 的定义域为[]15,-,部分对应值如下表,()f x 的导函数()y f x '=的图象如图所示.下列关于()f x 的命题:①函数()f x 的极大值点为 0与4; ②函数()f x 在[]02,上是减函数;③如果当[]1x ,t ∈-时,()f x 的最大值是2,那么t 的最大值为4; ④当12a <<时,函数()y f x a =-有4个零点; ⑤函数a x f y -=)(零点的个数可能为0、1、2、3、4个. 其中正确命题的序号是 . 三、解答题17.已知函数a x x x x f +++-=93)(23. (1)求)(x f 的单调递减区间;(2)若)(x f 在区间]2,2[-上的最大值是20,求它在该区间上的最小值。
人教A版选修2-2高二选修2-2测试题(导数及其简单应用).docx
高中数学学习材料鼎尚图文*整理制作高二选修2-2测试题(导数及其简单应用)一、选择题(本大题共有10小题,每小题5,共50分)2.若函数f(x)=2x 2+1,图象上P(1,3)及邻近上点Q(1+Δx,3+Δy), 则xy∆∆=( ) A 4 B 4Δx C 4+2Δx D 2Δx 3.若()()()kx f k x f x f k 2lim,20000--='→则的值为( )A .-2 B. 2 C.-1 D. 14、曲线y=x 3+x-2在点P 0处的切线平行于直线y=4x ,则点P 0的坐标是( ) A .(0,1) B.(1,0) C.(-1,-4)或(1,0) D.(-1,-4) 5.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是( ) A .5 , -15 B.5 , 4 C.-4 , -15 D.5 , -16 6.设y=x-lnx ,则此函数在区间(0,1)内为( )A .单调递增,B 、有增有减C 、单调递减,D 、不确定 9. 抛物线y =(1-2x)2在点x =32处的切线方程为( ) A. y =0 B .8x -y -8=0 C . x =1 D . y =0或者8x -y -8=010.函数()12ln 2+=x y 的导数是( ) A.1242+x x B. 1212+xC.()10ln 1242+x x D. ()ex x22log 124+二、填空题(每小题5分,共20分)11.若f(x)=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围是_________12.若函数a x x y +-=2323在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是______________三、解答题:本大题6小题,共80分,解答写出文字说明、证明过程或演算步骤)。
17. (本题满分14分)已知函数f(x)=4x 3+ax 2+bx +5在x=-1与x=32处有极值。
新课标高二数学选修2-2导数单元测试题(有答案)
新课标选修2-2高二数学理导数测试题一.选择题(1) 函数13)(23+-=x x x f 是减函数的区间为( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2)(2)曲线3231y x x =-+在点(1,-1)处的切线方程为( )A .34y x =-B 。
32y x =-+C 。
43y x =-+D 。
45y x =- a (3) 函数y =a x 2+1的图象与直线y =x 相切,则a =( )A .18 B .41 C .21D .1 (4) 函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( )A .2B .3C .4D .5(5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( )A .3B .2C .1D .0(6)函数3()1f x ax x =++有极值的充要条件是 ( )A .0a >B .0a ≥C .0a <D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( )A .12B . -1C .0D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( )A 、0B 、1002C 、200D 、100!(9)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23二.填空题(1).垂直于直线2x+6y +1=0且与曲线y = x 3+3x -5相切的直线方程是 。
(2).设 f ( x ) = x 3-21x 2-2x +5,当]2,1[-∈x 时,f ( x ) < m 恒成立,则实数m 的取值范围为 .(3).函数y = f ( x ) = x 3+ax 2+bx +a 2,在x = 1时,有极值10,则a = ,b = 。
(易错题)高中数学高中数学选修2-2第三章《导数应用》测试题(包含答案解析)(1)
一、选择题1.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( )A .()1,+∞B .[)3,+∞C .(],1-∞D .(],3-∞2.已知函数322()f x =x ax bx a +++在1x =处的极值为10,则a b -=( ). A .6-B .15-C .15D .6-或153.已知函数()32114332f x x mx x =-+-在区间[]12,上是增函数,则实数m 的取值范围为( ) A .45m ≤≤B .24m ≤≤C .2m ≤D .4m ≤4.已知函数()f x 对定义域R 内的任意x 都有()()22f x f x +=-,且当2x ≠时其导函数()f x '满足()()2xf x f x ''>,若24a <<则( )A .()()()223log af f f a << B .