三年级 速算与巧算 (附带完整答案)
三年级奥数 速算与巧算(修正后)

1、加减法巧算在进行加减法计算时,“先计算括号中的部分,再从左往右依次计算”是基本的运算法则,但除此之外,还有许多运算技巧,熟练掌握各种运算技巧可以使你算得更快更准。
“凑整法”是最常用的巧算方法,就是在计算时优先计算可以得到整十、整百、整千的部分,从而达到巧算的目的,要想凑出整十,两个数的末位相加应该得0,这样的情况除了0+0外,还有1+9,2+8,3+7,4+6,5+5,同学们在作题时要注意观察各加数的个位,看能不能找到合适的凑法,除了加法可以凑整以外,减法同样可以凑整,个位相同的两个数相减后便能得到整十的数。
在进行加减法混合运算时,经常会遇到能够巧算的数不在一起的情况,这时候就需要通过调整运算顺序,把能巧算的放在一起先算,但需要注意的是,在调整的过程中,每个数都必须带着自己左边的符号一起移动,这种调整可以形象地称作“带符号搬家”,如果搬家的是算式中的第一个数,前面没有符号,在这个数之前添上一个加号即可。
例题1(1)计算:73+45+17+55;(2)计算:73+119+231+69+381+17(3)计算:375-138+247-175+139-237。
分析(1)通过个位凑十来配对;(2)加法配对看末位,减法应该如何配对?练习1、(1)计算:45+67+33+55+84(2)计算:36+97+32+64+168+103;(3)计算:2468-192+532+392-224+1234。
除了“带符号搬家”可以调整运算次序外,“脱括号”与“添括号”也是改变运算顺序的常用手段,加减法算式中“脱括号”要遵循下面的规则:例题2(1)计算:4723-(723+189)(2)计算:162-(162-135)-35-19(3)计算:163-(50-18)-(153-76)+(124-18)分析:去掉括号会变成什么样?练习:(1)计算123-(23-45)-(45-67)(2)计算:437-(200-83)+(63-53)………………………………………………笑话………………………………………………从前,山东省有个大军阀,他横行霸道,却不学无术,经常闹笑话。
新人教版三年级数学速算与巧算练习及答案(word版)

习题一一、直接写出计算结果:① 1000-547② 100000-85426③ 11111111110000000000-1111111111④ 78053000000-78053二、用简便方法求和:①536+(541+464)+459② 588+264+148③ 8996+3458+7546④567+558+562+555+563三、用简便方法求差:① 1870-280-52020 4995-(995-480)③ 4250-294+94④ 1272-995四、用简便方法计算下列各题:① 478-128+122-72 ② 464-545+99+345③ 537-(543-163)-57④ 947+(372-447)-572五、巧算下列各题:① 996+599-402② 7443+2485+567+245③ 2020-1347-253+1593④3675-(11+13+15+17+19) 习题一解答一、直接写出计算结果:① 1000-547=453② 100000-85426=14574③ 11111111110000000000-1111111111=11111111108888888889④ 78053000000-78053=78052921947此题主要是练习直接写出“补数”的方法:从最高位写起,其各位数字用“凑九”而得,最后个位凑10而得。
二、用简便方法求和:① 536+(541+464)+459=(536+464)+(541+459)=2020② 588+264+148=588+(12+252)+148=(588+12)+(252+148)=600+400 =1000③ 8996+3458+7546=(8996+4)+(3454+7546)=9000+11000(把 3458分成 4和=9000+11000 3454) =20200④ 567+558+562+555+563=560×5+(7-2+2-5+3)(以560为基准数)=2800+5=2805三、用简便方法求差:① 1870-280-520201870-(280+52020=1870-800=1070②4995-(995-480)=4995-995+480=4000+480=4480③ 4250-294+94=4250-(294-94)=4250-20204050④ 1272-995=1272-1000+5=277四、用简便方法计算加减混合运算: ① 478-128+122-72=(478+122)-(128+72)=600-2020=400② 464-545+99+345=464-(545-345)+100-1=464-2020100-1=363③537-(543-163)-57=537-543+163-57=(537+163)-(543+57)=700-600=100④ 947+(372-447)-572 =947+372-447-572=(947-447)-(572-372)=500-2020=300五、巧算下列各题:①996+599-402=1193②7443+2485+567+245=10740③2020-1347-253+1593=1993④3675-(11+13+15+17+19)=3600习题二一、用简便方法求积:①17×100②1112×5③23×9④23×99⑤12345×11⑥56789×11⑦36×15二、速算下列各题:①123×25×4②456×2×125×25×5×4×8③25×32×125三、巧算下列各题:①15000÷125÷15②1202025÷4③27000÷(125×3)④360×40÷60四、巧算下列各题:①11÷3+4÷3②19÷5-9÷5 ③234×11+234×88习题二解答一、用简便方法求积:①17×100=1700②1112×5=5560③23×9=230-23=2020④23×99=2300-23=2277⑤12345×11=135795⑥56789×11=624679⑦36×15=(36+18)×10=540二、速算下列各题:①123×25×4=123×(25×4)=12300②456×2×125×25×5×4×8=456×(2×5)×(25×4)×(125×8)=456000000③25×32×125=(25×4)×(125×8)=100000三、巧算下列各题:①15000÷125÷15=15000÷15÷125=8②1202025÷4=12020(25×4)=12③27000÷(125×3)=27000÷3÷125=9×(1000÷125)=9×8=72④360×40÷60=360÷60×40=240 四、巧算下列各题:①11÷3+4÷3=(11+4)÷3=5②19÷5-9÷5=(19-9)÷5=2③234×11+234×88=234×(11+88)=234×99=234×100-234=23166。
(完整)三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。
例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。
例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。
三年级速算与巧算专题奥数及答案

二年级奥数基础班第一讲速算与巧算习题1.计算:18+28+72 28+44+62+562.计算:100-68= 100-87= 1000-369= 500-47=3、计算:67+98 261-1974.计算:72-39+28 382-60+595.计算:99+98+97+96+95 * 9+99+9996.计算:436-(36+57)579-83-177.计算:1+2+3+4+3+2+1= 1+2+3+4+5+1+2+3+4+5+6=8.计算:5+6+7+8+9 1+4+7+10+13+16提高班第一讲速算与巧算习题1.计算:18+28+72 28+44+62+56-202.计算:100-68= 1000-587= 1000-69= 500-47=3、计算:67+98 261-1974.计算:72-39+28 382-60+595.计算:99+98+97+96+95 9+99+9996.计算:436-(136+157)579-83-177.计算:1+2+3+4+3+2+1= 1+2+3+4+5+1+2+3+4+5+6=8.计算:5+6+7+8+9 1+4+7+10+13+16基础班第二讲图形计数习题1.数一数,图4-1中共有多少条线段?2.数一数,图中有多少个三角形?3.图中有多少个正方形?4.数一数,图形中有几个长方形?5.数一数,下图中有多少个三角形?多少个正方形?*6.数一数,下图中共有多少条线段?有多少个三角形?*7.数一数,下图中共有多少个小于180°角?*8.数一数,下图中共有多少个三角形?习题答案1. 10条线段2. 5个6个6个5个12个3. 5个17个4. 7个(4+3+2+1)×(3+2+1)=60(个)5. 6个三角形7个正方形6. 30条线段10个三角形7. 30个小于180°角10+3+6=19(个)9.提高班第二讲图形计数习题1.数一数,图4-1中共有多少条线段?*2.数一数,图4—2中共有多少条线段?3.数一数,图中有多少个三角形?*4. ***5.图中有多少个正方形?6.数一数,图形中有几个长方形?7.数一数,图中共有几个三角形?几个正方形?8.数一数,下图中共有多少条线段?**有多少个三角形?9.数一数,下图各图中各有多少个三角形?*10.数一数,下图中有多少个小于180°角?习题答案1.10条线段2.14条线段3.5个6个6个5个4.12个12个5.5个17个6.7个(4+3+2+1)×(3+2+1)=60(个)7. 6个三角形7个正方形8. 30条线段10个三角形9. 19个三角形10. 30个小于180°角秋季班第三讲基础班1.把一根粗细均匀的木头锯成6段,每锯一次需要3分钟,一共需要多少分钟?2.把一根粗细均匀的木头锯成5段需要20分钟,每锯一次要用多少分钟?3.一根木料长10米,要把它锯成一些2米长的小段,每锯一次要用4分钟,共要用多少分钟?4.公园的一条林荫大道长300米,在它的一侧每隔30米放一个垃圾桶,需多少个垃圾桶?5.学校有一条长60米的走道,计划在道路两旁栽树。
(完整版)三年级-速算与巧算

速算与巧算1.加法中的巧算(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。
