专题01 集合与常用逻辑用语理-2018年高考题和高考模拟题数学(理)分项版汇编含解析

合集下载

2018高考数学理大一轮复习习题: 第一章 集合与常用逻辑用语 含答案 精品

2018高考数学理大一轮复习习题: 第一章 集合与常用逻辑用语 含答案 精品

第一章⎪⎪⎪集合与常用逻辑用语 第一节 集 合突破点(一) 集合的基本概念1.集合的有关概念(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a 属于集合A ,记作a ∈A ;若b 不属于集合A ,记作b ∉A . (3)集合的表示方法:列举法、描述法、图示法. 2.常用数集及记法[例1] ( ) A .1 B .3 C .5D .9(2)若集合A ={x ∈R|ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B.98 C .0D .0或98[解析] (1)∵A ={0,1,2},∴B ={x -y |x ∈A ,y ∈A }={0,-1,-2,1,2}.故集合B 中有5个元素.本节主要包括3个知识点: 1.集合的基本概念; 2.集合间的基本关系; 3.集合的基本运算.(2)当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.故a =0或98.[答案] (1)C (2)D [方法技巧]求元素(个数)的方法高考中,常利用集合元素的互异性确定集合中的元素,一般给定一个新定义集合,如“已知集合A ,B ,求集合C ={z |z =x *y ,x ∈A ,y ∈B }(或集合C 的元素个数),其中‘*’表示题目设定的某一种运算”.具体的解决方法:根据题目规定的运算“*”,一一列举x ,y 的可能取值(应用列举法和分类讨论思想),从而得出z 的所有可能取值,然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.元素与集合的关系[例2] (1)设集合A ={2,3,4},B ={2,4,6},若x ∈A ,且x ∉B ,则x =( ) A .2 B .3 C .4 D .6(2)(2017·成都诊断)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. [解析] (1)因为x ∈A ,且x ∉B ,故x =3. (2)因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去; 当2m 2+m =3时,解得m =-32或m =1(舍去),当m =-32时,m +2=12≠3符合题意.所以m =-32.[答案] (1)B (2)-32[方法技巧]利用元素的性质求参数的方法已知一个元素属于集合,求集合中所含的参数值.具体解法:(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值. (2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验.能力练通 抓应用体验的“得”与“失”1.[考点二]设集合P ={x |x 2-2x ≤0},m =30.5,则下列关系正确的是( ) A .m P B .m ∈P C .m ∉PD .m ⊆P解析:选C 易知P ={x |0≤x ≤2},而m =30.5=3>2,∴m ∉P ,故选C.2.[考点一]已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( ) A .3 B .6 C .8D .9解析:选D 集合B 中的元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.3.[考点二](2017·杭州模拟)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:选C 因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba =-1,所以a=-1,b =1.所以b -a =2.4.[考点一]已知P ={x |2<x <k ,x ∈N},若集合P 中恰有3个元素,则k 的取值范围为________.解析:因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. 答案:(5,6]5.[考点一]若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________. 解析:当a =0时,方程无解;当a ≠0时,则Δ=a 2-4a =0,解得a =4.故符合题意的a 的值为4.答案:4突破点(二) 集合间的基本关系基础联通 抓主干知识的“源”与“流”表示关系文字语言记法 集合间的基本关系 子集集合A 中任意一个元素都是集合B 中的元素 A ⊆B 或B ⊇A 真子集集合A 是集合B 的子集,并且B 中至少有一个元素不属于AA B 或B A相等 集合A 的每一个元素都是集合B 的元素,集合B 的每一个元素也都是集合A 的元素A ⊆B 且B ⊆A ⇔A =B空集 空集是任何集合的子集 ∅⊆A 空集是任何非空集合的真子集∅B 且B ≠∅考点贯通 抓高考命题的“形”与“神”集合子集个数的判定含有n n n 除集合本身);非空真子集的个数为2n -2(除空集和集合本身,此时n ≥1).[例1] 已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4[解析] 由x 2-3x +2=0得x =1或x =2,所以A ={1,2}.由题意知B ={1,2,3,4},所以满足条件的集合C 为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.[答案] D [易错提醒](1)注意空集的特殊性:空集是任何集合的子集,是任何非空集合的真子集. (2)任何集合的本身是该集合的子集,在列举时千万不要忘记.集合间的关系考法(一) [例2] 已知集合A ={x |y =1-x 2,x ∈R},B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A[解析] 由题意知A ={x |y =1-x 2,x ∈R}, 所以A ={x |-1≤x ≤1},所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 所以B A .故选B. [答案] B [方法技巧]判断集合间关系的三种方法(1)列举法:根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.(2)结构法:从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.(3)数轴法:在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.[提醒] 在用数轴法判断集合间的关系时,其端点能否取到,一定要注意用回代检验的方法来确定.如果两个集合的端点相同,则两个集合是否能同时取到端点往往决定了集合之间的关系.考法(二) 根据集合间的关系求参数[例3] 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.[解析] ∵B ⊆A ,∴①若B =∅, 则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为(-∞,3]. [答案] (-∞,3] [易错提醒]将两个集合之间的关系准确转化为参数所满足的条件时,应注意子集与真子集的区别,此类问题多与不等式(组)的解集相关.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易产生增解或漏解.能力练通 抓应用体验的“得”与“失”1.[考点一]集合A ={x ∈N|0<x <4}的真子集个数为( ) A .3B .4C.7 D.8解析:选C因为A={1,2,3},所以其真子集的个数为23-1=7.2.[考点二·考法(一)](2017·长沙模拟)设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P解析:选C因为P={y|y=-x2+1,x∈R}={y|y≤1},所以∁R P={y|y>1},又Q={y|y=2x,x∈R}={y|y>0},所以∁R P⊆Q,故选C.3.[考点二·考法(二)]已知集合A={0,1},B={-1,0,a+3},且A⊆B,则a=() A.1 B.0 C.-2 D.-3解析:选C∵A⊆B,∴a+3=1,解得a=-2.故选C.4.[考点二·考法(二)]已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________.解析:集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4],因为A⊆B,所以a≤2,b≥4,所以a-b≤2-4=-2,即实数a-b的取值范围是(-∞,-2].答案:(-∞,-2]突破点(三)集合的基本运算1.集合的三种基本运算(1)A∩A=A,A∩∅=∅,A∪A=A,A∪∅=A.(2)A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A.(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.考点贯通 抓高考命题的“形”与“神”求交集或并集[例1] (1)(2016·x -2)<0,x ∈Z},则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}(2)(2016·全国乙卷)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3[解析] (1)因为B ={x |(x +1)(x -2)<0,x ∈Z}={x |-1<x <2,x ∈Z}={0,1},A ={1,2,3},所以A ∪B ={0,1,2,3}.(2)∵x 2-4x +3<0,∴1<x <3,∴A ={x |1<x <3}.∵2x -3>0,∴x >32,∴B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >32.∴A ∩B ={x |1<x <3}∩⎩⎨⎧⎭⎬⎫x ⎪⎪x >32=⎝⎛⎭⎫32,3. [答案] (1)C (2)D [方法技巧]求集合的交集或并集时,应先化简集合,再利用交集、并集的定义求解.交、并、补的混合运算[例2] (1)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩∁U B =( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}(2)已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A .{x |x ≥0} B .{x |x ≤1} C .{x |0≤x ≤1}D .{x |0<x <1}[解析] (1)因为∁U B ={2,5,8},所以A ∩∁U B ={2,3,5,6}∩{2,5,8}={2,5}. (2)∵A ∪B ={x |x ≤0}∪{x |x ≥1}={x |x ≤0或x ≥1}, ∴∁U (A ∪B )={x |0<x <1}. [答案] (1)A (2)D[方法技巧]集合混合运算的解题思路进行集合的混合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算;当集合用不等式形式表示时,可借助数轴求解,对于端点值的取舍,应单独检验.集合的新定义问题[例3] (2017·合肥模拟)对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ).设A ={y |y =x 2-3x ,x ∈R},B ={y |y =-2x ,x ∈R},则A ⊕B 等于( )A.⎝⎛⎦⎤-94,0 B.⎣⎡⎭⎫-94,0 C.⎝⎛⎭⎫-∞,-94∪[0,+∞) D.⎝⎛⎦⎤-∞,-94∪(0,+∞) [解析] 因为A =⎩⎨⎧⎭⎬⎫y ⎪⎪y ≥-94,B ={y |y <0}, 所以A -B ={y |y ≥0},B -A =⎩⎨⎧⎭⎬⎫y ⎪⎪y <-94, A ⊕B =(A -B )∪(B -A )=⎩⎨⎧⎭⎬⎫y ⎪⎪y ≥0或y <-94. 故选C. [答案] C [方法技巧]解决集合新定义问题的两个着手点(1)正确理解新定义.耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.(2)合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,并合理利用.能力练通 抓应用体验的“得”与“失”1.[考点一](2016·北京高考)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=()A.{0,1} B.{0,1,2}C.{-1,0,1} D.{-1,0,1,2}解析:选C集合A={x|-2<x<2},集合B={-1,0,1,2,3},所以A∩B={-1,0,1}.2.[考点一](2017·长春模拟)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)解析:选C∵A=(0,+∞),B=(-1,1),∴A∪B=(-1,+∞).故选C.3.[考点二](2017·贵阳模拟)设集合A={x|1<x<4},集合B={x|x2-2x-3≤0},则A∩(∁B)=()RA.(1,4) B.(3,4)C.(1,3) D.(1,2)∪(3,4)解析:选B由题意知B={x|-1≤x≤3},所以∁R B={x|x<-1或x>3},所以A∩(∁R B)={x|3<x<4},故选B.4.[考点三]定义集合A,B的一种运算:A*B={x|x=x1·x2,其中x1∈A,x2∈B},若A ={1,2},B={1,2},则A*B中的所有元素之和为()A.5 B.6 C.7 D.9解析:选C∵A*B={x|x=x1·x2,其中x1∈A,x2∈B},且A={1,2},B={1,2},∴A*B ={1,2,4},故A*B中的所有元素之和为1+2+4=7.5.[考点二]设全集U=R,A={x|x(x+3)<0},B={x|x<-1},则图中阴影部分表示的集合为________.解析:因为A={x|x(x+3)<0}={x|-3<x<0},∁U B={x|x≥-1},阴影部分为A∩(∁U B),所以A∩(∁U B)={x|-1≤x<0}.答案:{x|-1≤x<0}[全国卷5年真题集中演练——明规律]1.(2016·全国丙卷)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3] B.