阳离子交换树脂处理工艺
离子交换树脂结构及交换原理

一.氢型与钠型阳离子交换树脂是什么?氢型阳离子交换树脂(有时简称氢型树脂)是一种人造有机聚合物产品。
最常用的原料是:苯乙烯或丙烯酸(酯),先经过聚合反应生成具有三度空间立体网状结构的聚合物骨架(树脂母体),再于骨架上导入不同的「化学活性基」而成。
由于它的活性基,如磺酸基(-SO3H)、羧基(-COOH)等,都含有活性氢离子,可在水中解离出来,用于与其它阳离子进行交换,所以特别在阳离子树脂名称之前再冠上“氢型”两字,以与同一系统的“钠型”种类有所区别。
不过“钠型”可以利用强酸处理成为“氢型”,“氢型”也可以用氢氧化钠或食盐水溶液处理成为“钠型”,即二者可以互相转换。
氢型阳离子交换树脂不溶于水和一般溶剂。
和其它离子交换树脂一般,常被制成颗粒状,外观看起来有些像鱼卵,粒径大约在0.3-1.2 mm之间,但大部分在0.4-0.6 mm范围内。
化学性质相当稳定,摸起来硬而有弹性,机械强度也足够承受相当压力,颜色由白色至近乎黑色都有,颜色浅时呈透明状,深时呈半透明状,都有光鲜亮丽的树脂光泽。
氢型阳离子交换树脂最常应用的地方,就是硬水的软化,即让硬水流过树脂层,把硬水中的硬度离子,如钙、镁等离子吸收在树脂中,就变成不带硬度离子的软水了,这也是阳离子交换树脂最初被制造的主要目的,但它在工业上应用没有「钠型」来的多,因为在软化过程中,它会直接释出氢离子,使水质呈酸性,可能会因此腐蚀相关金属设备。
依需要的不同,它也可以应用到水质预处理工艺中,用作软化水质及降低pH值之用。
二离子交换树脂的结构离子交换树脂的内部结构,如2.1所示。
由三部分组成,分别是:(1)高分子骨架由交联的高分子聚合物组成:(2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的离子型官能团或带有极性的非离子型官能团;(3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶孔)和高分子结构之间的孔(毛细孔)。
在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团,这些交换基团也是由两部分组成:固定部分和活动部分。
阴阳离子交换树脂分离技术

阴阳离子交换树脂分离技术在化学除盐系统中由于设备缺陷或树脂存放时误装等原因,容易造成床内阴、阳树脂混合,使除盐系统再生不合格或制水水质变差。
本文利用阴、阳树脂的比重差,采用浮选法将混合过后的阴、阳树脂进行分离,从而恢复除盐系统出水品质,同时避免了更换树脂造成的浪费。
标签:阴树脂;阳树脂;氯化钠;搅拌;分离1 現状汽水二车间化水专业一级除盐设备F系列发现阴床出水电导率、pH、碱度均高,阴床再生后正洗、循环时间较长,且设备周期制水量明显下降,由原来的24小时降为19小时。
2 原因排查通过对F系列制水系统出水水质、系统流程的梳理,并且对阴床树脂进行取样分析鉴别,发现阴床内部树脂里确实含有部分阳树脂。
分析阴床内阳树脂的混入途径,结合反洗过程的工艺流程,进行查找。
因反洗罐只有一台,当阴阳床树脂交替输入反洗罐时,存在树脂存留现象,这样就会造成阳树脂混入阴床。
确认是在阴阳床大反洗过程中交替输入反洗罐时发生了树脂混杂。
3 解决措施①将F系列阳床反洗系统进行改造。
将F系列阳床反洗系统与老系统阳反洗系统进行改造,解决共用一台反洗罐的问题,杜绝了阳树脂再次混入阴床内的途径;②将阴床内混入的阳树脂进行分离。
对阴、阳树脂的性质加以研究,确定实施方案。
4 一级除盐系统阴阳树脂的分离方案4.1 阴阳树脂的物理特性阴阳树脂均呈球状颗粒,阴树脂粒度在0.45~0.9mm,阳树脂粒度在0.63~1.25mm,阴树脂密度在湿态状态下的颗粒密度为1.05~1.11g/mL,阳树脂密度在湿态状态下的颗粒密度为1.24~1.28g/mL(如表1)。
从表1可以看出阴阳树脂的颗粒粒径范围有交叉不能采用筛分法。
阴阳树脂颗粒密度(即湿真密度)差有0.17~0.19 g/mL。
只要找到一种合适的溶液密度在阴阳树脂颗粒密度之间就能使阴树脂漂浮,阳树脂沉淀,从而达到分离的目的。
4.2 浮选介质的选择在确立了采用浮选法分离树脂的基础上,还需考虑经济,无毒安全的浮选液。
强酸型阳离子交换树脂的制备

实验原理
共聚珠体的制备是以苯乙烯和二乙烯苯为单体,过 氧化苯甲酰为引发剂,羟乙基纤维素为分散剂,水为分散 介质。珠体的粒度主要取决于搅拌速度,其次与分散酸型阳离子交换树脂的制备