即:a+b=b+a(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,在和第一个数相加,它们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)2.减法和加减混合运算中的巧算(1)一个数连续减去几个数,等于减去这几个数的和。
相反,一个数减去几个数的和,等于连续减去这几个数。
即:a-b-c=a-(b+c)(2)在加减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
如:a-b+c=a+c-b(3)加减混合运算中去括号(或添括号)时,如果括号前面是“-”号,那么括号里“-”变“+”;如果括号前面是“+”号,那么括号里的符号不变。
如:a+(b-c)=a+b-c,a-(b-c)=a-b+c3.“基准数加累计差”方法几个相近的数相加,可以选择其中一个数,最好是整十,整百的数位“基准数”,、再找出每个加数与基准数的差,大于基准数的差做加数,小于基准数的差做减数,把这些差累计起来再加上基准数与加数个数的乘积就可以得到结果。
如果两个数的和恰好可以凑成整十,整百,整千……的数,那么其中一个数叫做另一个数的“补数”。
例如:1+9=10,1叫做9的补数。
判断两个数是否为补数:只要看两个数的个位数之和是否为104.等差数列求和公式和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1例1(1)82+354+18 (2)364+97+636+1003例2(1)400-21-29 (2)1000-27-60-73-40例2(1)624+31-324+69 (2)35+27-42-35-27+82例3(1)724-(180-76)(3)685-327+127例4(1)574+499 (2)1592-197 (3)987-399例5 (1)54+47+50+57+48+45 (2)29999+2999+299+29+9例6 (1)1+2+3+…+18+19+20 (2)1+4+7+…+19+22+25练习1.783+68+32 345+45+552.864+1673+136+327 78+23+222+179+21+3573.9998+998+98 9+99+999+9999+44.875-364-236 587-231-695.1797-(797-215)876-(376+123)6.4796-998 248+997.85+83+78+76+82+77+80+79 45+43+47+38+35+39+448.1000-90-80-70-60-50-40-30-20-10 1-2+3-4+5-6+7-8+9-10+114.乘法具有以下三个运算定律(1)乘法交换律:2个数相乘,交换2个数的位置,积不变。
小学数学三年级巧算、速算

乘除法中的速算、巧算一、一、1、一个数与10、100、1000……相乘,就是往这个数后面加0、00、000…………2、巧算一个数与99相乘,99×1=99 99×2=198 99×8=792 通过观察发现一个数与99相乘就是在这个数后面加上00,然后减去此数,即可,然后减去此数,即可 99×1=100—1=99 99×2=200—2=198 99×8=800—8=792 3、通过以上规律,那么一个数与999相乘呢?相乘呢?999×2=2000—2=1998 999×8=8000—8=7992 二、二、巧算两位数与11的乘积。
的乘积。
12×11=132 35×11=385 47×11=517 69×11=759 观察上面每一组题,观察上面每一组题,发现俩位数与发现俩位数与11相乘,只要把这个俩位数拉开,只要把这个俩位数拉开,个位数字做积的个位,个位数字做积的个位,十位数字做积的百位;个位数字与十位数字相加的和做积的十位,如果满十的话要向百位进一。
概括为口诀:俩边一拉,中间相加。
一。
概括为口诀:俩边一拉,中间相加。
三、三、1、巧算三位数与11相乘。
相乘。
432×11=4752 168×11=1848 口诀:俩边一拉,中间俩加。
口诀:俩边一拉,中间俩加。
注意哦,也是要满十进一的。
注意哦,也是要满十进一的。
2、巧算俩位数与101相乘。
相乘。
101×45=4545 101×67=6767 规律就是积把这个俩位数连续写俩遍。
规律就是积把这个俩位数连续写俩遍。
那么三位数与1001相乘呢?相乘呢?1001×782=782782 自己总结规律自己总结规律四、四、例题:根据37×3=111,简算下面各题。
,简算下面各题。
37×9=37×3×3=333 37×12=37×3×4=444 37×33=37×3×11=1221 37×36=37×3×12=1332 五、五、41×41×49=49=?【详解】相乘的两个数都是两位数,且十位上的数字相同,个位上的数字之和正好是10,这就可以运用"头同尾合十"的巧算法进行简便计算。
速算与巧算(一)(含答案)-
速算与巧算(一)速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当,准确,灵活地运用定律,性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。
(一)指导探索:例L 计算8 + 89 + 899 + 8999 + 89999分析与解:观察题目的特点发现:8可以看作9-1, 89可以看作90-1, 899可以看作900-1……,又是连加的算式。