(-∞,2]∪[3,+∞)C.[3,+∞) D.(0,2]∪[3,+∞)解析:选D由题意知S={x|x≤2或x≥3},则S∩T={x|0<x≤2或x≥3}.故选D.2.(2015·新课标全国卷Ⅱ)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B =()A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}解析:选A由题意知B={x|-2<x<1},所以A∩B={-1,0}.故选A.3.(2012·新课标全国卷)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10解析:选D列举得集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含有10个元素.4.(2016·全国甲卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1, 2}解析:选D∵x2<9,∴-3<x<3,∴B={x|-3<x<3}.又A={1,2,3},∴A∩B={1,2,3}∩{x|-3<x<3}={1,2},故选D.5.(2013·新课标全国卷Ⅰ)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=() A.{1,4} B.{2,3} C.{9,16} D.{1,2}解析:选A因为x=n2,所以当n=1,2,3,4时,x=1,4,9,16,所以集合B={1,4,9,16},所以A∩B={1,4}.[课时达标检测] 基础送分课时——精练“12+4”,求准求快不深挖一、选择题1.若集合A={(1,2),(3,4)},则集合A的真子集的个数是()A.16 B.8C.4 D.3解析:选D集合A中有两个元素,则集合A的真子集的个数是22-1=3.选D.2.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=()A.{0} B.{1}C.{0,1} D.{0,-1}解析:选C因为B={y|y=x2,x∈A}={0,1},所以A∩B={0,1}.3.已知集合A={y|y=|x|-1,x∈R},B={x|x≥2},则下列结论正确的是()A .-3∈AB .3∉BC .A ∩B =BD .A ∪B =B解析:选C 由题A ={y |y ≥-1},因此A ∩B ={x |x ≥2}=B . 4.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1)D .(-∞,1]解析:选A M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},M ∪N =[0,1]. 5.已知集合A =⎩⎨⎧x ⎪⎪⎭⎬⎫x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5解析:选C ∵32-x∈Z ,∴2-x 的取值有-3,-1,1,3,又∵x ∈Z ,∴x 值分别为5,3,1,-1,故集合A 中的元素个数为4.6.已知全集为整数集Z.若集合A ={x |y =1-x ,x ∈Z},B ={x |x 2+2x >0,x ∈Z},则A ∩(∁Z B )=( )A .{-2}B .{-1}C .[-2,0]D .{-2,-1,0}解析:选D 由题可知,集合A ={x |x ≤1,x ∈Z},B ={x |x >0或x <-2,x ∈Z},故A ∩(∁Z B )={-2,-1,0},故选D.7.(2017·成都模拟)已知全集U =R ,集合A ={x |0≤x ≤2},B ={x |x 2-1<0},则图中的阴影部分表示的集合为( )A .(-∞,1]∩(2,+∞)B .(-1,0)∪[1,2]C .[1,2)D .(1,2]解析:选B 因为A ={x |0≤x ≤2},B ={x |-1<x <1},所以A ∪B ={x |-1<x ≤2},A ∩B ={x |0≤x <1}.故图中阴影部分表示的集合为∁(A ∪B )(A ∩B )=(-1,0)∪[1,2].8.设全集U =R ,已知集合A ={x ||x |≤1},B ={x |log 2x ≤1},则(∁U A )∩B =( ) A .(0,1] B .[-1,1]C .(1,2]D .(-∞,-1]∪[1,2]解析:选C 由|x |≤1,得-1≤x ≤1,由log 2x ≤1,得0<x ≤2,所以∁U A ={x |x >1或x <-1},则(∁U A )∩B =(1,2].9.设集合A =⎩⎨⎧⎭⎬⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{2,3}B .{-1,2,5}C .{2,3,5}D .{-1,2,3,5}解析:选D 由A ∩B ={2,-1},可得⎩⎪⎨⎪⎧b a =2,a -b =-1或⎩⎪⎨⎪⎧b a =-1,a -b =2.当⎩⎪⎨⎪⎧b a =2,a -b =-1时,⎩⎪⎨⎪⎧a =1,b =2,此时B ={2,3,-1},则A ∪B ={-1,2,3,5};当⎩⎪⎨⎪⎧ba =-1,a -b =2时,⎩⎪⎨⎪⎧a =1,b =-1,此时不符合题意,舍去.故A ∪B ={-1,2,3,5}.10.设集合A ={x |y =lg(-x 2+x +2)},B ={x |x -a >0},若A ⊆B ,则实数a 的取值范围是( )A .(-∞,-1)B .(-∞,-1]C .(-∞,-2)D .(-∞,-2]解析:选B 集合A ={x |y =lg(-x 2+x +2)}={x |-1<x <2},B ={x |x >a },因为A ⊆B ,所以a ≤-1.11.已知全集U ={x ∈Z|0<x <8},集合M ={2,3,5},N ={x |x 2-8x +12=0},则集合{1,4,7}为( )A .M ∩(∁U N )B .∁U (M ∩N )C .∁U (M ∪N )D .(∁U M )∩N解析:选C 由已知得U ={1,2,3,4,5,6,7},N ={2,6},M ∩(∁U N )={2,3,5}∩{1,3,4,5,7}={3,5},M ∩N ={2},∁U (M ∩N )={1,3,4,5,6,7},M ∪N ={2,3,5,6},∁U (M ∪N )={1,4,7},(∁U M )∩N ={1,4,6,7}∩{2,6}={6},故选C.12.(2017·沈阳模拟)已知集合A ={x ∈N|x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素之和为( )A .15B .16C .20D .21解析:选D 由x 2-2x -3≤0,得(x +1)(x -3)≤0,又x ∈N ,故集合A ={0,1,2,3}.∵A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },∴A *B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,∴A *B ={1,2,3,4,5,6},∴A *B 中的所有元素之和为21.二、填空题13.已知集合A ={1,2,3,4},B ={2,4,6,8},定义集合A ×B ={(x ,y )|x ∈A ,y ∈B },集合A ×B 中属于集合{(x ,y )|log x y ∈N}的元素的个数是________.解析:由定义可知A ×B 中的元素为(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8).其中使log x y ∈N 的有(2,2),(2,4),(2,8),(4,4),共4个.答案:414.设集合I ={x |-3<x <3,x ∈Z},A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________.解析:∵集合I ={x |-3<x <3,x ∈Z}={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},∴∁I B ={0,1},则A ∩(∁I B )={1}.答案:{1}15.集合A ={x |x 2+x -6≤0},B ={y |y =x ,0≤x ≤4},则A ∩(∁R B )=________. 解析:A ={x |x 2+x -6≤0}={x |-3≤x ≤2},B ={y |y =x ,0≤x ≤4}={y |0≤y ≤2},∴∁R B ={y |y <0或y >2}.∴A ∩(∁R B )=[-3,0).答案:[-3,0)16.已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B =⎩⎨⎧y ⎪⎪⎭⎬⎫y =12x 2-x +52,0≤x ≤3.若A ∩B =∅,则实数a 的取值范围是________.解析:A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.当A ∩B =∅时,⎩⎪⎨⎪⎧a 2+1≥4,a ≤2,∴3≤a ≤2或a ≤-3,∴a 的取值范围是(-∞,- 3 ]∪[3,2]. 答案:(-∞,- 3 ]∪[3,2] 第二节命题及其关系、充分条件与必要条件突破点(一) 命题及其关系1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及相互关系本节主要包括2个知识点: 1.命题及其关系; 2.充分条件与必要条件.3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系. 考点贯通抓高考命题的“形”与“神”命题的真假判断[例1]A.若1x=1y,则x=yB.若x2=1,则x=1C.若x=y,则x=yD.若x<y,则x2<y2[解析]取x=-1,排除B;取x=y=-1,排除C;取x=-2,y=-1,排除D.[答案] A[方法技巧]判断命题真假的思路方法(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,把它写成“若p,则q”的形式,然后联系其他相关的知识,经过逻辑推理或列举反例来判定.(2)一个命题要么真,要么假,二者必居其一.当一个命题改写成“若p,则q”的形式之后,判断这个命题真假的方法:①若由“p”经过逻辑推理,得出“q”,则可判定“若p,则q”是真命题;②判定“若p,则q”是假命题,只需举一反例即可.四种命题的关系得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.[例2](1)命题“若a>b,则a-1>b-1”的否命题是()A.若a>b,则a-1≤b-1B.若a>b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-1(2)给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是()A.3 B.2 C.1 D.0[解析](1)根据否命题的定义可知,命题“若a>b,则a-1>b-1”的否命题应为“若a≤b,则a-1≤b-1”.(2)原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.[答案](1)C(2)C[方法技巧]1.写一个命题的其他三种命题时的注意事项(1)对于不是“若p,则q”形式的命题,需先改写为“若p,则q”形式.(2)若命题有大前提,需保留大前提.2.判断四种命题真假的方法(1)利用简单命题判断真假的方法逐一判断.(2)利用四种命题间的等价关系:当一个命题不易直接判断真假时,可转化为判断其等价命题的真假.能力练通抓应用体验的“得”与“失”1.[考点一]下列命题中为真命题的是()A.mx2+2x-1=0是一元二次方程B.抛物线y=ax2+2x-1与x轴至少有一个交点C.互相包含的两个集合相等D.空集是任何集合的真子集解析:选C A中,当m=0时,是一元一次方程,故是假命题;B中,当Δ=4+4a<0,即a<-1时,抛物线与x轴无交点,故是假命题;C是真命题;D中,空集不是本身的真子集,故是假命题.2.[考点二]命题“若x 2+y 2=0,x ,y ∈R ,则x =y =0”的逆否命题是( ) A .若x ≠y ≠0,x ,y ∈R ,则x 2+y 2=0 B .若x =y ≠0,x ,y ∈R ,则x 2+y 2≠0 C .若x ≠0且y ≠0,x ,y ∈R ,则x 2+y 2≠0 D .若x ≠0或y ≠0,x ,y ∈R ,则x 2+y 2≠0解析:选D 将原命题的条件和结论否定,并互换位置即可.由x =y =0知x =0且y =0,其否定是x ≠0或y ≠0.故原命题的逆否命题是“若x ≠0或y ≠0,x ,y ∈R ,则x 2+y 2≠0”.3.[考点二]命题“若△ABC 有一个内角为π3,则△ABC 的三个内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真命题,原命题的逆命题为“若△ABC 的三个内角成等差数列,则△ABC 有一个内角为π3”,它是真命题.故选D.4.[考点二]有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中为真命题的是________(填写所有真命题的序号).解析:①“若xy =1,则x ,y 互为倒数”的逆命题是“若x ,y 互为倒数,则xy =1”,显然是真命题;②“面积相等的三角形全等”的否命题是“若两个三角形面积不相等,则这两个三角形不全等”,显然是真命题;③若x 2-2x +m =0有实数解,则Δ=4-4m ≥0,解得m ≤1,所以“若m ≤1,则x 2-2x +m =0有实数解”是真命题,故其逆否命题是真命题;④若A ∩B =B ,则B ⊆A ,故原命题是假命题,所以其逆否命题是假命题.故真命题为①②③.答案:①②③突破点(二) 充分条件与必要条件1.充分条件与必要条件的概念2.A B B A[例1] x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2016·天津高考)设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件[解析] (1)∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q .而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q ⇒/ p .故p 是q 的充分不必要条件.(2)当x =1,y =-2时,x >y ,但x >|y |不成立;若x >|y |,因为|y |≥y ,所以x >y .所以x >y 是x >|y |的必要而不充分条件.