()()()23log 2af f a f << C .()()()2log 32af a f f <<D .()()()2log 23af a f f <<5.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB 的最小值为()A .1B .2C D 6.已知函数()3ln f x x x =-与()3g x x ax =-的图像上存在关于x 轴的对称点,则实数a 的取值范围为( ) A .()e -∞,B .1e ⎛⎤-∞ ⎥⎝⎦,C .(]e -∞, D .1e ⎛⎫-∞ ⎪⎝⎭,7.函数2()(3)x f x x e =-的单调递增区间是( ) A .(,0)-∞B .(0)+∞,C .(,3)-∞和(1)+∞, D .(-3,1) 8.已知函数()y f x =在R 上可导且()02f =,其导函数()f x '满足()()02f x f x x '>--,对于函数()()x f x g x e=,下列结论错误..的是( ). A .函数()g x 在()2,+∞上为单调递增函数 B .2x =是函数()g x 的极小值点 C .0x ≤时,不等式()2xf x e ≤恒成立D .函数()g x 至多有两个零点9.已知()321233y x bx b x =++++是R 上的单调增函数,则b 的取值范围是( )A . 1b <-或2b >B .1,b ≤-或b 2≥C .12b -<<D .12b -≤≤10.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( ) A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞⎪⎝⎭D .11,26a ⎛⎫∈-⎪⎝⎭11.如果不等式3310x ax ++≥对于[]1,1x ∈-恒成立,则实数a 的取值范围是( )A .⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C .2,3⎡-⎢⎣⎦D .2,3⎛⎤-∞- ⎥⎝⎦12.已知函数()22ln f x x x =-,若关于x 的不等式()0f x m -≥在[]1,e 上有实数解,则实数m 的取值范围是( ) A .()2,2e -∞-B .(2,2e ⎤-∞-⎦C .(],1-∞D .(),1-∞二、填空题13.已知()2ln 1f x x x mx =++-在区间()1,2上为单调递增函数,则实数m 的取值范围是__________.14.已知函数()24ln f x x x a x =++,若函数()f x 在()1,2上是单调函数,则实数a 的取值范围是______.15.已知函数()f x 是定义在R 上的增函数,()()2f x f x '+>,()01f =,则不等式()ln 2ln 3f x x +>+⎡⎤⎣⎦的解集为______.16.现有一块边长为3的正方形铁片,在铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,则该方盒容积的最大值是______. 17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.已知函数()1cos 2f x x x =+,0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的单调递增区间为______. 19.设函数()22ln f x x x x =+-,若关于x 的方程()2f x x x a =++在(]0,2上恰有两个相异实根,则实数a 的范围是______.20.若函数()32ln f x x x x x ax =-+-有两个不同的零点,则实数a 的取值范围是______.三、解答题21.已知函数()322=-+f x x ax b .(1)4a =时,()f x 在区间[]1,1-的最小值为-5,求b 的值(2)讨论()f x 的单调性; 22.已知函数()()ln 0af x x a a x=-+>. (1)若曲线()y f x =在点()()1,1f 处与x 轴相切,求a 的值; (2)求函数()f x 在区间()1,e 上的零点个数;(3)若1x ∀、()21,x e ∈,()()()12120x x f x f x ⎡⎤-->⎣⎦,试写出a 的取值范围.(只需写出结论) 23.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;24.已知函数21(),()ln 2f x xg x a x ==. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)若[]1,e 上存在一点x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.25.已知2()2ln f x x x =- (1)求()f x 的最小值; (2)若21()2f x tx x≥-在(]0,1x ∈内恒成立,求t 的取值范围. 26.已知函数()sin x f x e x =. ⑴求函数()f x 的单调区间; ⑵如果对于任意的[0,]2x π∈,()f x kx ≥总成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.2.C解析:C 【分析】由题,可得(1)0(1)10f f '=⎧⎨=⎩,通过求方程组的解,即可得到本题答案,记得要检验.【详解】因为322()f x =x ax bx a +++,所以2()32f x x ax b '=++,由题,得(1)0(1)10f f '=⎧⎨=⎩,即2320110a b a b a ++=⎧⎨+++=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,因为当3,3a b =-=时,2()3(1)0f x x '=-≥恒成立,()f x 在R 上递增,无极值,故舍去,所以4(11)15a b -=--=.