实验目的
1. 熟悉悬浮聚合方法。 2. 了解制备功能高分子的方法。
实验原理
离子交换树脂是具有体形网状结构的高分子, 它在溶剂中不能溶解,但能与溶液中的离子起交换 反应。阳离子交换树脂可与溶液中的阳离子交换:
R-SO3-H++Na+Cl- R-SO3-Na++H+Cl-,式中 R代表树脂母体,最常见的树脂母体是苯乙烯和二 乙烯苯的共聚物。
实验装置图
3. 冷却至室温,用抽滤棒抽去反应瓶中的浓硫酸,加入 50ml74%硫酸搅拌10分钟,在搅拌下缓慢滴加蒸馏 水稀释,温度小于35 ℃。用蒸馏水反复洗涤至PH=7。
强酸型阳离子交换树脂
强酸型阳离子交换树脂
白球
(三)树脂性能测试
本实验采用静态法测定交换容量
1. 水分测定:在扁形称量瓶中称1g左右的湿树脂(准确到1mg),放 在105±2℃的烘箱中烘2小时,取出放入干燥器冷却至室温,再称 量。
珠体的粒度主要取决于搅拌速度其次与分散剂的种类和用量水相和单体相的比例以及具体操作等因素有在单体中纯二乙烯苯所占的重量百分数称为树脂的交联度即纯二乙烯苯重量交联度100苯乙烯重量原料二乙烯苯重量实验原理为了使磺化反应深入白球内部采用二氯乙烷作溶胀剂它只会使白球充分溶胀而不会与浓硫酸起反离子交换树脂的性能指标中最重要的一项是交换容量它表征离子交换能力的大小有两种表示方法
离子交换树脂 ppt课件

将经干燥的树脂置于2 L浓度为 l mol/L 的氢氧化钠乙醇溶液中,加热回流约10 h, 然后冷却过滤,用水和稀盐酸洗涤,再用水 洗涤数次,最后在100℃下干燥,即得成品。
44
(3)强碱型阴离子交换树脂的制备
强碱型阴离子交换树脂主要以季胺基作为离子 交换基团,以聚苯乙烯作骨架。
制备方法是:将聚苯乙烯系白球进行氯甲基化, 然后利用苯环对位上的氯甲基的活泼氯,定量地与 各种胺进行胺基化反应。
37
强酸型阳离子交换树脂的制备实例: 将1 g BPO(过氧化二苯甲酰)溶于80 g苯乙
烯与20 g二乙烯基苯(纯度50%)的混合单体中。 搅拌下加入含有5 g明胶的500 mL去离子水中, 分散至所预计的粒度。从70℃逐步升温至95℃, 反应8~10 h,得球状共聚物。过滤、水洗后于 100~120℃下烘干。即成“白球”。
CH2 CH
NH2(C2H4NH)nH 二乙苯
CH2 CH CH2 CH CONH(C2H4NH)nH
CH2 CH
CH2O
CH2
CH CH2
CH CONH(C2H4N)n
CH3
CH2 CH
CH3
50
2、大孔型离子交换树脂
大孔型树脂的制备方法与凝胶型离子交换树脂基本相同。 重要的大孔型树脂仍以苯乙烯类为主。与离子交换树脂相比, 制备中有两个最大的不同之处:一是二乙烯基苯含量大大增 加,一般达85%以上;二是在制备中加入致孔剂。
1
一、发展概述
1935年英国的Adams和Holmes发表了关于酚 醛树脂和苯胺甲醛树脂的离子交换性能的工作报告, 开创了离子交换树脂领域,同时也开创了功能高分 子领域。
离子交换树脂是最早出现的功能高分子材料。
大孔吸附,离子交换树脂的使用说明

大孔吸附,离子交换树脂的使用说明大孔吸附树脂的使用说明一、树脂保存方法吸附树脂通常以湿态保存,存放处的温度通常0—40℃。
当存放温度低于0℃时,应向包装袋中加入澄清的饱和食盐水,浸泡树脂。
如果暴露在空气中,树脂可能部分干燥失水,由于吸附树脂大多数是疏水性的,为使树脂再度水合,应把部分失水的吸附树脂放在甲醇或其他水溶性的溶剂(如乙醇、丙酮)中充分浸泡,待浸泡完全后,用水冲洗置换出甲醇或其它溶剂。
二、树脂预处理在吸附树脂的生产过程中,一般均采用工业级原料,产品没有经过进一步纯化处理,因此树脂内部往往残留少量单体,致孔剂和其他有机杂质,所以在使用之前必须进行预处理。
吸附树脂预处理方法如下:1、将准备装柱使用的新树脂,用2倍左右体积的甲醇或其他水溶性溶剂(如乙醇、丙酮)浸泡2小时,并不时搅动,使树脂充分溶胀。
2、将已充分溶胀的吸附树脂装柱,以每小时3至4倍床体积的流速,将5至8倍的甲醇或其他水溶性的溶剂(如乙醇、丙酮)通过树脂层,至流出液加水稀释不变混。
3、甲醇处理后,以每小时6至8倍床体积的流速将去离子水通过树脂层,置换出甲醇即可投入使用。
三、树脂复活处理1、用丙醇搅拌浸泡24小时,其用量为树脂体积的2倍,污染较重的再按前述方法重复一遍。
2、对严重污染树脂,可用强氧化剂复活,方法本公司可视具体情况提供。