[答案] (1)A (2)C [方法技巧]充分、必要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据p ,q 成立对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的何种条件,即可转化为判断“x =1且y =1”是“xy =1”的何种条件.充分条件与必要条件的应用[例2] (1)2( )A .a ≥1B .a >1C .a ≥4D .a >4(2)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.[解析] (1)命题可化为∀x ∈[1,2),a ≥x 2恒成立. ∵x ∈[1,2),∴x 2∈[1,4).∴命题为真命题的充要条件为a ≥4.∴命题为真命题的一个充分不必要条件为a >4,故选D. (2)由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,解得0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. [答案] (1)D (2)[0,3][方法技巧]根据充分、必要条件求参数的思路方法根据充分、必要条件求参数的值或取值范围的关键是合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),然后通过解方程或不等式(组)求出参数的值或取值范围.1.[考点一](2017·长沙四校联考)“x >1”是“log 2(x -1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由log 2(x -1)<0得0<x -1<1,即1<x <2,故“x >1”是“log 2(x -1)<0”的必要不充分条件,选B.2.[考点二]已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .[1,+∞) C .(2,+∞) D .(-∞,-1]解析:选A 由3x +1<1,得3x +1-1=-x +2x +1<0,解得x <-1或x >2.因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2.3.[考点一](2017·太原模拟)“已知命题p :cos α≠12,命题q :α≠π3”,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若cos α≠12,则α≠2k π±π3(k ∈Z),则α也必然不等于π3,故p ⇒q ;若α≠π3,但α=-π3时,依然有cos α=12,故q ⇒/p .所以p 是q 的充分不必要条件.4.[考点二]已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-3,+∞)D .(-∞,-3)解析:选A 设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,因此a ≥1.5.[考点一]已知函数f (x )=13x-1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的________条件.(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填写)解析:若f (x )=13x-1+a 是奇函数, 则f (-x )=-f (x ), 即f (-x )+f (x )=0, ∴13-x-1+a +13x -1+a =2a +3x 1-3x +13x-1=0, 即2a +3x -11-3x =0,∴2a -1=0,即a =12,f (1)=12+12=1.若f (1)=1,即f (1)=12+a =1,解得a =12,所以f (x )=13x-1+12,f (-x ) =13-x-1+12=-13x -1-12=-f (x ), 故f (x )是奇函数.∴“f (1)=1”是“函数f (x )为奇函数”的充要条件. 答案:充要[全国卷5年真题集中演练——明规律] 1.(2014·新课标全国卷Ⅱ)函数f (x ) 在x =x 0 处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:选C 设f (x )=x 3,f ′(0)=0,但是f (x )是单调增函数,在x =0处不存在极值,故若p ,则q 是一个假命题,由极值的定义可得若q ,则p 是一个真命题.故选C.2.(2012·新课标全国卷)下面是关于复数z =2-1+i的四个命题: p 1:|z |=2;p 2:z 2=2i ;p 3:z 的共轭复数为1+i ;p 4:z 的虚部为-1. 其中的真命题为( ) A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 4解析:选C ∵复数z =2-1+i=-1-i ,∴|z |=2,z 2=(-1-i)2=(1+i)2=2i ,z 的共轭复数为-1+i ,z 的虚部为-1,综上可知p 2,p 4是真命题.[课时达标检测] 基础送分课时——精练“12+4”,求准求快不深挖 一、选择题1.设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( ) A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m ≤0解析:选D 根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.2.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.3.“a <0,b <0”的一个必要条件为( ) A .a +b <0 B .a -b >0 C.ab >1D.ab <-1解析:选A 若a <0,b <0,则一定有a +b <0,故选A.4.已知命题p :“若x ≥a 2+b 2,则x ≥2ab ”,则下列说法正确的是( ) A .命题p 的逆命题是“若x <a 2+b 2,则x <2ab ” B .命题p 的逆命题是“若x <2ab ,则x <a 2+b 2” C .命题p 的否命题是“若x <a 2+b 2,则x <2ab ” D .命题p 的否命题是“若x ≥a 2+b 2,则x <2ab ”解析:选C 命题p 的逆命题是“若x ≥2ab ,则x ≥a 2+b 2”,故A ,B 都错误;命题p 的否命题是“若x <a 2+b 2,则x <2ab ”,故C 正确,D 错误.5.若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的( ) A .必要不充分条件 B .充要条件C.充分不必要条件D.既不充分也不必要条件解析:选A f(x)是定义在R上的奇函数可以推出f(0)=0,但f(0)=0不能推出函数f(x)为奇函数,例如f(x)=x2.故选A.6.原命题p:“设a,b,c∈R,若a>b,则ac2>bc2”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.1 C.2 D.4解析:选C当c=0时,ac2=bc2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a,b,c∈R,若ac2>bc2,则a>b”,它是真命题;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.7.“a=2”是“函数f(x)=x2-2ax-3在区间[2,+∞)上为增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A“a=2”可以推出“函数f(x)=x2-2ax-3在区间[2,+∞)上为增函数”,但反之不能推出.故“a=2”是“函数f(x)=x2-2ax-3在区间[2,+∞)上为增函数”的充分不必要条件.8.(2017·杭州模拟)已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为p:x+y≠-2,q:x≠-1,或y≠-1,所以綈p:x+y=-2,綈q:x=-1,且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.9.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A当四边形ABCD为菱形时,必有对角线互相垂直,即AC⊥BD;当四边形ABCD中AC⊥BD时,四边形ABCD不一定是菱形,还需要AC与BD互相平分.综上知,“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.10.(2017·烟台诊断)若条件p:|x|≤2,条件q:x≤a,且p是q的充分不必要条件,则a 的取值范围是( )A .[2,+∞)B .(-∞,2]C .[-2,+∞)D .(-∞,-2]解析:选A p :|x |≤2等价于-2≤x ≤2.因为p 是q 的充分不必要条件,所以有[-2,2]⊆(-∞,a ],即a ≥2.11.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( ) A .①和② B .②和③ C .③和④D .②和④解析:选D 只有一个平面内的两条相交直线与另一个平面都平行时,这两个平面才相互平行,所以①为假命题;②符合两个平面相互垂直的判定定理,所以②为真命题;垂直于同一直线的两条直线可能平行,也可能相交或异面,所以③为假命题;根据两个平面垂直的性质定理易知④为真命题.12.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 当k =1时,l :y =x +1,由题意不妨令A (-1,0),B (0,1),则S △AOB =12×1×1=12,所以充分性成立;当k =-1时,l :y =-x +1,也有S △AOB =12,所以必要性不成立. 二、填空题13.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是________. 解析:“a +b +c =3”的否定是“a +b +c ≠3”,“a 2+b 2+c 2≥3”的否定是“a 2+b 2+c 2<3”,故根据否命题的定义知,该命题的否命题为:若a +b +c ≠3,则a 2+b 2+c 2<3.答案:若a +b +c ≠3,则a 2+b 2+c 2<3 14.有下列几个命题:①“若a >b ,则1a >1b”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题; ③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析:①原命题的否命题为“若a ≤b ,则1a ≤1b ”,假命题.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”,真命题.③原命题为真命题,故逆否命题为真命题.答案:②③15.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是[3,8).答案:[3,8)16.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________.解析:α:x ≥a ,可看作集合A ={x |x ≥a },∵β:|x -1|<1,∴0<x <2,∴β可看作集合B ={x |0<x <2}.又∵α是β的必要不充分条件,∴B A ,∴a ≤0.答案:(-∞,0] 第三节简单的逻辑联结词、全称量词与存在量词突破点(一) 简单的逻辑联结词命题p ∧q 、p ∨q 、綈p 的真假判定本节主要包括2个知识点: 1.简单的逻辑联结词; 2.全称量词与存在量词.p q p∧q p∨q 綈p真真真真假真假假真假假真假真真假假假假真简记为“p∧q两真才真,一假则假;p∨q一真则真,两假才假;綈p与p真假相反”.考点贯通抓高考命题的“形”与“神”含逻辑联结词命题的真假判断[例1](2017·大连模拟)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题的序号是() A.①③B.①④C.②③D.②④[解析]依题意可知,命题p为真命题,命题q为假命题,则綈p为假命题,綈q为真命题.所以p∧q为假命题,p∨q为真命题,p∧(綈q)为真命题,(綈p)∨q为假命题.[答案] C[方法技巧]判断含有逻辑联结词命题真假的关键及步骤(1)判断含有逻辑联结词的命题真假的关键是正确理解“或”“且”“非”的含义,应根据命题中所出现的逻辑联结词进行命题结构的分析与真假的判断.(2)判断命题真假的步骤根据复合命题的真假求参数[例2]<0},命题q:函数y=lg(ax2-x+a)的定义域为R,如果p∨q为真命题,p∧q为假命题,则实数a的取值范围为________________.[解析]由关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0},知0<a<1.由函数y =lg(ax 2-x +a )的定义域为R ,知不等式ax 2-x +a >0的解集为R ,则⎩⎪⎨⎪⎧a >0,1-4a 2<0,解得a >12. 因为p ∨q 为真命题,p ∧q 为假命题,所以p 和q 一真一假,即“p 假q 真”或“p 真q 假”,故⎩⎪⎨⎪⎧ a >1,a >12或⎩⎪⎨⎪⎧0<a <1,a ≤12,解得a >1或0<a ≤12,即a ∈⎝⎛⎦⎤0,12∪(1,+∞). [答案] ⎝⎛⎦⎤0,12∪(1,+∞)[方法技巧]根据复合命题真假求参数的步骤(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况); (2)求出每个命题是真命题时参数的取值范围;(3)根据给出的复合命题的真假推出每个命题的真假情况,从而求出参数的取值范围.能力练通 抓应用体验的“得”与“失”1.[考点一]若命题p :函数y =x 2-2x 的单调递增区间是[1,+∞),命题q :函数y =x -1x 的单调递增区间是[1,+∞),则( )A .p ∧q 是真命题B .p ∨q 是假命题C .綈p 是真命题D .綈q 是真命题解析:选D 因为函数y =x 2-2x 在[1,+∞)上是增函数,所以其单调递增区间是[1,+∞),所以p 是真命题;因为函数y =x -1x 的单调递增区间是(-∞,0)和(0,+∞),所以q 是假命题.所以p ∧q 为假命题,p ∨q 为真命题,綈p 为假命题,綈q 为真命题.故选D.2.[考点一]已知命题p :当a >1时,函数y =log 12(x 2+2x +a )的定义域为R ;命题q :“a =3”是“直线ax +2y =0与直线2x -3y =3垂直”的充要条件,则以下结论正确的是( )A .p ∨q 为真命题B .p ∧q 为假命题。