故选:C 【点睛】本题主要考查含参函数的极值问题,得到两组解后检验,是解决此题的关键.3.D解析:D 【分析】求函数的导函数,利用导函数与原函数单调性的关系进行判断,要使()f x 在区间[]12,上是增函数,则()0f x '≥在[]12,上恒成立,分离参数m ,即可得到答案. 【详解】由题得2()4f x x mx '=-+,要使()f x 在区间[]12,上是增函数,则()0f x '≥在[]12,上恒成立,即240x mx -+≥,则244x m x x x+≤=+在[]12,上恒成立,又44x x +≥=,当且仅当2x =时,等号成立,所以4m ≤, 故答案选D 【点睛】本题主要考查导数与原函数单调性之间的关系,将含参问题转化为最值成立,是解决本题的关键,属于中档题.4.C解析:C 【分析】由()f x =(4)f x -得到函数的对称性,(2)()0x f x '->得到函数的单调性,结合关系即可得到结论. 【详解】由于函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -, 可知函数关于2x =对称,根据条件2x ≠时,有()2(),xf x f x ''> 得(2)()0x f x '->,当2x >时()f x 递增,当2x <时()f x 单调递减, 因为24a <<所以4216a <<,21log 2a <<,因为2x =是对称轴,所以22log 3a <<, 所以22log 32aa <<<, 所以2(log )(3)(2)af a f f <<, 故选:C. 【点睛】本题主要考查函数值的大小比较,根据导数判断函数的单调性,再利用对称性、单调性比较大小.5.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(),令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B . 【点睛】本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.6.B解析:B 【分析】由题中对称知f (x )=﹣g (x )有解,即lnx a x =在(0,+∞)有解,令()lnxh x x=,求函数导数,分析单调性可得值域,进而可得解. 【详解】函数f (x )=lnx ﹣x 3与g (x )=x 3﹣ax 的图象上存在关于x 轴的对称点, ∴f (x )=﹣g (x )有解, ∴lnx ﹣x 3=﹣x 3+ax , ∴lnx =ax ,即lnxa x=在(0,+∞)有解, 令()lnx h x x =,则()1'lnxh x x-=. 当()()()0,,0,?x e h x h x >'∈单调递增; ()()(),,0?x e h x h x ∈+'∞<,单调递减.()()1max h x h e e==,且()0,x h x →→-∞,所以1a e≤. 故选B. 【点睛】本题主要考查了利用导数研究方程的根,涉及函数对称的处理,考查了计算能力,属于中档题.7.D解析:D 【解析】∵函数f(x)=(3-x 2)e x , ∴f′(x)=-2xe x +(3-x 2)e x =(3-2x-x 2)e x .由f′(x)>0,得到f′(x)=(3-2x-x 2)e x >0, 即3-2x-x 2>0,则x 2+2x-3<0,解得-3<x <1, 即函数的单调增区间为(-3,1). 本题选择D 选项.8.C解析:C 【分析】由()()02f x f x x '>--,利用导数求出函数()g x 的单调区间以及函数的极值,根据单调性、极值判断每个选项,从而可得结论. 【详解】 ()()x f x g x e=, 则()()()xf x f xg x e '-'=, 2x >时,()()0f x f x '->,故()y g x =在(2,)+∞递增,A 正确;2x <时,()()0f x f x '-<,故()y g x =在(,2)-∞递减,故2x =是函数()y g x =的极小值点,故B 正确; 若g (2)0<,则()y g x =有2个零点, 若g (2)0=,则函数()y g x =有1个零点, 若g (2)0>,则函数()y g x =没有零点,故D 正确; 由()y g x =在(,2)-∞递减,则()y g x =在(,0)-∞递减, 由0(0)(0)2f g e==,得0x 时,()(0)g x g , 故()2xf x e,故()2x f x e ≥,故C 错误; 故选:C . 【点睛】本题考查了利用导数研究函数的单调性、极值、零点问题,考查了构造函数法的应用,是一道综合题.9.D解析:D 【分析】利用三次函数()321233y x bx b x =++++的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题.∵()321233y x bx b x =++++,∴222y x bx b '=+++, ∵函数是R 上的单调增函数,∴2220x bx b +++≥在R 上恒成立, ∴0∆≤,即244(2)0b b -+≤.∴12b -≤≤ 故选:D. 【点睛】本题考查根据导函数研究函数的单调性,属于中档题.可导函数在某一区间上是单调函数,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()'f x 在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式0∆≤来进行求解.10.C解析:C 【分析】本题首先可根据题意得出2241ax ax fxx,令2241g xax ax ,然后根据()f x 在()1,3上不单调得出函数()g x 与x 轴在()1,3上有交点,最后分为0a =、0a ≠两种情况进行讨论,即可得出结果. 