根据这个特点,可以看作9, 90, 900, 9000与90000的和再减去5个1的和。
8 + 89÷899+ 8999 + 89999= (9-1) + (90-1) + (900-1) + (9000-1)÷ (90000-1)=(9+90 ÷ 900+ 9000 +90000)-(1 + 1 +1 + 1 + 1)=99999 - 5=99994还可以这样想:8 + 89 + 899 + 8999 + 89999= 4 + 1 + 1 + 1 + 1 + 89 + 899 + 8999 + 89999= 4 + (89 + 1) + (899 + 1) + (8999 + 1) + (89999 +1)= 4 + 90 + 900 + 9000 + 90000=99994例 2.计算:20+19 — 18—17 + 16+15—14- 13+・・・+4 + 3 — 2 — 1分析与解:这是一道加,减混合算式,由于加、减数较多,要仔细观察能不能简化计算。
观察发现:20-18 = 2, 19-17 = 2, 16-14 = 2, 15-13 = 2, -4-2 = 2,3-1 = 2,因此通过前后次序的交换,把某些数结合在一起算,比较简便。
20+19-18-17 + 16+15-14-13+ ∙∙∙+4 + 3-2-l=(20-18)+ (19-17)+ (16-14) + - ÷(4-2)+ (3-1)= 2 + 2+∙∙∙+2 + 210个2=20例 3. 444 × 25分析与解:25是个特殊数,它与4相乘可以得到100,因此25与一个数相乘时,就要想办法从这个数中分离出4o方法一:444 × 25= (400 + 40 + 4)×25= 400×25 + 40×25 + 4×25=10000+1000+100= 11100方法二:444 × 25= (111×4)×25= 111×(4×25)= 11100方法三:444 × 25=(444 ÷4)× (25 × 4)= lll×100= 11100例 4. 375×480 + 6250×48分析与解:观察题目的特点发现:“乘、力∏,乘”的形式符合乘法分配律的符号特征,另外480比48末尾多了一个0,如果去掉6250末尾的0就与375凑成1000o 375 × 480 + 6250 × 48=375 × 480 + 625 × 480=480 × (375 ÷ 625)= 480×1000=480000例 5.计算:333333×333333分析与解:如果把一个因数改变成连续几个9的形式,就可以把它看成一个整十(整百、整千,整万……)数-1的形式,从而利用乘法分配律简算,我们知道333333 × 3 = 999999 ,因此根据积不变的规律,把一个因数扩大3倍,变成999999,另 一个因数缩小3倍,变成111111。
小学速算与巧算方法(附例解),收藏一下!
小学速算与巧算方法(附例解),收藏一下!在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?在熟练掌握计算法则和运算顺序的前提下,可以根据题目本身的特点,运用速算和巧算,化繁为简,化难为易,算得又快又准确。
1“凑整”先算1.计算:(1)24 44 56 (2)53 36 47解:(1)24 44 56=24 (44 56)=24 100=124因为44 56=100是个整百的数,所以先把它们的和算出来。
(2)53 36 47=53 47 36 =(53 47) 36=100 36=136因为53 47=100是个整百的数,所以先把47带着符号搬家,搬到 36前面;然后再把53 47的和算出来。
2.计算:(1)96 15 (2)52 69解:(1)96 15=96 (4 11)=(96 4) 11=100 11=111把15分拆成15=4 11,这是因为96 4=100,可凑整先算。
(2)52 69=(21 31) 69 =21 (31 69)=21 100=121因为69 31=100,所以把52分拆成21与31之和,再把31 69=100凑整先算。
3.计算:(1)63 18 19 (2)28 28 28解:(1)63 18 19 =60 2 1 18 19 =60 (2 18)(1 19) =60 20 20=100将63分拆成63=60 2 1就是因为2 18和1 19可以凑整先算。
(2)28 28 28 =(28 2)(28 2)(28 2)-6 =30 30 30-6=90-6=84因为28 2=30可凑整,但最后要把多加的三个2减去。
2改变运算顺序在只有“ ”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18 19 (2)45 18-19解:(1)45-18 19=45 19-18 =45 (19-18)=45 1=46把 19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45 18-19=45 (18-19)=45-1=44加18减19的结果就等于减1。
三年级下册数学试题-奥数专题讲练:第1讲 巧算与速算提高篇(解析版)全国通用
第一讲速算与巧算同学们,我们又在奥数网见面了!一提到“数学”,大家第一个想到的大多都会是计算。