2018年高考数学集合与常用逻辑用语综合训练(1)(wold版,含详细答案)

2018年高考数学集合与常用逻辑用语综合训练(1)(wold版,含详细答案)

2018年高考数学(理)高频考点专项练习集合与常用逻辑用语综合训练(1)第1卷一、选择题1、满足,且的集合的个数是( )A.1B.2C.3D.42、设集合A={4,5,6,7,9},B={3,4,7,8,9},全集C=A∪B,则集合C U(A∩B)中的元素共有( )A.3个B.4个C.5个D.6个3、已知全集中有个元素, 中个元素,若非空,则的元素个数为( )A. B. C. D.4、已知全集,则正确表示集合和关系的韦恩()图是( )5、设集合,满足且的集合的个数是( )A. B. C. D.6、已知集合,,则满足条件的集合的个数为( )A.1B.2C.3D.47、设集合,则集合中元素的个数是( )A.1B.3C.5D.98、已知集合R| }, R| }, 则=( )A. B.[1,2] C.[-2,2] D.[-2,1]9、已知集合A={x|x2-2x>0},B={},则()A.A∩B=∅B.A∪B=RC.D.10、已知集合,,从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是( ) A. B. C. D.二、填空题11、集合,则= .12、设集合A=,则A∩B=.13、当时,如果关于的不等式恒成立,那么的取值范围是.14、设则的值域为.三、解答题15、已知函数满足,求的解析式.16、已知集合,若,求实数的取值范围。

17、已知集合,集合.若B A,则实数的取值范围是多少?18、已知,或1.若=4,求A∩B.2.若A B,求a的取值范围.19、设集合或.分别求满足下列条件的实数的取值范围:1.2.20、已知集合A={1,2,3,4},b={x|x=n2,n∈A},则A∩B=.参考答案一、选择题1.答案:B解析:满足条件的集合有,,所以集合的个数为2个。

2.答案:A解析:A∪B={3,4,5,7,8,9},A∩B={4,7,9},C U(A∩B)={3,5,8}故选A。

2018年高考数学课标通用(理科)一轮复习真题演练第一章 集合与常用逻辑用语1-1 Word版含解析

2018年高考数学课标通用(理科)一轮复习真题演练第一章 集合与常用逻辑用语1-1 Word版含解析

真题演练集训.[·新课标全国卷Ⅰ]设集合={-+<},={->},则∩=( )..答案:解析:由题意得,={<<},=,则∩=.故选..[·新课标全国卷Ⅱ]已知集合={},={(+)(-)<,∈},则∪=( ).{}.{}.{-}.{}答案:解析:由已知可得={(+)(-)<,∈}={-<<,∈}={},∴∪={},故选..[·新课标全国卷Ⅲ]设集合={(-)·(-)≥},={>},则∩=( ).[].(-∞,]∪[,+∞).[,+∞).(]∪[,+∞)答案:解析:集合=(-∞,]∪[,+∞),结合数轴,可得∩=(]∪[,+∞)..[·新课标全国卷Ⅱ]已知集合={-,-,},={(-)(+)<},则∩=( ).{}.{-}.{}.{-}答案:解析:由题意知={-<<},所以∩={-}.故选..[·新课标全国卷Ⅰ]已知集合={--≥},={-≤<},则∩=( ).[-).[-,-].[).[-]答案:解析:∵={≥或≤-},={-≤<},∴∩={-≤≤-}=[-,-],故选..[·新课标全国卷Ⅱ]设集合={},={-+≤},则∩=( ).{}.{}.{}.{}答案:解析:={-+≤}={≤≤},又={},所以∩={}.课外拓展阅读集合运算问题的三种解题模板集合的基本运算包括交集、并集、补集,是历年高考必考的内容.解决集合的基本运算问题,要先明确集合中元素的特征,求出每个集合,然后理清几个集合之间的关系,最后利用列举法或借助数轴、图等进行基本运算,从而得出结果.方法一列举法列举法就是通过枚举集合中所有的元素,然后根据集合基本运。

2018年高考理科数学通用版三维二轮专题复习专题检测:(一) 集合与常用逻辑用语 Word版含解析

2018年高考理科数学通用版三维二轮专题复习专题检测:(一) 集合与常用逻辑用语 Word版含解析

专题检测(一) 集合与常用逻辑用语一、选择题1.(2016·全国卷Ⅱ)已知集合A ={1,2,3},B ={x |(x +1)·(x -2)<0,x ∈Z},则A ∪B =( ) A .{1} B .{1,2} C .{0,1,2,3}D .{-1,0,1,2,3}解析:选C 因为B ={x |(x +1)(x -2)<0,x ∈Z}={x |-1<x <2,x ∈Z}={0,1},A ={1,2,3},所以A ∪B ={0,1,2,3}.2.(2017·成都一诊)命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >bD .若a >b ,则a +c ≤b +c解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b ,则a +c ≤b +c ”.3.(2017·广西三市第一次联考)设集合A ={x |8+2x -x 2>0},集合B ={x |x =2n -1,n ∈N *},则A ∩B 等于( )A .{-1,1}B .{-1,3}C .{1,3}D .{3,1,-1}解析:选C ∵A ={x |-2<x <4},B ={1,3,5,…}, ∴A ∩B ={1,3}.4.(2017·郑州第二次质量预测)已知集合A ={x |log 2x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪1x>1,则A ∩(∁R B )=( )A .(-∞,2]B .(0,1]C .[1,2]D .(2,+∞)解析:选C 因为A ={x |0<x ≤2},B ={x |0<x <1},所以A ∩(∁R B )={x |0<x ≤2}∩{x |x ≤0或x ≥1}={x |1≤x ≤2}.5.(2017·北京高考)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件.6.(2018届高三·湘中名校联考)已知集合A ={x |x 2-11x -12<0},B ={x |x =2(3n +1),n ∈Z},则A ∩B 等于( )A .{2}B .{2,8}C .{4,10}D .{2,4,8,10}解析:选B 因为集合A ={x |x 2-11x -12<0}={x |-1<x <12},集合B 为被6整除余数为2的数.又集合A 中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2和8,所以A ∩B ={2,8}.7.(2017·石家庄调研)设全集U =R ,集合A ={x |x ≥1},B ={x |(x +2)(x -1)<0},则( ) A .A ∩B =∅ B .A ∪B =U C .∁U B ⊆AD .∁U A ⊆B解析:选A 由(x +2)(x -1)<0,解得-2<x <1,所以B ={x |-2<x <1},则A ∩B =∅,A ∪B ={x |x >-2},∁U B ={x |x ≥1或x ≤-2},A ⊆∁U B ,∁U A ={x |x <1},B ⊆∁U A ,故选A.8.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25解析:选A 本题关键看清-1和1本身也具备这种运算,这样所求集合即由-1,1,3和13,2和12这“四大”元素所能组成的集合.所以满足条件的集合的个数为24-1=15. 9.(2017·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有a =0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,则0≤a <4,所以命题p 是命题q 的充分不必要条件. 10.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎫0,π2,f (x )<0,则( ) A .p 是假命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )>0 解析:选C 因为f ′(x )=3cos x -π,所以当x ∈⎝⎛⎭⎫0,π2 时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝⎛⎭⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.而p 的否定为∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0,故选C. 11.已知命题p :函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)解析:选C 由题意可得,对命题p ,令f (0)·f (1)<0,即-1·(2a -2)<0,得a >1;对命题q ,令2-a <0,即a >2,则綈q 对应的a 的范围是(-∞,2].因为p 且綈q 为真命题,所以实数a 的取值范围是(1,2].12.在下列结论中,正确的个数是( )①命题p :“∃x 0∈R ,x 20-2≥0”的否定形式为綈p :“∀x ∈R ,x 2-2<0”;②O 是△ABC 所在平面上一点,若OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→,则O 是△ABC 的垂心;③“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N ”的充分不必要条件;④命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”. A .1 B .2 C .3D .4解析:选C 由特称(存在性)命题与全称命题的关系可知①正确. ∵OA ―→·OB ―→=OB ―→·OC ―→,∴OB ―→·(OA ―→-OC ―→)=0,即OB ―→·CA ―→=0, ∴OB ―→⊥CA ―→.同理可知OA ―→⊥BC ―→,OC ―→⊥BA ―→,故点O 是△ABC 的垂心,∴②正确. ∵y =⎝⎛⎭⎫23x是减函数,∴当M >N 时,⎝⎛⎭⎫23M <⎝⎛⎭⎫23N ,当⎝⎛⎭⎫23M >⎝⎛⎭⎫23N 时,M <N . ∴“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N ”的既不充分也不必要条件,∴③错误. 由逆否命题的写法可知,④正确.∴正确的结论有3个. 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________________________.解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x-a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R},集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案:{(2,3)}15.已知命题p :不等式xx -1<0的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真,其中正确结论的序号是________.解析:解不等式知,命题p 是真命题,在△ABC 中,“A >B ”是“sin A >sin B ”的充要条件,所以命题q 是假命题,所以①③正确.答案:①③16.a ,b ,c 为三个人,命题A :“如果b 的年龄不是最大,那么a 的年龄最小”和命题B :“如果c 不是年龄最小,那么a 的年龄最大”都是真命题,则a ,b ,c 的年龄由小到大依次是________.解析:显然命题A 和B 的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A 可知,当b 不是最大时,则a 是最小,所以c 最大,即c >b >a ;而它的逆否命题也为真,即“若a 的年龄不是最小,则b 的年龄是最大”为真,即b >a >c .同理,由命题B 为真可得a >c >b 或b >a >c .故由A 与B 均为真可知b >a >c ,所以a ,b ,c 三人的年龄大小顺序是:b 最大,a 次之,c 最小.答案:c ,a ,b。