【详解】()2124124ax ax f x ax a x x--'=--=, 若()f x 在()1,3上不单调, 令2241g xax ax ,对称轴为1x =,则函数2241g xax ax 与x 轴在()1,3上有交点,当0a =时,显然不成立;当0a ≠时,则()()21680130a a g g ⎧∆=+>⎪⎨⋅<⎪⎩,解得16a >或12a <-,易知()f x 在()1,3上不单调的一个充分不必要条件是1,2a ⎛⎫∈+∞ ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查函数单调性问题,若函数在否个区间内不单调,则函数的导函数在这个区间内有零点且穿过x 轴,考查二次函数性质的应用,考查充分条件与必要条件的判定,是中档题.11.A解析:A分0x =、10x -≤<、01x <≤三种情况讨论,利用参变量分离法计算出实数a 在各种情况下的取值范围,综合可得出实数a 的取值范围. 【详解】由已知,不等式3310x ax ++≥对于[]1,1x ∈-恒成立. ①当0x =时,则有10≥恒成立,此时a R ∈; ②当10x -≤<时,由3310x ax ++≥可得213a x x≤--, 令()21f x x x =--,()32211220x f x x x x-'=-+=>, 所以,函数()f x 在区间[)1,0-上为增函数,则()()min 10f x f =-=,则30a ≤,得0a ≤;③当01x <≤时,由3310x ax ++≥可得213a x x≥--, 令()32120x f x x -'==可得2x =,列表如下:2()2maxf x =-=⎝⎭3a ∴≥2a ≥-.综上所述,实数a 的取值范围是⎡⎤⎢⎥⎣⎦.故选:A. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.12.B解析:B 【分析】由题意可得()max m f x ≤,利用导数求出函数()f x 在区间[]1,e 上的最大值,由此可求得实数a 的取值范围. 【详解】由题意可知,存在[]1,3x ∈,使得()m f x ≤,则()max m f x ≤.()22ln f x x x =-,则()()()22112222x x x f x x x x x-+-'=-==, 当[]1,3x ∈时,()0f x '≥,所以,函数()f x 在区间[]1,e 上单调递增,则()()2max 2f x f e e ==-,22m e ∴≤-,因此,实数m 的取值范围是(2,2e ⎤-∞-⎦.故选:B. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、填空题13.【分析】求出导函数由在上恒成立可得的范围【详解】由题意在时恒成立即在时恒成立由对勾函数性质知在单调递增所以所以即故答案为:【点睛】本题考查用函数在某个区间上单调性解题方法是把问题转化为不等式恒成立再 解析:3m ≥-【分析】求出导函数()'f x ,由()0f x '≥在(1,2)上恒成立可得m 的范围. 【详解】2121()2x mx f x x m x x ++'=++=,由题意()0f x '≥在(1,2)x ∈时恒成立, 即2210x mx ++≥在(1,2)x ∈时恒成立,22112x m x x x+-≤=+,由对勾函数性质知12y x x=+在(1,2)单调递增,所以123x x +>,所以3m -≤,即3m ≥-. 故答案为:3m ≥-. 【点睛】本题考查用函数在某个区间上单调性,解题方法是把问题转化为不等式恒成立,再转化为求函数的最值.解题基础求出导函数.14.【分析】对函数进行求导导函数在区间上恒非正或恒非负进行求解即可【详解】由题意得:函数的定义域为由题意可知:或在区间上恒成立当在区间上恒成立时当时因此有;当在区间上恒成立时当时因此有综上所述:实数的取 解析:(,16][6,)-∞-+∞【分析】对函数进行求导,导函数在区间()1,2上恒非正或恒非负进行求解即可. 【详解】由题意得:函数()f x 的定义域为()0+∞,, 2'()+4ln ()2+4af x x x a x f x x x=+⇒=+,由题意可知:'()0f x ≥或'()0f x ≤在区间()1,2上恒成立.当'()0f x ≥在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≥⇒≥--=-+, 当()1,2x ∈时,()2(24)166x x --∈--,,因此有6a ≥-; 当'()0f x ≤在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≤⇒≤--=-+, 当()1,2x ∈时,()2(24)166x x --∈-,,因此有16a ≤-, 综上所述:实数a 的取值范围是(,16][6,)-∞-+∞. 故答案为:(,16][6,)-∞-+∞. 【点睛】本题考查了已知函数在区间上的单调性求参数取值范围,考查了导数的应用,考查了数学运算能力,属于中档题.15.【分析】构造函数则所以的单调递减将转化成又再根据函数单调性即可求出结果【详解】设所以因为所以所以在上为减函数因为函数是定义在上的增函数所以所以在上恒成立又因为所以所以即因为所以所以又在上为减函数所以 解析:(),0-∞【分析】构造函数()()2+=x f x g x e ,则()()()()20'-+'=<xf x f xg x e,所以()g x 的单调递减,将()ln 2ln 3f x x +>+⎡⎤⎣⎦转化成()23+>xf x e,又()03g =,再根据函数单调性即可求出结果. 