离子交换树脂的使用说明一、贮存与运输离子交换树脂一般是在充分膨胀、湿润的球粒状态下供应,在贮存、运输过程中要保持包装完好无损,避免树脂脱水、冻裂及污染。
不能露天存放,存放处的温度为0—40℃,当存放处温度稍低于0℃时,应向包装内加入澄清的饱和食盐水,浸泡树脂。
此外,当存放处温度过高时,不但使树脂易于脱水,还会加速阴树脂的降解。
一旦树脂失水,使用时不能直接加水,可用澄清的饱和食盐水浸泡,然后再逐步加水稀释,洗去盐分,贮存期间应使其保持湿润。
二、脱水树脂复苏树脂干燥失水是最大危险之一,失水树脂用10%食盐水浸泡1—2小时,然后稀释,再投入使用,以防止树脂水合急剧膨胀而破损。
阳离子交换树脂

A
5
制备
• 在共聚物中引入不同的官能团即可制得阳离子树 脂和阴离子树脂。
• 如使用硫酸将共聚物中的苯环磺化即可制得强酸 型阳离子树脂,
• 而引入羧基则制得弱酸性阳离子树脂。对于强碱 性离子树脂则可通过在共聚物中引入季铵基而制 得
A
6
催化作用与性能
• 离子交换树脂催化剂作为固体酸、碱催化 剂与均相溶液中的硫酸、盐酸、氢氧化钠 (钾)这些常规的酸、碱催化剂的作用是 一样的。
• 离子交换树脂的催化性能介于低分子量的 酸、碱均相体系和无机固体酸、碱催化体 系之间。
A
8
选择性
离子交换树脂对水中各种离子的交换能力是 不相同的,例如在常温、低浓度水溶液中,树脂 对一些常见离子的选择性为:
强酸性阳离子交换树脂:Fe 3+>Al 3+ >Ca 2+ >Mg 2+ >K + >Na + >H +
A
11
• (3)可实现生产连续化
• 大孔的离子交换树脂由于具有固定的结构 ,其体积受溶剂作用的影响很小。因此, 适用于填充柱操作,实现生产连续化。在 较低的压力下可以达到较高的流速,并可 使用极性差别很大的反应溶剂。
A
12
• (4)节省建设投资
• 酸性树脂催化剂与低分子酸催化剂相比,酸 部位处于树脂的内部,消除了酸与反应器壁 的接触,避免了酸对反应器壁腐蚀的麻烦。 因此,所用的设备和装置不必选用高度防腐 的昂贵材料,从而可以节省建设投资
由于树脂催化剂具有这种物理性质因此反应完成后催化剂可以通过简单的过滤方法从反应混合物中分离出来免除了常规酸碱催化剂使用后需要进行中和洗涤干燥蒸馏等后处理程序同时避免了废酸碱液体对环境的污染
阳离子交换树脂的有机物污染及处理方法
阳离子交换树脂的有机物污染及处理方法阳离子交换树脂的有机物污染及处理方法用途:本产品主要用于高纯水的制备(尤其适用于高速混床)及用于凝结水净化装置(HOH或MH4OH混床系统),还能用于废水处理,回收重金属;氨基酸回收;也可作催化剂。
包装:编织袋,内衬塑料袋。
塑料桶,内衬塑料袋。
使用时参考指标:1.PH范围:0142.允许温度(℃):钠型≤120 氢型≤1003.膨胀率:%(Na+→OH+)≤104.工业用树脂层高度:m 1.03.05.再生液浓度:% HCL:25 H2SO4:12;246.再生剂用量(按100 计):kg/m3湿树脂HCL(工业)40100H2SO4(工业)751507.再生液流速:m/h 588.再生接触时间:minute:30609.正洗流速:m/h:102010.正洗时间:minute:约3011.运行流速:m/h,1525高流速:8010012.工作交换容量:mmol/l(湿树脂)≥1300主要性能指标:指标名称D001 H/NaD001 FC H/NaD001 SC H/NaD001MB H/Na D001 TR 全交换容量mmol/g≥4.35/4.2体积交换容量mmol/ml≥ 1.60/1.80含水量5060/4555湿视密度g/ml0.740.84/0.750.85湿真密度g/ml1.161.24/1.251.28粒度(0.3151.25mm)≥95 (0.451.25mm)≥95(0.631.25mm)≥95(0.711.25mm)≥95(〈0.315mm)≤1(〈0.45mm)≤1(〈0.63mm)≤1(〈0.71mm)≤1有效粒径mm0.400.700.50 0.750.650.90均一系数≤1.601.40磨后圆球率≥95外观浅棕色或灰褐色不透明球状颗粒浅棕色或灰褐色不透明球状颗粒浅棕色或灰褐色不透明球状颗粒浅棕色或灰褐色不透明球状颗粒出厂型式NaNaNaNa用途通用浮动床双层床混床三层床一、树脂的运输和贮存:离子交换树脂内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水份。