2018年高考数学试题分类汇编1——集合与常用逻辑用语

2018年高考数学试题分类汇编1——集合与常用逻辑用语

一、集合与常用逻辑用语一、选择题一.(重庆理2)“x <-1”是“x 2-1>0”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要【答案】A2.(天津理2)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件 【答案】A3.(浙江理7)若,a b 为实数,则“01m ab <<”是11a b b a <或>的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A4.(四川理5)函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的 A .充分而不必要的条件 B .必要而不充分的条件 C .充要条件 D .既不充分也不必要的条件 【答案】B【解析】连续必定有定义,有定义不一定连续。

5.(陕西理一)设,a b 是向量,命题“若a b =-,则∣a ∣= ∣b ∣”的逆命题是A .若a b ≠-,则∣a ∣≠∣b ∣B .若a b =-,则∣a ∣≠∣b ∣C .若∣a ∣≠∣b ∣,则a b ≠-D .若∣a ∣=∣b ∣,则a = -b【答案】D6.(陕西理7)设集合M={y|y=2cos x —2sin x|,x ∈R},N={x||x —1i为虚数单位,x ∈R},则M ∩N 为 A .(0,一) B .(0,一]C .[0,一)D .[0,一]【答案】C7.(山东理一)设集合 M ={x|260x x +-<},N ={x|一≤x ≤3},则M ∩N =A .[一,2)B .[一,2]C .( 2,3]D .[2,3] 【答案】A8.(山东理5)对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要 【答案】B9.(全国新课标理一0)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b πθπ->⇔∈其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p【答案】A一0.(辽宁理2)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M (A )M (B )N(C )I(D )∅【答案】A一一.(江西理8)已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12PP=23P P ”是“12d d =”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C一2.(湖南理2)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】A一3.(湖北理9)若实数a,b 满足0,0,a b ≥≥且0ab =,则称a 与b互补,记(,),a b a b ϕ=-,那么(),0a b ϕ=是a 与b 互补的A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .即不充分也不必要的条件【答案】C一4.(湖北理2)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =A .1[,)2+∞B .10,2⎛⎫ ⎪⎝⎭C .()0,+∞D .1(,0][,)2-∞+∞【答案】A一5.(广东理2)已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x=,则A B ⋂的元素个数为 A .0 B .一 C .2 D .3【答案】C一6.(福建理一)i 是虚数单位,若集合S=}{1.0.1-,则A .i S ∈B .2i S ∈C . 3i S ∈ D .2S i ∈【答案】B 一7.(福建理2)若a ∈R ,则a=2是(a-一)(a-2)=0的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 C .既不充分又不必要条件 【答案】A 一8.(北京理一)已知集合P={x ︱x 2≤一},M={a }.若P ∪M=P ,则a 的取值范围是 A .(-∞, -一] B .[一, +∞) C .[-一,一] D .(-∞,-一] ∪[一,+∞) 【答案】C 一9.(安徽理7)命题“所有能被2整聊的整数都是偶数”的否定是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的整数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个能被2整除的数都不是偶数 【答案】D20.(广东理8)设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的 【答案】A 二、填空题2一.(陕西理一2)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = 【答案】3或422.(安徽理8)设集合{}1,2,3,4,5,6,A =}8,7,6,5,4{=B 则满足S A ⊆且S B φ≠的集合S 为 (A )57 (B )56(C )49(D )8【答案】B23.(上海理2)若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A = 。

专题1-1 集合与常用逻辑用语-决战2018最后一个月之高

专题1-1 集合与常用逻辑用语-决战2018最后一个月之高

1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x |y =lg x }——函数的定义域;{y |y =lg x }——函数的值域;{(x ,y )|y =lg x }——函数图象上的点集. [回扣问题1] 【重庆市2018届高三4月调研测试】设集合()()(){}22,|3sin 3cos 1,A x y x y R ααα=+++=∈,(){},|34100B x y x y =++=,记P A B =⋂,则点集P 所表示的轨迹长度为( )A. B. C. D. 【答案】D2.遇到A ∩B =∅时,你是否注意到“极端”情况:A =∅或B =∅;同样在应用条件A ∪B =B ⇔A ∩B =A ⇔A ⊆B 时,不要忽略A =∅的情况.[回扣问题2] 【湖南省张家界市三模】已知集合{}|12M x x =-<<, {}2|0N x x mx =-<,若{}|01M N x x ⋂=<<,则m 的值为( )A. 1B. -1C. 1±D. 2 【答案】A【解析】由{}|12M x x =-<<, {}2|0N x x mx =-<,且{}|01M N x x ⋂=<<,得{}|01N x x =<<,又由20x mx -<,则必有0m >,且0x m <<,所以1m =.故选A.3.注重数形结合在集合问题中的应用,列举法常借助Venn 图解题,描述法常借助数轴来运算,求解时要特别注意端点值.[回扣问题3]【2018年普通高校招生衡水金卷高三信息卷 (五)】设全集U 为实数集R ,集合(){|ln 32}A x y x ==-, ()(){|130}B y y y =--≤,则图中阴影部分所表示的集合为( )A. ()3,1,2⎡⎫-∞⋃+∞⎪⎢⎣⎭ B. 31,2⎡⎫⎪⎢⎣⎭C. [)3,+∞ D. [)3,3,2⎛⎫-∞⋃+∞ ⎪⎝⎭【答案】A4.“否命题”是对原命题“若p ,则q ”既否定其条件,又否定其结论;而“命题p 的否定”即:非p ,只是否命题p 的结论.[回扣问题4] 【浙江省镇海中学2018届高三模拟】命题“若实数满足,则”的逆否命题是________命题(填“真”或者“假”);否命题是________命题(填“真”或者“假”). 【答案】 假 真【解析】,所以原命题是假命题,由于原命题和逆否命题的真假性是一致的,所以其逆否命题是假命题. 其否命题是“若实数满足,则”,所以其否命题是真命题. 故填(1). 假 (2). 真.5.要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .[回扣问题5] (2017·天津卷)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】⎪⎪⎪⎪⎪⎪θ-π12<π12⇔0<θ<π6⇒sin θ<12.但θ=0,sin θ<12,不满足⎪⎪⎪⎪⎪⎪θ-π12<π12,所以是充分而不必要条件.6.含有量词的命题的否定,不仅是把结论否定,而且要改写量词,全称量词变为存在量词,存在量词变为全称量词.[回扣问题6] 【陕西省咸阳市2018届高三教学质量检测一】已知命题:P “存在[)01,x ∈+∞,使得()2log 31x >”,则下列说法正确的是( )A. :P ⌝ “任意[)1,x ∈+∞,使得()02log 31x <”B. :P ⌝ “不存在[)01,x ∈+∞,使得()02log 31x <”C. :P ⌝ “任意[)1,x ∈+∞,使得()2log 31x ≤” D. :P ⌝ “任意(),1x ∈-∞,使得()02log 31x ≤”【答案】C7.存在性或恒成立问题求参数范围时,常与补集思想联合应用,即体现了正难则反思想.[回扣问题7] 若存在a ∈[1,3],使得不等式ax 2+(a -2)x -2>0成立,则实数x 的取值范围是________.【答案】 (-∞,-1)∪⎝ ⎛⎭⎪⎫23,+∞。