计算是数学的“地基”,只有打牢这个“地基”,我们的数学大厦才能建高、建好!在数学计算中有许多好的方法技巧和规律,我们如果能理解掌握、灵活运用,“数学大厦”的地基就会为你的成长提供最好的帮助!呵呵!下面就让我们一起来看看吧!加减法中的巧算小朋友们,你知道“凑整”的思想么?在速算、巧算中我们常常为了方便计算而采用“凑整”的思想,它大大加快了我们的计算速度和正确率。
【例1】用你的好办法算出下式结果:(1)1350+49+68+51+32+1650(2)23+54+18+47+82(3)78+19+36+54+21+74+102(4)33+105+18+95+57+56+12+114分析:(1)先观察算式,找能凑整的数,一般找能凑整的数看个位就可以了。
如右图,我们可以先把能凑整的数标出来,能“凑整”的先算,写成算式时一定要看清是不是每个数都写进去了,故有:(1)式=(1350+1650)+(49+51)+(68+32)=3000+100+100=3200(2)如右图,我们可以先把能凑整的数标出来,能“凑整”的先算,写成算式时一定要看清是不是每个数都写进去了。
故有:(2)式 =(23+47)+54+(18+82)= 70+54+100 = 224(注意别忘了没有找到“伴”的那些数字)(3)式= (78+102)+(19+21)+(36+54)+74 = 180+40+90+74 = 384(4)式=(33+57)+(105+95)+(18+12)+(56+114)= 90+200+30+170 = 290+200 = 490【例2】用你的好办法算出下式结果:(1)188+873(2)9898+203(3)378+26+609(4)66+218+79+87分析:在许多情况下,我们没有如例1那么理想的“凑整”状态,这个时候我们可以自己创造条件,变成理想的“凑整”状态,而后进行计算。
完整版小学三年级数学加减法速算与巧算
完整版小学三年级数学加减法速算与巧算速算与巧算(一)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10, 2+8=10,4+6=10, 5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:①36+87+64②99+136+101③ 1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。
如:二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。
300-73-27 ①例 31000-90-80-20-10 ② 27)= 300-(73+解:①式300-100=200=)+1080(90++20=1000- ②式8001000-200== 2.先减去那些与被减数有相同尾数的减数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 速算与巧算(一)本讲主要介绍两种速算与巧算的方法: 1、理解并掌握分组凑整法; 2、理解并掌握加补凑整法.本章内容只涉及加减法中的速算与巧算,帮助学生在加减法运算中掌握基本的运算技巧,更加快速,更加准确地解决加减法运算中的 “难题”.计算: (1)6+6+6+6+6+4 (2)6+7+8+9+10+11+12+13+14分析:原式=5×6+4 分析:原式=(6+14)+(7+13)+(8+12)+(9+11)+10 =34 =90(3)1+2+3+4+5+4+3+2 (4)7+17+27+37=88分析:原式=24 分析:原式=(10-3)+(20-3)+(30-3)+(40-3) =88(5)58-26-28 (6)64-(25+14)分析:原式=58-28-26 分析:原式=64-14-25 =4 =25教学目标想挑 战吗 ?一位济贫劫富的大侠夜间潜入一吝啬的财主家,盗得一宝箱,非常高兴离去,但是当他要打开宝箱时却发愁了,宝箱是一个密码箱,要在6 4 8 9 7四个数之间填入“+”和“-”,使他们的结果等于4,这样宝箱才会自动打开。
哪位同学可以帮助这位大侠? 答案:6+4-8+9-7=4. 你还记得吗?专题精讲在这一讲中我们我们将会学习有关加减法的速算与巧算的方法.我们在进行加减法运算时,为了又快又准确,除了熟练地掌握计算法则以外,还需要掌握一些巧算方法.加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差),这样使我们在加减法运算中更加迅速,更加准确.在具体的凑数运算过程中,我们主要涉及到几种计算方法:(1)分组凑整法,(2)加补凑整法,(3)其他类型的巧算.我们在进行加法的巧算时,经常运用以下两个运算律:(1)加法交换律:两个数相加,交换加数的位置,他们的和不变.即a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.将此运算律推广,多个数相加,任意交换相加的次序,其和不变.(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变.即a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).将此运算律推广,多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变.我们在进行减法运算时,经常运用以下性质:(3)在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.