阳离子交换树脂的技术与树脂分类
阳离子交换树脂的技术与树脂分类阳离子交换树脂的技术与树脂分类1.PH范围:1142.高使用温度:氢型≤100℃,钠型≤120℃,3.转型膨胀率:(Na+→H+)8104.工业用树脂层高度:1.5m以上。
5.再生液浓度 NaCl:810,HCl:456.再生液用量:NaCl(810)体积:树脂体积=1.52:1HCl(45)体积:树脂体积=23:17.再生液流速: 58 m/h8.再生接触时间: 4560 min9.正洗流速: 1020 m/h10.正洗时间:约30 min11.运行流速: 1530 m/h12.工作交换容量:≥1000mol/m3六、用途主要用于水的处理(包括硬水软化、高压炉水、无离子水、注射水、海水淡化等),废水中贵金属的回收,抗生素的提纯,代替人体内肾脏的作用。
七、包装及贮运本产品用内衬塑料袋的编织袋包装,每袋25kg,也可根据需求用塑料桶或其它容器包装,本品为非危险品。
贮运温度540℃,严禁脱水、曝晒。
一、树脂的运输和贮存:离子交换树脂内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水份。
如果贮存过程中树脂脱了水,应先用浓食盐水(810)浸泡12小时,再逐渐稀释,不得直接放于水中,以免树脂急剧膨胀而破碎。
树脂在贮存或运输过程中,应保持在540℃的温度环境中,避免过冷或过热,影响质量。
若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水的温度可根据气温而定。
二、新树脂的予处理:新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。
当树脂与水、酸、碱或其它溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。
所以,新树脂在投运前要进行预处理。
1、阳树脂的预处理阳树脂的预处理步骤如下:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐溶液中浸泡1820小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;其次再用24NaOH溶液,其量与上相同,在其中浸泡24小时(或小流量清洗),放尽碱液后,冲洗树脂直至排出水接近中性为止;后用5HCL溶液,其量亦与上述相同,浸泡48小时,放尽酸液,用清水漂流至中性待用。
离子交换树脂的原理及应用重点阅读
如何筛分混合的阴阳离子交换树脂离子交换树脂的工作原理及优缺点分析将离子性官能基结合在树脂有机高分子上的材料,称之为“离子交换树脂”. 树脂表面带有磺酸 sulfonic acid 者,称为阳离子交换树脂,而带有四级氨离子的,则为阴离子交换树脂.由於离子交换树脂可以有效去除水中阴阳离子,所以经常使用於纯水、超纯水的制造程序中.见下图离子交换树脂上的官能基虽可去除原水 Feed water 中的离子,但随着使用一段时间之后,因官能基的饱和而导致去离子效率的降低,引发水质劣化的缺点.此外,离子交换树脂本身也是有机物质,使用中会受到氧化分解、机械性破裂、担体流出而造成有机物质的溶出.此外,带有电荷的有机物质也会受到离子交换树脂的吸附,使离子交换树脂很容易受到有机物质的污染 Fouling.而有些微生物由於菌体表面带着负电,也会被阳离子交换树脂所吸附,树脂表面因而成为微生物的繁殖场地,造成纯水的污染.在此同时,微生物所产生的代谢产物也会成为有机物质的污染来源.这些都是使用离子交换树脂时,引发水质劣化而不可不注意的地方.通常失去离子去除能力饱和的离子交换树脂,虽然可以经由酸碱药剂的作用来再生,达到重复使用的目的,但若因为有机物质的吸附污染而造成效率不好时,树脂的去除性能就会降低.此外,依再生用化学药剂的品质不同也会有离子交换树脂本身被污染的风险.因此,超纯水系统所使用的离子交换树脂几乎是不能进行再生处理的.离子交换树脂的原理及应用是什么原理离子交换树脂是一种聚合物,带有相应的功能基团.一般情况下,常规的钠离子交换树脂带有大量的钠离子.当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降.硬水就变为软水,这是软化水设备的工作过程.