【详解】设()()2+=x f x g x e ,所以()()()()()()()222''-+-+'==x x x xf x e f x e f x f xg x e e, 因为()()2f x f x '+>,所以()0g x '<,所以()()2+=xf xg x e在R 上为减函数, 因为函数()f x 是定义在R 上的增函数,所以()0f x '>,所以()()20'+>>f x f x 在R 上恒成立,又因为()ln 2ln 3f x x +>+⎡⎤⎣⎦,所以()2ln3+>f x x ,所以()23+>x f x e ,即()23+>x f x e ,因为()01f =,所以()()00203+==f g e,所以()()0g x g >,又()()2+=xf xg x e 在R 上为减函数,所以0x <. 故答案为:(),0-∞ 【点睛】本题主要考查导数在判断单调性中的应用,解题的关键是合理构造函数,利用导函数判断构造的函数的单调性.16.【分析】根据题意得到方盒底面是正方形边长为高为建立方盒容积的函数模型为再用导数法求解最值【详解】由题意得:方盒底面是正方形边长为高为所以方盒的容积为当时时所以当时取得最大值最大值为2故答案为:2【点 解析:2【分析】根据题意得到方盒底面是正方形,边长为32x -,高为x ,建立方盒容积的函数模型为()2323324129,02V x x x x x x =-⨯=-+<<,再用导数法求解最值. 【详解】由题意得:方盒底面是正方形,边长为32x -,高为x ,所以方盒的容积为()2323324129,02V x x x x x x =-⨯=-+<<, 213122491222V x x x x ⎛⎫⎛⎫'=-+=-- ⎪⎪⎝⎭⎝⎭,当102x <<时,0V '>,1322x <<时,0V '<,所以当12x =时,V 取得最大值,最大值为2. 故答案为:2 【点睛】本题主要考查导数的实际问题中的应用,还考查了运算求解的能力,属于中档题.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x x g -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增;又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <,∴2a ≥.故答案为:2a ≥. 【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】首先求出函数的导函数由再根据三角函数的性质解三角不等式即可;【详解】解:所以令即所以故的单调递增区间为故答案为:【点睛】本题考查利用导数求函数的单调区间三角函数的性质的应用属于中档题解析:06,π⎡⎤⎢⎥⎣⎦【分析】首先求出函数的导函数,由()0f x '>,再根据三角函数的性质解三角不等式即可; 【详解】 解:()1cos 2f x x x =+,0,2x π⎡⎤∈⎢⎥⎣⎦所以()1sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦令()0f x '>,即1sin 02x -+>,所以06x π<<,故()f x 的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,故答案为:06,π⎡⎤⎢⎥⎣⎦【点睛】本题考查利用导数求函数的单调区间,三角函数的性质的应用,属于中档题.19.【分析】根据题意得转化为直线和函数的图像有两个不同的交点利用导数研究函数的单调性和最值即可得出实数a 的范围【详解】由及得令根据题意可得:直线和函数的图像有两个不同的交点令得此时函数单调递减令得此时函 解析:(]1,2ln 2-【分析】根据题意得ln a x x =-,转化为直线y a =和函数()ln g x x x =-,(]0,2x ∈的图像有两个不同的交点,利用导数研究函数()g x 的单调性和最值,即可得出实数a 的范围. 【详解】由()22ln f x x x x =+-及()2f x x x a =++,得ln a x x =-,令()ln g x x x =-,根据题意可得:直线y a =和函数()ln g x x x =-,(]0,2x ∈的图像有两个不同的交点,1()1g x x'=-, 令()0g x '<,得01x <<,此时函数()g x 单调递减, 令()0g x '>,得12x <≤,此时函数()g x 单调递增,所以,当1x =时,函数()ln g x x x =-,(]0,2x ∈取得最小值,值为(1)1g =, 又(2)2ln 2g =-,且当210x e <<时,2211()22ln 2g x g e e⎛⎫>=+>- ⎪⎝⎭,故当12ln 2a <≤-时,直线y a =和函数()ln g x x x =-,(]0,2x ∈的图像有两个不同的交点,所以实数a 的范围是(]1,2ln 2-. 故答案为:(]1,2ln 2-. 【点睛】本题主要考查的是函数零点问题,本题解题的关键是转化为两函数图像的交点问题,利用导数研究函数的单调性和最值,考查学生的分析问题能力,是中档题.20.【分析】转化条件得有两个不同实数根令通过导数画出函数的草图后数形结合即可得解【详解】函数的定义域为函数函数有两个不同的零点即为有两个不同实数根令则当时单调递增;当时单调递减可画出函数的草图如图:由图 解析:(),0-∞【分析】转化条件得2ln a x x x =-+有两个不同实数根,令()2ln g x x x x =-+,通过导数画出函数()g x 的草图后数形结合即可得解. 【详解】函数()f x 的定义域为()0,∞+,∴函数()32322ln 0ln ln f x x x x x ax ax x x x x a x x x =-+-=⇔=-+⇔=-+, ∴函数()f x 有两个不同的零点即为2ln a x x x =-+有两个不同实数根,令()2ln g x x x x =-+,则()()()211121x x g x x x x+-+'=-+=, ∴当()0,1x ∈时,()0g x '>,()g x 单调递增;当()1,x ∈+∞时,()0g x '<,()g x 单调递减.()10g =,∴可画出函数()g x 的草图,如图:由图可知,要使2ln a x x x =-+有两个不同实数根,则0a <. 故答案为:(),0-∞. 