(4)在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c(5)在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”.如:a+b-c=a+(b-c)a-b+c=a-(b-c),a-b-c=a-(b+c)(一)分组凑整法【例1】(★★★奥数网题库)计算:(1)117+229+333+471+528+622(2)168+253+532(3)(1350+249+468)+(251+332+1650)(4)358+127+142+73分析:在这个例题中,主要让学生掌握加法分组凑整的方法.具体分析如下:(1)原式=(117+333)+(229+471)+(528+622)=450+700+1150=(450+1150)+700=1600+700=2300(2)原式=(168+532)+253=700+253=953(3)原式=1350+249+468+251+332+1650=(1350+1650)+(249+251)+(468+332)=3000+500+800=4300(4)原式=(358+142)+(127+73)=500+200=700【例2】(★★★奥数网题库)计算:(1)265-68-132(2)756-248-352(3)268-56-82-44-18(4)894-89-111-95-105-94分析:在这个例题中,主要让学生掌握减法分组凑整的方法.一个数连续减去两个数,可以先把后两个数相加凑整,再用这个数减去后两个数的和.具体分析如下:(1)原式=265-(68+132)=265-200=65(2)原式=756-(248+352)=756-600=156(3)原式=268-(56+44)-(82+18)=268-100-100=68(4)原式=(894-94)-(89+111)-(95+105)=800-200-200=400【例3】(★★★奥数网题库)计算:(1)98-53+102+63(2)163-154+245+137+55-146(3)1348-234-76+2234-48-24(4)1847-1936+536-154-46分析:在这个例题中,主要让学生掌握加减法混合运算分组凑整的方法,在凑整的过程中,要注意运算符号的变化或者带着符号搬家.具体分析如下:(1)原式=(98+102)+(63-53)=200+10=210(2)原式=(163+137)-(154+146)+(245+55)=300-300+300=300(3)原式=(1348-48)+(2234-234)-(76+24)=1300+2000-100=3200(4)原式=1847-(1936-536)-(154+46)=1847-1400-200=247[巩固] :(1)968-561-168-139,(2)456-(256+165),(3)582+(436-482),(4)264+451-216+136-184+149分析:(1)原式=(968-168)-(561+139)=800-700=100(2)原式=456-256-165=200-165=35(3)原式=582-482+436=100+436=536(4)原式=(264+136)+(451+149)-(216+184)=400+600-400=600[拓展1](我爱数学少年数学夏令营)计算:1997+1-2-3+4+5-6-7+8+9-10-11+……+1993-1994-1995+1996 分析:原式=1997+(1-2-3+4)+(5-6-7+8)+……+(1993-1994-1995+1996)=1997+0+0+……+0=1997[拓展2](2005全国小学数学奥林匹克)计算:2005+2004-2003-2002+2001+2000-1999-1998+1997+1996-……-7-6+5+4-3-2+1分析:将后四项每四项分为一组,每组的计算结果都是0,后2004项的计算结果都是0,剩下第一项,结果是2005.[拓展3](北大数学邀请赛)计算:1989+1988+1987-1986-1985-1984+1983+1982+1981-1980-1979-1978+……+9+8+7-6-5-4+3+2+1分析:从1989开始,每6个数一组,1989+1988+1987-1986-1985-1984=9,以后每一组6个数加、减后都等于9.1989÷6=331……3.最后剩下三个数3,2,1,3+2+1=6.因此,原式=331×9+6=2985.[拓展4] 计算 6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)分析:原式=(6472+5318+1)+(9354+6836+3)-(4480-2480-4)-(3327-1327-4)-(7362-5362-4)-(4847-2847-4)=11790+16190-2000-2000-2000-2000+20=27980-8000+20=20000(二)加补凑整法【例4】(★★★奥数网题库)计算:(1)165+199(2)198+96+297+10(3)298+396+495+691+799+21(4)195+196+197+198+199+15分析:在这个例题中,主要让学生掌握加法运算加补凑整的方法.