当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”.由于实际工作的需要,软化水设备的标准工作流程主要包括:工作有时叫做产水,下同、反洗、吸盐再生、慢冲洗置换、快冲洗五个过程.不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程.任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的其中,全自动软化水设备会增加盐水重注过程.反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证.反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走.这个过程一般需要5-15分钟左右.吸盐再生:即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入只要进水有一定的压力即可.在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响.慢冲洗置换:在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换.这个过程一般与吸盐的时间相同,即30分钟左右.快冲洗:为了将残留的盐彻底冲洗干净,要采用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水.一般情况下,快冲洗过程为5-15分钟. 应用1水处理水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除.目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等.2食品工业离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上.例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆.离子交换树脂在食品工业中的消耗量仅次于水处理.3制药行业制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用.链霉素的开发成功即是突出的例子.近年还在中药提成等方面有所研究.4合成化学和石油化学工业在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应.用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多.如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等.甲基叔丁基醚MTBE的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应而成,代替了原有的可对环境造成严重污染的四乙基铅.5环境保护离子交换树脂已应用在许多非常受关注的环境保护问题上.目前,许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用.如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等.6湿法冶金及其他离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属.其他补充:离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂.但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用.近年国内外生产的树脂品种达数百种,年产量数十万吨.在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低虽然一次投入费用较大.以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的.离子交换技术的开发和应用还在迅速发展之中.离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志.膜分离技术在糖业的应用也受到广泛的研究.离子交换树脂都是用有机合成方法制成.