【点睛】本题考查了导数的应用,考查了数形结合思想,属于中档题.三、解答题21.(1)1b =;(2)答案见解析. 【分析】(1)求导求出函数的单调区间,比较(1),(1)f f -得到函数的最小值为65b -=-即得解;(2)先求导,再对a 分三种情况得到函数的单调性. 【详解】(1)()3224f x x x b =-+,所以()2682(34)f x x x x x '=-=-,令()>00f x x '∴<,;()<00f x x '∴>,; 所以函数的单调递增区间为[1,0]-,单调递减区间为[0,1], 因为(1)246,(1)2f b b f b -=--+=-=-, 所以()f x 在区间[]1,1-的最小值65,1b b -=-∴=.(2)()()26223f x x ax x x a '=-=-.令0f x ,得0x =或3a x =. 若0a >,则当(),0,3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,0f x ;当0,3⎛⎫∈ ⎪⎝⎭a x 时,0f x .故()f x 在,0,,3a ⎛⎫+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若0a =,()f x 在(),-∞+∞单调递增;若0a <,则当(),0,3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,0fx ;当,03⎛⎫∈⎪⎝⎭a x 时,0f x.故()f x 在,3a ⎛⎫-∞ ⎪⎝⎭,0,单调递增,在,03⎛⎫⎪⎝⎭a 单调递减. 【点睛】方法点睛:用导数求函数的单调区间步骤:求函数的定义域D →求导'()f x →解不等式'()f x >()<0得解集P →求D P ⋂,得函数的单调递增(减)区间.22.(1)1a =;(2)答案见解析;(3)(][)0,1,e +∞.【分析】(1)由题意可得()10f '=,由此可解得实数a 的值; (2)求得()2x af x x-'=,对实数a 的取值进行分类讨论,分析函数()f x 在区间()1,e 上的单调性,结合零点存在定理可得出结论; (3)根据(2)中的讨论可写出实数a 的取值范围. 【详解】(1)()221a x a f x x x x'-=-=, 因为()y f x =在点()()1,1f 处与x 轴相切,且()10f =, 所以()110f a '=-=,解得1a =. 经检验1a =符合题意; (2)由(1)知()2x af x x-'=,令()0f x '=,得x a =. (i )当01a <≤时,()1,x e ∈,()0f x '>,函数()f x 在区间()1,e 上单调递增, 所以()()10f x f >=, 所以函数()f x 在区间()1,e 上无零点;(ii )当1a e <<时,若1x a <<,则()0f x '<,若a x e <<,则()0f x '>. 函数()f x 在区间()1,a 上单调递减,在区间(),a e 上单调递增, 且()10f =,()1ea f e a =-+. 当()10af e a e=-+>,即11e a e <<-时,函数()f x 在区间()1,e 上有一个零点;当()10a f e a e=-+≤时,即当ee e 1a <-≤时,函数()f x 在区间()1,e 上无零点; (iii )当a e ≥时,()1,x e ∈,()0f x '<,函数()f x 在区间()1,e 上单调递减, 所以()()10f x f <=, 所以函数()f x 在区间()1,e 上无零点. 综上:当01a <≤或ee 1a ≥-时,函数()f x 在区间()1,e 上无零点; 当11ea e <<-时,函数()f x 在区间()1,e 上有一个零点. (3)01a <≤或a e ≥. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题. 23.(1)答案见解析;(2)[)1,+∞. 【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果. 【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x ah x x x x x+'=+=>,当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>;()h x ∴在(上单调递减,在)+∞上单调递增.(2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-,即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2at x x x'=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200ax x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max21x x -+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.24.(1)2a =-(2)21(,2),1e e ⎛⎫+-∞-+∞⎪-⎝⎭【分析】(1)将(),()f x g x 的解析式代入曲线()()y f x g x =-,根据导数几何意义及垂直直线的斜率关系即可求得a 的值;(2)将0x 代入导函数(),()f x g x '',并代入不等式中化简变形,构造函数1()ln am x x a x x+=-+,求得()m x '并令()0m x '=,对a 分类讨论即可确定满足题意的a 的取值范围.【详解】(1)由21()()ln 2y f x g x x a x =-=-, 得()a y x x x'=-.