2018年高考数学(理)二轮复习讲练测专题01集合与简易逻辑(讲)含解析

2018年高考数学(理)二轮复习讲练测专题一 集合与简易逻辑考向一 集合的运算【高考改编☆回顾基础】1.【补集运算】【2017·北京改编】已知U =R ,集合A ={x |x <-2或x >2},则∁U A =________. 【答案】 [-2,2]【解析】因为A ={x |x <-2或x >2},所以∁U A =∁R A ={x |-2≤x ≤2},即∁U A =[-2,2].2. 【集合与不等式相结合】【2017课标1,理1】已知集合A={x|x<1},B={x|31x <},则( ) A .{|0}A B x x =<B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<, 所以{|1}{|0}{|0}AB x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.3. 【集合元素的属性】【2017课标3,理1】已知集合A={}22(,)1x y x y +=│,B={}(,)x y y x =│,则A B 中元素的个数为( ) A .3B .2C .1D .0【答案】B4.【集合运算】【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,5【答案】C 【解析】【命题预测☆看准方向】集合在高考中主要考查三方面内容:一是考查集合的概念、集合间的关系;二是考查集合的运算和集合语言的运用,常以集合为载体考查函数、不等式、解析几何等知识;三是以创新题型的形式考查考生分析、解决集合问题的能力.预计2018年的高考将会继续保持稳定,坚持考查集合运算,命题形式会更加灵活、新颖.试题类型一般是一道选择题或填空题,多与函数、方程、不等式、解析几何等综合考查.【典例分析☆提升能力】【例1】设A ={}2430x x x -+≤,B ={}230x x -<,则图中阴影部分表示的集合为( )A .3(3,)2-- B .3(3,)2- C .3[1,)2 D .3(,3)2【答案】C【趁热打铁】【2017山东,理1】设函数x 24-A ,函数y=ln(1-x)的定义域为B ,则A B ⋂=( ) (A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.【例2】【2018届湖北省鄂东南联盟期中】对于任意两集合,定义且,记,则__________.【答案】【解析】,,所以【趁热打铁】设R U =,已知集合}1|{≥=x x A ,}|{a x x B >=,且R B A C U = )(,则实数a 的取值范围是( ) A .)1,(-∞ B .]1,(-∞ C .),1(+∞ D .),1[+∞ 【答案】A【解析】由}1|{≥=x x A 有{}1U C A x x =<,而R B A C U = )(,所以1a <,故选A.【方法总结☆全面提升】在进行集合的交、并、补运算中可依据元素的不同属性采用不同的方法求解,常用到的技巧有: (1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解;(4)注意转化关系(U C A)∩B=B ⇔B ⊆U C A,A ∪B=B ⇔A ⊆B,U C (A ∩B )=(U C A )∪(U C B ), U C (A ∪B )=(U C A )∩(U C B )等.注意两个问题:(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果. (2)对于给出已知集合,进行交集、并集与补集运算时,可以直接根据它们的定义求解,也可以借助数轴、韦恩(Venn)图等图形工具,运用分类讨论、数形结合等思想方法,直观求解.【规范示例☆避免陷阱】【典例】已知集合23100,121{|}{|,}A x x x B x m x m A B A =--≤=+≤≤-⋃=若,求实数m 的取值范围. 【规范解答】,.A B A B A ⋃=∴⊆23{|}{10025,|}A x x x x x =--≤=-≤≤【反思提高】造成本题失分的根本原因是易于忽视“空集是任何集合的子集”这一性质.当题目中出现,,A B A B A A B B ⊆⋂=⋃=时,注意对A 进行分类讨论,即分为A φ=和A φ≠两种情况讨论.【误区警示】(1)在进行集合的运算时要尽可能地借助韦恩(Venn)图和数轴使抽象问题直观化.一般地,集合元素离散时用韦恩(Venn)图表示;集合元素连续时用数轴表示,用数轴表示时需注意端点值的取舍.(2) 空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.在解决有关A B ⋂∅=的问题时,往往忽略空集的情况,一定要先考虑()A B ∅或=是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用. (3)五个关系式U UA B A B A A B B B A ⊆⋂⋃⊆,=,=,痧以及()U A B ⋂∅=ð是两两等价的.对这五个式子的等价转换,常使较复杂的集合运算变得简单.考向二 简易逻辑【高考改编☆回顾基础】1.【四种命题及其关系】【2017课标1,理3】设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD . 24,p p【答案】B【解析】2. 【三角函数与充要条件相结合】【2017·天津卷改编】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 条件.(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】充分而不必要条件 【解析】πππ||012126θθ-<⇔<< 1sin 2θ⇒< ,但10,sin 2θθ=<,不满足 ππ||1212θ-<,所以是充分不必要条件.3. 【全称命题与复合命题】【2017山东卷改编】已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是 .①∧p q ②⌝∧p q ③⌝∧p q ④⌝⌝∧p q 【答案】②故填②.4.【全称命题与特称命题】【2016浙江卷改编】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是 . A .*x n ∀∈∃∈,R N ,使得2n x < B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x < D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】*x n ∃∈∀∈,R N ,使得2n x <【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故填*x n ∃∈∀∈,R N ,使得2n x <.【命题预测☆看准方向】常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式、立体几何中的线面关系、平面解析几何中的线线关系、直线与圆的位置关系等为载体,考查充要条件或命题的真假判断等,难度一般不大.预测2018年将对其中的一或二个知识点予以考查.【典例分析☆提升能力】【例1】【2018届河南省漯河市12月模拟】已知l , m 是空间两条不重合的直线, α是一个平面,则“m α⊥,l 与m 无交点”是“//l m , l α⊥”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】 B【趁热打铁】设R y x ∈,,则"22"≥≥y x 且是"4"22≥+y x 的( ).A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分又不必要条件【答案】A【解析】由"22"≥≥y x 且可得"4"22≥+y x ,但"4"22≥+y x 不一定能够得到"22"≥≥y x 且 故选A .【例2】命题:“00x ∃>,使002()1xx a ->”,这个命题的否定是( ) A .0x ∀>,使2()1xx a -> B .0x ∀>,使2()1xx a -≤ C .0x ∀≤,使2()1xx a -≤ D .0x ∀≤,使2()1xx a -> 【答案】B【解析】由已知,命题的否定为0x ∀>,2(1xx a ⋅-≤使),故选B. 【例3】【2018届广州市第一次调研】设命题p : 1x ∀<, 21x <,命题q : 00x ∃>, 012x x >,则下列命题中是真命题的是A. p q ∧B. ()p q ⌝∧C. ()p q ∧⌝D. ()()p q ⌝∧⌝【答案】B【解析】当2x =-时, 241x =>,显然命题p 为假命题;当01x =时, 001221xx =>=,显然命题q 为真命题; ∴p ⌝为真命题, q ⌝为假命题 ∴()p q ⌝∧为真命题 故选:B【趁热打铁】已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝【答案】D【解析】由题设可知:p 是真命题,q 是假命题;所以,p ⌝是假命题,q ⌝是真命题; 所以,p q ∧是假命题,p q ⌝∧⌝是假命题,p q ⌝∧是假命题,p q ∧⌝是真命题;故选D.【方法总结☆全面提升】(1)命题真假的判定方法:①一般命题p 的真假由涉及的相关知识进行辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,它的逆命题跟否命题同真假; ③形如p ∨q ,p ∧q ,⌝p 命题的真假根据真值表判定;④全称命题与特称命题的否定:全称命题():,p x M p x ∀∈,其否定形式是()00,x M p x ∃∈⌝;特称命题()00:,p x M p x ∃∈,其否定形式是(),x M p x ∀∈⌝.(2) 一些常用的正面叙述的词语及它们的否定词语表:正面词语 等于(=) 大于(>) 小于(<) 是都是 否定词语 不等于(≠)不大于(≤)不小于(≥)不是不都是(3) 充分条件、必要条件判断的定义法:先判断p q ⇒与q p ⇒是否成立,然后再确定p 是q 的什么条件. (4)用集合的观点看充分条件、必要条件:A ={x|x 满足条件p},B ={x|x 满足条件q},(1)如果A ⊆B ,那么p 是q 的充分不必要条件;(2)如果B ⊆A ,那么p 是q 的必要不充分条件;(3)如果A =B ,那么p 是q 的充要条件;(4)如果A B ⊂≠,且B A ⊂≠,那么p 是q 的既不充分也不必要条件. (5)对于充分条件、必要条件的判断要注意以下几点:①要弄清先后顺序:“A 的充分不必要条件是B”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A.②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以尝试通过举出恰当的反例来说明.③要注意转化:若⌝p 是⌝q 的必要不充分条件,则p 是q 的充分不必要条件;若⌝p 是⌝q 的充要条件,那么p 是q 的充要条件.④要善于利用集合间的包含关系判断:若A B ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件.【规范示例☆避免陷阱】【典例】已知p :“向量a 与向量b 的夹角θ为钝角”是q :“a b ∙<0”的 条件.【反思提高】判断条件与结论之间的关系时要从两个方向判断,解答本题易于判断一个方向就下结论,忽视对“a b ∙<0”成立时能否导出“向量a 与向量b 的夹角为钝角”的判断.充要条件的判断三种常用方法:(1)利用定义判断.如果已知p q ⇒,则p 是q 的充分条件,q 是p 的必要条件;(2)利用等价命题判断;(3) 把充要条件“直观化”,如果p r ⇒,可认为p 是q 的“子集”;如果q p ⇒,可认为p 不是q 的“子集”,由此根据集合的包含关系,可借助韦恩图说明.【误区警示】(1)区分命题的否定和否命题的不同,否命题是对命题的条件和结论都否定,而命题的否定仅对命题的结论否定.(2)p或q的否定:¬p且¬q;p且q的否定:¬p或¬q.(3)“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.。

专题01集合与常用逻辑用语(易错起源)-2018年高考数学(理)备考黄金易错点Word版含解析

专题01集合与常用逻辑用语1.【2017课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.2.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。