常用的原料为苯乙烯或丙烯酸酯,通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团通常为酸性或碱性基团而制成.离子交换树脂不溶于水和一般溶剂.大多数制成颗粒状,也有一些制成纤维状或粉状.树脂颗粒的尺寸一般在~范围内,大部分在~之间.它们有较高的机械强度坚牢性,化学性质也很稳定,在正常情况下有较长的使用寿命.离子交换树脂中含有一种或几种化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子如H+或Na+或阴离子如OH-或Cl-,同时吸附溶液中原来存有的其他阳离子或阴离子.即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来.离子交换树脂的品种很多,因化学组成和结构不同而具有不同的功能和特性,适应于不同的用途.应用树脂要根据工艺要求和物料的性质选用适当的类型和品种.离子交换树脂的处理方法新购树脂常残存较多有机溶剂,低分子聚合物及有机杂质,使用前必须尽量除去,否则将影响树脂的使用寿命.1.将树脂放在一大桶内,先用清水漂洗干净,滤干.2.用80%~90%工业乙醇浸泡24小时,洗去树脂内的乙醇溶性有机物然后抽干滤液供回收乙醇.3.用40~50℃的热水浸泡2小时,洗涤几次后,再浮选或筛选出粒度合适的树脂.目的是洗去树脂内的水溶性杂质和乙醇味.然后抽干.4.用4倍于树脂量的2摩尔/升盐酸1:5溶液浸泡处理2小时要经常翻动,目的是洗去酸溶性杂质.用蒸馏水或自来水洗至中性,抽干.5.用4倍于树脂量的2摩尔/升8%氢氧化钠溶液浸泡2小时需经常翻动,目的是洗去碱溶性杂物.用蒸馏水或自来水洗至中性,抽干,备用.6.如果是阴离子树脂,可转型为C1型或OH型,用盐酸按上法处理一次即可;如是阳离子树脂,可转为H型或Na型,用氢氧化钠按上法处理一次即可.再生,用过的树脂.如希望阳离子树脂为H型、Na型或NH4型,则可分别用盐酸、氢氧化钠或氢氧化铵处理;要使阴离子树脂为C1型、OH型,则可用盐酸或氢氧化钠分别处理.树脂宜保存于阴凉处,但不宜深冻,因深冻会破坏树脂的内部结构.短期存放可置于1摩尔/升盐酸或氢氧化钠溶液中.长期存放可加入适量防腐剂封存.遇到树脂长霉,可用1%甲醛浸泡1小时后,再漂洗干净,然后进行再行处理.详见离子交换树脂的还原方式如果您是再生用于软化的阳树脂,即通过置换的方法使水的硬度降低的,则用工业盐进行再生Nacl,使用量依照树脂量的多少和树脂品牌来计算,再生周期和频率依树脂再生效果和处理水量来定,浓度一般在10%.用盐的原因是盐中的NA离子可以把水中的钙和镁置换出来,此时的树脂只是一个置换的载体,再生后,置换出来的高浓度氯化钙和氯化镁被排出,树脂中的无数看不见的小孔被纳塞满可置换出水中的钙和镁,游离到水中,当置换达到饱和后,就不能进行吸附了,此时再重复再生的步骤已达到软化水质的目的.如果是混床,即MB中使用,内装阴阳两种树脂则需要用盐酸及液碱分别或同时进行再生,废水从中排管中流出,通过交换,盐酸中的H+离子和液碱中的OH-将水中的其他阴阳离子置换而产出更高要求纯度的水,一般都在35%的浓度,同样再生量根据树脂量和再生方法不同而略有差异.再一种就是分床,和混床差不多,只是将两个床的树脂分开,有的用来去除水中固定的金属离子,比如汞,铜等,有的在两塔中加一个脱气塔,吹出CO2以降低水中的溶解二氧化碳以提高水的纯度,我们叫KDA,阳离子用盐酸或硫酸,根据脱除金属离子的不同而选择,如果是阴离子一般都用碱.软化再生时一般用自动再生头时间型或流量型混床一般用PLC编程控制气动或电动阀门来进行再生,也有一些老的设备是手动再生的,方法都差不多,只是人操作每次的再生药剂量和效果差异较大.水处理乃高深学问,几句话也没法表述清楚,还是建议找正规的厂家来处理比较合适.各类离子交换树脂的再生方法再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐.1、大孔吸附树脂简单再生的方法是用不同浓度的溶剂按极性从大到小剃度洗脱,再用2~3BV的稀酸、稀碱溶液浸泡洗脱,水洗至PH值中性即可使用.2、钠型强酸性阳树脂可用10%NaCl 溶液再生,用药量为其交换容量的2倍用NaCl量为117g/ l 树脂;氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物.