在2x =处的切线斜率为22a -,直线370x y +-=的斜率为13-, 由垂直直线的斜率关系可知232a-=, 解得2a =-. (2)21(),()ln 2f x xg x a x ==, 则(),()a f x x g x x'='=, 不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln ax a x x x +<-. 整理得0001ln 0ax a x x +-+<. 构造函数1()ln am x x a x x+=-+, 由题意知,在[]1,e 上存在一点0x ,使得()00m x <.22221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+'=--==. 因为0x >,所以10x +>,令0mx '=(),得1x a =+. ①当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增.只需()120m a =+<,解得2a <-.②当11a e <+≤即01a e <≤-时,()m x 在1x a =+处取最小值. 令(1)1ln(1)10m a a a a +=+-++<即11ln(1)a a a ++<+,可得11ln(1)(*)a a a++<+. 令1t a =+,即1t e <≤,不等式(*)可化为1ln 1t t t +<-: 因为1t e <≤,所以不等式左端大于1,右端小于等于1,所以不等式不能成立. ③当1a e +>,即1a e >-时,()m x 在[]1,e 上单调递减,只需1()0a m e e a e +=-+<,解得211e a >e +-. 综上所述,实数的取值范围是21(,2),1e e ⎛⎫+-∞-+∞⎪-⎝⎭. 【点睛】本题考查了导数的几何意义及由垂直关系求参数,导函数在解不等式中的应用,构造函数法分析函数的单调性、最值的综合应用,属于中档题. 25.(1)1 ;(2)(],1-∞. 【分析】(1)先求函数的导函数,求出函数的极值,并将它与函数的端点值进行比较即可. (2)要求若21()2f x tx x ≥-在(]0,1x ∈内恒成立,即转化为312ln 2xt x x x≤+-在(]0,1x ∈内恒成立,只需求312ln ()xh x x x x=+-(]0,1x ∈内的最小值即可. 【详解】(1)函数的定义域为()0,∞+设()()2112()2x x f x x x x+-'=-=, 由()0f x '>得:1x >,由()0f x '<得:01x <<,所以()f x 在()0,1单调递减,在()1,+∞单调递增,min ()(1)1f x f ==,(2)若21()2f x tx x≥-在(]0,1x ∈内恒成立, 可得312ln 2xt x x x≤+-在(]0,1x ∈内恒成立, 令312ln ()x h x x x x =+-,4224232ln ()x x x xh x x--+'=, 因为(]0,1x ∈,所以430x -<,220x -<,22ln 0x x <,40x >, 所以()0h x '<,可得()h x 在()0,1上单调递减,所以当1x =时,312ln ()x h x x x x =+-有最小值2, 得22t ≤,所以1t ≤,故t 的取值范围是(],1-∞,【点睛】 本题主要考查了利用导数求闭区间上函数的最值,以及求函数恒成立问题,属于基础题. 26.(1)()f x 的单调递增区间为3(2,2)44k k ππππ-+,单调递减区间为37(2,2)44k k ππππ++()k Z ∈;(2)(,1]-∞ 【详解】试题分析:⑴求出函数的导数令其大于零得增区间,令其小于零得减函数;⑵令()()sin x g x f x kx e x kx =-=-,要使()f x kx ≥总成立,只需[0,]2x π∈时min ()0g x ≥,对讨论,利用导数求的最小值.试题(1) 由于()sin x f x e x =,所以 '()sin cos (sin cos )2sin()4x x x x f x e x e x e x x e x π=+=+=+. 当(2,2)4x k k ππππ+∈+,即3(2,2)44x k k ππππ∈-+时,'()0f x >; 当(2,22)4x k k πππππ+∈++,即37(2,2)44x k k ππππ∈++时,'()0f x <. 所以()f x 的单调递增区间为3(2,2)44k k ππππ-+()k ∈Z , 单调递减区间为37(2,2)44k k ππππ++()k ∈Z . (2) 令()()sin x g x f x kx e x kx =-=-,要使()f x kx ≥总成立,只需[0,]2x π∈时min ()0g x ≥.对()g x 求导得()(sin cos )x g x e x x k =+-',令()(sin cos )x h x e x x =+,则()2cos 0x h x e x '=>,((0,)2x π∈) 所以()h x 在[0,]2π上为增函数,所以2()[1,]h x e π∈. 对分类讨论:① 当1k ≤时,()0g x '≥恒成立,所以()g x 在[0,]2π上为增函数,所以min ()(0)0g x g ==,即()0g x ≥恒成立; ② 当21k e π<<时,()0g x '=在上有实根0x ,因为()h x 在(0,)2π上为增函数,所以当0(0,)x x ∈时,()0g x '<,所以0()(0)0g x g <=,不符合题意; ③ 当2k e π≥时,()0g x '≤恒成立,所以()g x 在(0,)2π上为减函数,则()(0)0g x g <=,不符合题意.综合①②③可得,所求的实数的取值范围是(,1]-∞.考点:利用导数求函数单调区间、利用导数求函数最值、构造函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学选修2-2导数及其应用测试题
一、 选择题(本大题共12小题,每小题5分,共60分)
1.设xxysin12,则'y( ).