若{}1AB =,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,5 【答案】C【解析】由{}1A B ⋂=得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==, {}1,3B =,故选C .3.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .0【答案】B4.【2017北京,理1】若集合A ={x |–2<x <1},B={x |x <–1或x >3},则A B =(A ){x |–2<x <–1} (B ){x |–2<x <3} (C ){x |–1<x <1} (D ){x |1<x <3} 【答案】A【解析】利用数轴可知{}21AB x x =-<<-,故选A.5.【2017天津,理1】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =(A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R 【答案】B 【解析】(){1246}[15]{124}AB C =-=,,,,,, ,选B.6.【2017天津,理4】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】A 【解析】πππ||012126θθ-<⇔<< 1sin 2θ⇒< ,但10,sin 2θθ=<,不满足 ππ||1212θ-<,所以是充分不必要条件,选A. 7.【2017山东,理3】已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是(A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q 【答案】B8. 【2016高考浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( ) A .*x n ∀∈∃∈,R N ,使得2n x < B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x < D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D .9.【2016高考山东理数】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件【答案】A【解析】直线a 与直线b 相交,则,αβ一定相交,若,αβ相交,则a,b 可能相交,也可能平行,故选A.10.【2016高考天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C 【解析】由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C.易错起源1、集合的关系及运算 例1、(1)已知集合A ={x |x -1x +2<0},B ={y |y =sin n π2,n ∈Z },则A ∩B 等于( ) A .{x |-1<x <1} B .{-1,0,1} C .{-1,0}D .{0,1}(2)若X 是一个集合,τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,空集∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X 上的一个拓扑.已知集合X ={a ,b ,c },对于下面给出的四个集合τ: ①τ={∅,{a },{c },{a ,b ,c }}; ②τ={∅,{b },{c },{b ,c },{a ,b ,c }}; ③τ={∅,{a },{a ,b },{a ,c }};④τ={∅,{a ,c },{b ,c },{c },{a ,b ,c }}.其中是集合X 上的一个拓扑的集合τ的所有序号是__________. 答案 (1)C (2)②④ 解析 (1)因为A ={x |x -1x +2<0}={x |-2<x <1},B ={y |y =sin n π2,n ∈Z }={0,-1,1},所以A ∩B ={-1,0}.(2)①τ={∅,{a },{c },{a ,b ,c }},但是{a }∪{c }={a ,c }∉τ,所以①错;②④都满足集合X 上的一个拓扑的集合τ的三个条件.所以②④正确;③{a ,b }∪{a ,c }={a ,b ,c }∉τ,故③错.所以答案为②④.【变式探究】(1)已知集合A ={y |y =sin x ,x ∈R },集合B ={x |y =lg x },则(∁R A )∩B 为( ) A .(-∞,-1)∪(1,+∞) B .[-1,1] C .(1,+∞)D .[1,+∞)(2)设集合M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A.13 B.23 C.112D.512答案 (1)C (2)C解析 (1)因为A ={y |y =sin x ,x ∈R }=[-1,1],B ={x |y =lg x }=(0,+∞).所以(∁R A )∩B =(1,+∞). 故答案为C.(2)由已知,可得⎩⎪⎨⎪⎧m ≥0,m +34≤1,即0≤m ≤14,⎩⎪⎨⎪⎧n -13≥0,n ≤1,即13≤n ≤1,取m 的最小值0,n 的最大值1,可得M =⎣⎢⎡⎦⎥⎤0,34,N =⎣⎢⎡⎦⎥⎤23,1. 所以M ∩N =⎣⎢⎡⎦⎥⎤0,34∩⎣⎢⎡⎦⎥⎤23,1=⎣⎢⎡⎦⎥⎤23,34. 此时集合M ∩N 的“长度”的最小值为34-23=112.故选C.【名师点睛】(1)关于集合的关系及运算问题,要先对集合进行化简,然后再借助Venn 图或数轴求解. (2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.【锦囊妙计,战胜自我】1.集合的运算性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解. 易错起源2、四种命题与充要条件 例2 (1)下列命题:①已知m ,n 表示两条不同的直线,α,β表示两个不同的平面,并且m ⊥α,n ⊂β,则“α⊥β”是“m ∥n ”的必要不充分条件;②不存在x ∈(0,1),使不等式log 2x <log 3x 成立;③“若am 2<bm 2,则a <b ”的逆命题为真命题. 其中正确的命题序号是________. (2)已知ξ服从正态分布N (1,σ2),a ∈R ,则“P (ξ>a )=0.5”是“关于x 的二项式⎝ ⎛⎭⎪⎫ax +1x 23的展开式的常数项为3”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分又不必要条件 D .充要条件 答案 (1)① (2)A(2)由P (ξ>a )=0.5,知a =1.∵二项式⎝ ⎛⎭⎪⎫ax +1x 23展开式的通项公式为T k +1=C k 3(ax )3-k ⎝ ⎛⎭⎪⎫1x2k =a 3-k C k 3x 3-3k,令3-3k =0,得k =1,∴其常数项为a 2C 13=3a 2=3,解得a =±1,∴“P (ξ>a )=0.5”是“关于x 的二项式⎝ ⎛⎭⎪⎫ax +1x23的展开式的常数项为3”的充分不必要条件,故选A.【变式探究】(1)下列四个结论中正确的个数是( ) ①“x 2+x -2>0”是“x >1”的充分不必要条件;②命题:“∀x ∈R,sin x ≤1”的否定是“∃x 0∈R,sin x 0>1”; ③“若x =π4,则tan x =1”的逆命题为真命题;④若f (x )是R 上的奇函数,则f (log 32)+f (log 23)=0. A .1B .2C .3D .4 (2)已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .[1,+∞) C .(2,+∞) D .(-∞,-1]答案 (1)A (2)A解析 (1)对于①,x 2+x -2>0⇔x >1或x <-2,故“x 2+x -2>0”是“x >1”的必要不充分条件,所以①错误;对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,∵tan x =1推出的是x =π4+k π,k ∈Z.所以③错误.对于④,log 32≠-log 23,所以④错误.②正确.故选A. (2)由3x +1<1,可得3x +1-1=-x +2x +1<0, 所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2. 【名师点睛】充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇏p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件);若A =B ,则A 是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题. 【锦囊妙计,战胜自我】1.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假.2.若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p ,q 互为充要条件. 易错起源3、逻辑联结词、量词例3、(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列选项中正确的是( ) A .p 真q 假 B .p 假q 真 C .“p ∧q ”为假D .“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R,x 20+2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是( ) A .a ≤-2或a =1 B .a ≤-2或1≤a ≤2 C .a >1D .-2≤a ≤1答案 (1)C (2)C【变式探究】(1)已知命题p :∃x 0∈R ,使sin x 0=52;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,x >sin x ,则下列判断正确的是( ) A .p 为真 B .綈q 为假 C .p ∧q 为真D .p ∨q 为假(2)若“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π4,m ≤tan x +1”为真命题,则实数m 的最大值为________.答案 (1)B (2)0解析 (1)由于三角函数y =sin x 的有界性:-1≤sin x 0≤1,所以p 假;对于q ,构造函数y =x -sin x ,求导得y ′=1-cos x ,又x ∈⎝ ⎛⎭⎪⎫0,π2,所以y ′>0,y 为单调递增函数,有y >0恒成立,即∀x ∈⎝⎛⎭⎪⎫0,π2,x >sin x ,所以q 真.判断可知,B 正确.(2)令f (x )=tan x +1,则函数f (x )在⎣⎢⎡⎦⎥⎤-π4,π4上为增函数,故f (x )的最小值为f ⎝ ⎛⎭⎪⎫-π4=0,∵∀x ∈⎣⎢⎡⎦⎥⎤-π4,π4,m ≤tan x +1,故m ≤(tan x +1)min ,∴m ≤0,故实数m 的最大值为0. 【名师点睛】(1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算. 【锦囊妙计,战胜自我】1.命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;綈p 和p 为真假对立的命题.2.命题p ∨q 的否定是(綈p )∧(綈q );命题p ∧q 的否定是(綈p )∨(綈q ).3.“∀x ∈M ,p (x )”的否定为“∃x 0∈M ,綈p (x 0)”;“∃x 0∈M ,p (x 0)”的否定为“∀x ∈M ,綈p (x )”.。

集合与常用逻辑用语(解析版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题01集合与常用逻辑用语1.【2022年全国甲卷】设集合={−2,−1,0,1,2},=b0≤<∩=()A.0,1,2B.{−2,−1,0}C.{0,1}D.{1,2}【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为=−2,−1,0,1,2,=b0≤<∩=0,1,2.故选:A.2.【2022年全国甲卷】设全集={−2,−1,0,1,2,3},集合={−1,2},=b2−4+3= 0,则∁(∪p=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}【答案】D【解析】【分析】解方程求出集合B,再由集合的运算即可得解.【详解】由题意,J{U2−4+3=0}={1,3},所以∪={−1,1,2,3},所以∁U(∪p={−2,0}.故选:D.3.【2022年全国乙卷】集合=2,4,6,8,10,=−1<<6,则∩=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为=2,4,6,8,10,=U−1<<6,所以∩=2,4.故选:A.4.【2022年全国乙卷】设全集={1,2,3,4,5},集合M满足∁={1,3},则()A.2∈B.3∈C.4∉D.5∉【答案】A【分析】先写出集合,然后逐项验证即可【详解】由题知={2,4,5},对比选项知,A 正确,BCD 错误故选:A5.【2022年新高考1卷】若集合={b <4}, ={b3≥1},则∩=()A .{0≤<2}B .≤<2C .{3≤<16}D .≤<16【答案】D 【解析】【分析】求出集合s 后可求∩.【详解】={b0≤<16},={b ≥13},故∩={U 13≤<16},故选:D6.【2022年新高考2卷】已知集合={−1,1,2,4},=|−1|≤1,则∩=()A .{−1,2}B .{1,2}C .{1,4}D .{−1,4}【答案】B 【解析】【分析】求出集合后可求∩.【详解】={U0≤≤2},故∩={1,2},故选:B.7.【2021年甲卷文科】设集合{}{}1,3,5,7,9,27M N x x ==>,则M N = ()A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B 【解析】【分析】求出集合N 后可求M N ⋂.【详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=,8.【2021年甲卷理科】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B 【解析】【分析】根据交集定义运算即可【详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.9.【2021年乙卷文科】已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=ð()A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A 【解析】【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:{}1,2,3,4M N =U ,则(){}5U M N = ð.故选:A.10.【2021年乙卷文科】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是()A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A 【解析】【分析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于sin 0=0,所以命题p 为真命题;由于x y e =在R 上为增函数,0x ≥,所以||01x e e ≥=,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .11.【2021年乙卷理科】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A .∅B .SC .TD .Z【答案】C 【解析】【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.12.【2021年新高考1卷】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B 【解析】【分析】利用交集的定义可求A B .【详解】由题设有{}2,3A B ⋂=,故选:B .13.【2021年新高考2卷】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B 【解析】【分析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.14.【2020年新课标1卷理科】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A .–4B .–2C .2D .4【答案】B 【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-.故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.15.【2020年新课标1卷文科】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ()A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = ,故选:D.本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.16.【2020年新课标2卷理科】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.17.【2020年新课标2卷文科】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D 【解析】【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可.【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =- .故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.18.【2020年新课标3卷理科】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B中元素的个数为()A .2B .3C .4D .6【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.19.【2020年新课标3卷文科】已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为()A .2B .3C .4D .5【答案】B 【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B 【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.20.【2020年新高考1卷(山东卷)】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C 【解析】【分析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B ==U U【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.21.【2020年新高考2卷(海南卷)】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =()A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C 【解析】【分析】根据集合交集的运算可直接得到结果.【详解】因为A{2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B = 故选:C 【点睛】本题考查的是集合交集的运算,较简单.22.【2019年新课标1卷理科】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.23.【2019年新课标1卷理科】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165cmB .175cmC .185cmD .190cm【答案】B 【解析】【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至肚脐的长为x cm ,肚脐至腿根的长为y cm ,则2626105x x y +=+42.07, 5.15x cm y cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B .【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.24.【2019年新课标1卷文科】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C 【解析】【分析】先求U A ð,再求U B A ð.【详解】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C .【点睛】本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案.25.【2019年新课标2卷理科】设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)【答案】A 【解析】【分析】先求出集合A ,再求出交集.【详解】由题意得,{}{}23,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目.26.【2019年新课标2卷文科】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅【答案】C 【解析】【分析】本题借助于数轴,根据交集的定义可得.【详解】由题知,(1,2)A B =- ,故选C .【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.27.【2019年新课标2卷文科】在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙【答案】A 【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.28.【2019年新课标3卷理科】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B = A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】先求出集合B 再求出交集.【详解】21,x ≤∴ 11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B =- ,故选A .【点睛】本题考查了集合交集的求法,是基础题.29.【2019年新课标3卷文科】记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+ ;命题:(,),212q x y D x y ∀∈+ .给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是A .①③B .①②C .②③D .③④【答案】A【解析】【分析】根据题意可画出平面区域再结合命题可判断出真命题.【详解】如图,平面区域D 为阴影部分,由2,6y x x y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩即A (2,4),直线29x y +=与直线212x y +=均过区域D ,则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .【点睛】本题将线性规划和不等式,命题判断综合到一起,解题关键在于充分利用取值验证的方法进行判断.30.【2018年新课标1卷理科】已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥【答案】B【解析】【详解】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x -->得12x x <->或,所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.31.【2018年新课标1卷文科】已知集合{}02A =,,{}21012B =--,,,,,则A B = A .{}02,B .{}12,C .{}0D .{}21012--,,,,【答案】A【解析】【分析】分析:利用集合的交集中元素的特征,结合题中所给的集合中的元素,求得集合A B 中的元素,最后求得结果.【详解】详解:根据集合交集中元素的特征,可以求得{}0,2A B =I ,故选A.点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.32.【2018年新课标2卷理科】已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】【分析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ 23,x ∴≤x Z∈ 1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.33.【2018年新课标2卷文科】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C【解析】【详解】分析:根据集合{1,3,5,7},{2,3,4,5}A B ==可直接求解{3,5}A B = .详解:{1,3,5,7},{2,3,4,5}A B == ,{}3,5A B ∴⋂=,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.34.【2018年新课标3卷理科】已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0B .{}1C .{}12,D .{}012,,【答案】C【解析】【详解】分析:由题意先解出集合A,进而得到结果.详解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.点睛:本题主要考查交集的运算,属于基础题.35.【2018年新课标3卷文科】已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B = A .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C【解析】【分析】由题意先解出集合A,进而得到结果.【详解】解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.【点睛】本题主要考查交集的运算,属于基础题.36.【2020年新课标2卷理科】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.。