为此,宜先通入1~2%的稀硫酸再生.3、氯型强碱性树脂,主要以NaCl 溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + %NaOH 的碱盐液再生,常规用量为每升树脂用150~200g NaCl ,及3~4g NaOH.OH型强碱阴树脂则用4%NaOH溶液再生.4、一些脱色树脂特别是弱碱性树脂宜在微酸性下工作.此时可通入稀盐酸,使树脂 pH值下降至6左右,再用水正洗,反洗各一次.干的离子交换树脂如何溶胀,谢谢离子交换树脂是亲水性高分子化合物,当将干的离子交换树脂侵入水中时,其体积常常要变大,这种现象称为溶胀,使离子交换树脂含有水分.由于树脂具有这种性能,因而在其交换和再生过程中会发生胀缩现象,多次的胀缩就容易促使颗粒破裂.影响离子交换树脂溶胀的因素有:1交联度.高交联度树脂的溶胀能力较低.2活性基因.活性基因团易电离,即交换容量越高,树脂的溶胀性越大.3溶液浓度.溶液中电解质浓度越大,树脂内外溶液的渗透压反而减小,树脂的溶胀就小,所以对于“失水”的树脂,应将其先侵泡在饱和食盐水中,使树脂缓慢膨胀,不至破碎,就是基于上述道理.一般讲,强酸性阳离子交换树脂由Na型变成H 型,强碱阴离子交换树脂由CL型变成OH型,其体积均增加约5%.。
阴阳树脂处理方法
阴阳树脂处理方法混合床是一个交换柱内即有强酸性阳离子交换树脂,同时也有强碱性阴离子交换树脂,是在混合均匀的情况下使经过处理的水顺流通过,而得到纯度较高纯水的方法。
(树脂在柱内的高度为交换柱的有效高度的2/3,在此2/3的树脂层内,其中有1/3为强酸性阳离子交换树脂在下部,强碱阴离子交换树脂为2/3在上部。
)阴阳树脂的比例为2/1(体积比)。
在阴阳树脂交界处略向下一些有一中排管,用以阳树脂再生进酸时,控制酸的界面在阴阳树脂截面处之下。
具体操作如下:1.逆洗分层水从底部进入,上口排出,树脂均匀地松弛膨胀开来,可加大水流速以冲不出树脂为原则,洗至出水清亮度。
反洗的目的为使阴阳树脂分层,阳树脂比重为 1.23-1.28,而阴树脂比重为1.06-1.11,两种树脂比重差别比较大,所以通过逆洗就很容易分层,通过逆洗也可排出一些杂质异物,保证下一周期的正常运行。
逆洗毕,放水,放到树脂层表面10厘米以上。
2.强碱性阴离子交换树脂再生再生剂为3-5%的NaOH,用量为树脂体积的3-5倍,从上口进入,控制一定流速,维持液面顺流通过,通过中排口或阳树脂而排出,再生时间不少于1小时。
3.淋洗阴树脂当碱液淋洗完后,进行淋洗附在阴树脂上的碱液,淋洗先用纯水正淋洗,自上而下顺流通过,慢速淋洗,大约10分钟左右改为反洗,水通过阳树脂(Na交换水)洗阴树脂,可洗至pH=7-8。
反洗时间约为20分钟左右。
淋洗完排水可排到阴阳树脂交界处以下1-2厘米,准备阳树脂再生。
4.强酸性阳离子交换树脂再生再生剂为3-5%盐酸,用酸量为阳树脂体积的2-3倍。
酸液从酸再生管加入,从中口排出。
此法应严格控制酸的液面。
始终在阴阳树脂交界处(下一点),切不可上溢到阴树脂曾,否则会使刚再生为OH型的阴树脂变为Cl型而失效。
维持一定流速,在半小时内流完。
5.淋洗阳树脂仍从底排管进水,控制液面在阴阳树脂交界处,淋洗水量为阳树脂体积的4-6倍,慢流速洗至pH=2-3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阳离子交换树脂处理工艺
阳离子交换树脂是一种常用的水处理方法,其原理是通过树脂颗粒吸附水中的阳离子,从而达到去除水中杂质的目的。
阳离子交换树脂处理工艺主要包括预处理、吸附和再生三个步骤。
预处理阶段主要是对原水进行初步处理,去除悬浮物、沉淀物、有机物等杂质,使水的水质达到要求,保证后续处理的顺利进行。
常用的预处理方法包括过滤、沉淀、氧化等。
吸附阶段是阳离子交换树脂处理的核心步骤。
在这个过程中,原水通过树脂层,被树脂吸附,从而去除其中的阳离子。
吸附的过程中,树脂的吸附量会随着时间的推移而逐渐降低,因此需要定期进行再生。
再生阶段是将已吸附的阳离子从树脂中提取出来,使树脂重新具备吸附能力。
再生方法多种多样,包括反向洗涤、酸洗、碱洗、高盐洗等。
再生后的树脂可以继续使用,使得阳离子交换树脂处理工艺具有经济环保的优点。
在实际应用中,阳离子交换树脂处理工艺被广泛应用于水处理、废水处理、纯水制备等领域。
通过不同的树脂种类、预处理方法和再生方法,可以实现对不同水质的高效处理,满足不同领域的需求。
- 1 -。