A.xxxxx22sincos)1(sin2 B.xxxxx22sincos)1(sin2
C.xxxxsin)1(sin22 D.xxxxsin)1(sin22
2.设1ln)(2xxf,则)2('f( ).
A.54 B.52 C.51 D.53
3.已知2)3(',2)3(ff,则3)(32lim3xxfxx的值为( ).
A.4 B.0 C.8 D.不存在
4.曲线3xy在点)8,2(处的切线方程为( ).
A.126xy B.1612xy
C.108xy D.322xy
5.已知函数dcxbxaxxf23)(的图象与x轴有三个不同交点)0,(),0,0(1x,)0,(2x,
且)(xf在1x,2x时取得极值,则21xx的值为( )
A.4 B.5 C.6 D.不确定
6.在R上的可导函数cbxaxxxf22131)(23,当)1,0(x取得极大值,当
)2,1(x
取得极小值,则12ab的取值范围是( ).
A.)1,41( B.)1,21( C.)41,21( D.)21,21(
7.函数)cos(sin21)(xxexfx在区间]2,0[的值域为( ).
A.]21,21[2e B.)21,21(2e C.],1[2e D.),1(2e
8.076223xx在区间)2,0(内根的个数为 ( )
A.0 B.1 C.2 D.3
9.1. 已知函数)(xfy在0xx处可导,则hhxfhxfh)()(lim000等于
( )
A.)(0/xf B.2)(0/xf C.-2)(0/xf D.0
10.如图是导函数/()yfx的图象,那么函数()yfx在下面哪个区间是
减函数( )
A. 13(,)xx B. 24(,)xx C.46(,)xx D.56(,)xx
第Ⅱ卷(非选择题,共90分)
二、填空题(每小题4分,共16分。请将答案填在答题卷相应空格上。)
13.曲线3xy在点)0)(,(3aaa处的切线与x轴、直线ax所围成的三角形的面积为
6
1
,则a_________ 。
15、函数xxxfcos2)( )20(,x的单调递减区间为
8.32()32fxaxx,若(1)4f,则a的值等于
9.函数f(x)=3x-4x3(x∈[0,1])的最大值是
三、解答题:(本大题共5小题,共74分,解答应写出文字说明,证明过程或演算步骤)
(17)(本小题满分10分)已知函数32()fxxaxbxc,当1x时,()fx的极大
值为7;当3x时,()fx有极小值.求(1),,abc的值;(2)函数()fx的极小值.
(18)(本小题满分12分)已知函数xbxaxxf3)(23在1x处取得极值.
(1)讨论)1(f和)1(f是函数)(xf的极大值还是极小值;
(2)过点)16,0(A作曲线)(xfy的切线,求此切线方程.
(19)(本小题满分14分)
设ax0,求函数xxxxxf24683)(234的最大值和最小值。
(21) (本小题满分12分)已知函数.93)(23axxxxf
(1)求)(xf的单调递减区间;
(2)若)(xf在区间[-2,2]上的最大值为20,求它在该区间上的最小值
(22) (本小题满分14分)
已知函数0,21)(,ln)(2abxaxxgxxf。
(1)若2b,且函数)()()(xgxfxh存在单调递减区间,求a的取值范围。
(2)设函数)(xf的图象1C与函数)(xg的图象2C交于点QP,,过线段PQ的中点作
x
轴的垂线分别交1C、2C于点NM,。证明:1C在点M处的切线与2C在点N处的
切线不平行。