备战2018年高考数学优质试卷分项版(第02期)专题01集合与常用逻辑用语文

1 专题 集合与简易逻辑 一、选择题 1.【2018湖北咸宁联考】设集合1Axx, {|28}xBx,则AB=( )

A. 1,3 B. ,1 C. 3, D. ,13, 【答案】A

2.【2018湖北八校联考】下列说法正确的个数是( ) ①“若4ab,则,ab中至少有一个不小于2”的逆命题是真命题 ② 命题“设,abR,若6ab,则3a或3b”是一个真命题 ③“2000,0xRxx”的否定是“2,0xRxx” ④1ab是ab的一个必要不充分条件 A. 0 B. 1 C. 2 D. 3 【答案】C 【解析】对于①,原命题的逆命题为:若,ab中至少有一个不小于2,则4ab,而4,4ab满足,ab中至少有一个不小于2,但此时0ab,故①是假命题;对于②,此命题的逆否命题为“设,abR,若3a且3b,则6ab”,此命题为真命题,所以原命题也是真命题,故②是真命题;

对于③“20000xRxx,”的否定是“20xRxx,”,故③是假命题;对于④,由ab可推得1ab,故④是真命题,故选C. 点睛:本题考查了简易逻辑的判定方法、特称命题的否定等基础知识与基本技能,考查了推理能力与计算能力,属于中档题;四种命题的关系中,互为逆否命题的两个命题真假性相同,当判断原命题的真假比较复杂时,可转化为其逆否命题的真假,充分条件、必要条件的判定相当于判定原命题、逆命题的真 2

假. 3.【2018湖北八校联考】已知集合*2|30 AxNxx,则满足条件BA的集合B的个数为( ) A. 2 B. 3 C. 4 D. 8 【答案】C 【解析】∵*2|30 1,2AxNxx,又BA,∴集合B的个数为224个,故选C. 4.【2018湖南五市十校联考】已知集合2230,3MxxxNxxN, PMN,则P中所有元素的和为( ) A. 2 B. 3 C. 5 D. 6 【答案】B

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考题和高考模拟题数学(理)分项版汇编 1 1.集合与常用逻辑用语 1.【2018年浙江卷】已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】A 【解析】

点睛:充分、必要条件的三种判断方法: (1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件. (2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法. (3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.

2.【2018年浙江卷】已知全集U={1,2,3,4,5},A={1,3},则 A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5} 【答案】C 【解析】 试题分析:分析:根据补集的定义可得结果.

详解:因为全集,,所以根据补集的定义得,故选C. 点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.

3.【2018年理数天津卷】设,则“”是“”的 A. 充分而不必要条件 B. 必要而不重复条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 【解析】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.

详解:绝对值不等式 ,由 .据此可知是的充分而不必要条件.本题选择A选项. 2018年高考题和高考模拟题数学(理)分项版汇编 2 点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.

4.【2018年理数天津卷】设全集为R,集合,,则 A. B. C. D. 【答案】B

点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力. 5.【2018年江苏卷】已知集合,,那么________. 【答案】{1,8} 【解析】分析:根据交集定义求结果. 详解:由题设和交集的定义可知:. 点睛:本题考查交集及其运算,考查基础知识,难度较小. 6.【2018年理北京卷】设a,b均为单位向量,则“”是“a⊥b”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】C 【解析】分析:先对模平方,将等价转化为0,再根据向量垂直时数量积为零得充要关系.

详解: ,因为a,b均为单位向量,所以 a⊥b,即“”是“a⊥b”的充分必要条件.选C. 点睛:充分、必要条件的三种判断方法. 1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件. 2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法. 3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件. 2018年高考题和高考模拟题数学(理)分项版汇编 3 7.【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则AB= A. {0,1} B. {–1,0,1} C. {–2,0,1,2} D. {–1,0,1,2} 【答案】A

点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.

8.【2018年理新课标I卷】已知集合,则 A. B. C. D. 【答案】B

【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果. 详解:解不等式得, 所以, 所以可以求得,故选B. 点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.

9.【2018年全国卷Ⅲ理】已知集合,,则 A. B. C. D. 【答案】C 【解析】分析:由题意先解出集合A,进而得到结果。 详解:由集合A得,所以,故答案选C. 点睛:本题主要考查交集的运算,属于基础题。

10.【2018年理数全国卷II】已知集合,则中元素的个数为 A. 9 B. 8 C. 5 D. 4 2018年高考题和高考模拟题数学(理)分项版汇编 4 【答案】A

点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别. 优质模拟试题

11.【安徽省宿州市2018届第三次质检理】已知全集,集合,集合,则 ( ) A. B. C. D. 【答案】A 【解析】分析:由题意首先求得集合A,B,然后进集合的混合运算即可求得最终结果.

详解:函数有意义,则:,据此可得,

求解指数不等式可得:,据此可得:, 结合交集运算可知: .本题选择A选项. 点睛:本题主要考查集合的表示方法,集合的交并补运算法则等知识,意在考查学生的转化能力和计算求解能力.

12.【四川省成都市2018届模拟理】设,则是的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】A

的充分不必要条件,故选A. 2018年高考题和高考模拟题数学(理)分项版汇编

5 点睛:本题主要考查了充分条件和必要条件的判定问题,其中正确作出相应函数的图象,利用数形结合法求解是解答的关键,着重考查了数形结合思想方法的应用,以及推理与论证能力.

13.【辽宁省葫芦岛市2018届第二次模拟理】设集合,,则( ) A. B. C. D. 【答案】B 【解析】分析:求出集合 ,即可得到.

详解:, 的子集个数为 故选C. 点睛:本题考查集合的交集运算,属基础题. 14.【河南省洛阳市2018届三模理】设集合,,则的子集个数为( ) A. 4 B. 8 C. 16 D. 32 【答案】C

点睛:本题考查集合的运算以及子集的个数,属基础题. 15.【江西省南昌市2018届第三次理模拟】“”是“关于的方程有解”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】D 【解析】分析;:求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可. 2018年高考题和高考模拟题数学(理)分项版汇编 6 详解:由得 ,且 即,即 ,则 ,此时方程无解,即充分性不成立,若 ,满足方程 无解,但不成立,即必要性不成立,即“”是“关于的方程有解”的既不充分也不必要条件.故选D. 点睛:本题主要考查充分条件和必要条件的判断,结合不等式的等价条件求出的值是解决本题的关键. 16.【安徽省皖江八校2018届联考理】设集合,,若,则( ) A. B. C. D. 【答案】B

【解析】分析:由题3是方程的一个根,从而得到 由此能求出集合. 详解:∵,∴,即,∴ ,故选B. 点睛:本题考查集合的求法,考查交集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

17.【山东省济南2018届二模理】设全集,集合,集合则下图中阴影部分表示的集合为( )

A. B. C. D. 【答案】D

点睛:本题考查集合的交运算,理解文氏图的含义是解题的关键,属于基础题. 18.【河南省郑州市2018届三模理】下列命题中,正确的是( )

A. 2018年高考题和高考模拟题数学(理)分项版汇编 7 B. 复数,若,则 C. “”是“”的充要条件 D. 命题“”的否定是:“” 【答案】D 【解析】分析:根据相关知识对四个选项逐个分析可得结论.

详解:对于A,由于,故的最大值为,故A不正确.对于B,当时,

,而,故B不正确.对于C,当 成立;反之,当时,可得或,所以“”是“”的充分不必要条件,故C不正确.对于D,由题意得,命题“”的否定是“”,故D正确.故选D. 点睛:本题考查命题及逻辑的有关知识,解题的关键是借助相关知识对每个命题逐个进行判断,然后得到结论. 19.【河北省唐山市2018届三模理】已知命题在中,若,则;命题,

.则下列命题为真命题的是( ) A. B. C. D. 【答案】B

命题,当时,不成立,故为假命题,故选B. 点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查函数的正弦函数的性质以及不等式恒成立问题,属于中档题. 解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”. 20.【山西省两市2018届二模联考理】设有下面四个命题 2018年高考题和高考模拟题数学(理)分项版汇编 8 是的必要不充分条件;,; 函数有两个零点; ,. 其中真命题是( ) A. B. C. D. 【答案】D

综合得选D 点睛:考查命题的真假判断,解题关键是对每一个命题认真分析审题,可用举例子的思维,结合函数最值分析得出结论,属于较难题.

21.【安徽省江南十校2018届二模理】已知全集为,集合,,则( ) A. B. C. D. 【答案】C 【解析】分析:利用一元二次不等式、对数不等式的解法化简两个集合,再利用集合的运算进行求解.

详解:因为,

,所以,即. 点睛:本题考查一元二次不等式的解法、对数函数的单调性及集合的运算等知识,意在考查学生的基本运算能力.

相关文档
最新文档