具体分析如下:(1)(法1)原式=165+200-1 (法2)原式=164+1+199=365-1 =164+200=364 =364(2)(法1)原式=(198+2)+(96+4)+(297+3)+1=200+100+300+1=601(法2)原式=(200-2)+(100-4)+(300-3)+10=200+100+300-2-4-3+10=601(3)(法1)原式=298+396+495+691+799+2+4+5+9+1=(298+2)+(396+4)+(495+5)+(691+9)+(799+1)=300+400+500+700+800=2700(法2)原式=(300-3)+(400-4)+(500-5)+(700-9)+(800-1)+21=300+400+500+700+800-3-4-5-9-1+21=2700(4)(法1)原式=(195+5)+(196+4)+(197+3)+(198+2)+(199+1)=200+200+200+200+200=1000(法2)原式=(200-5)+(200-4)+(200-3)+(200-2)+(200-1)+15=200+200+200+200+200=1000[前铺] 计算:(1)65+99 (2) 36+102 (3) 258-98 (4) 351-103分析:(1)原式=65+100-1=165-1=164;(2)原式=36+100+2=136+2=138;(3)原式=258-100+2=158+2=160;(4)原式=351-100-3=251-3=248;通过以上题目的运算,我们发现一个快捷运算的规律:在(1)中,在加100时多加了1,所以要减去,这样保证结果不变,所以“多加的要减去”;(2)中,少加了2,在后面要加上,所以“少加的要加上”;(3)中,多减了2,所以要加上,所以“多减的要加上”;(4)中,少减了3,后面要再减去3,所以“少减的要再减”.这几种基本的加补凑整计算的方法,老师要引导学生理解,并加深巩固.【例5】(★★★奥数网题库)计算:(1)895-504-97(2)98-96-97-105+102+101(3)399+403+297-501(4)196+198-102-97分析:在这个例题中,主要让学生掌握加减法混合运算中加补凑整的方法.具体分析如下:(1)原式=(900-5)-(500+4)-(100-3)=900-500-100-5-4+3=294(2)原式=(100-2)-(100-4)-(100-3)-(100+5)+(100+2)+(100+1)=100-100-100-100+100+100-2+4+3-5+2+1=3(3)原式=(400-1)+(400+3)+(300-3)-(500+1)=400-1+400+3+300-3-500-1=598(4)原式=(200-4)+(200-2)-(100+2)-(100-3)=200+200-100-100-4-2-2+3=195[巩固] :(1)697+811,(2)709-698,(3)198-205-308+509,(4)501+502+503-398-397-396.分析:(1)原式=(700-3)+(800+11)=700+800-3+11=1508(2)原式=(700+9)-(700-2)=11(3)原式=(200-2)-(200+5)-(300+8)+(500+9)=200-200-300+500-2-5-8+9=194(4)原式=(500+1)+(500+2)+(500+3)-(400-2)-(400-3)-(400-4)=315. [拓展1] 计算:195+196+197+198+199分析:原式=(200-5)+(200-4)+(200-3)+(200-2)+(200-1)=200×5-(5+4+3+2+1)=1000-15=985[拓展2] (07年7月仁华入学测试题)83+86+95-85+86-94+95+94+86+92+87+80+93+100-89+83+96+98分析:原式=83+86+95-83-2+86-94+95+94+86+92+87+80+93+100-87-2+83+96+98 =90×12-4+5-2-4+5-4+2-10+3+10-2-7+6+8=1080+6=1086[拓展3](2006香港圣公会小学数学奥林匹克)89+899+8999+89999+899999分析:原式=(90-1)+(900-1)+(9000-1)+(90000-1)+(900000-1)=90+900+9000+90000+900000-5=999990-5=999985[拓展4](华罗庚金杯少年数学邀请赛)计算 11+192+1993+19994+199995所得和数的数字之和是多少?分析:原式=(20-9)+(200-8)+(2000-7)+(20000-6)+(200000-5)=(20+200+2000+20000+200000)-(9+8+7+6+5)=222220-35=222185故所得数字之和等于2+2+2+1+8+5=20.(三)其他常见类型巧算【例6】(★★★仁华试题)计算100-101+102-103+104-105+106-107+108分析:原式=100+(102-101)+(104-103)+(106-105)+(108-107)=100+1+1+1+1=104【例7】(★★★仁华试题)计算:123+234+345-456+567-678+789分析:方法1:原式=123+234+345+(567-456)+(789-678)=123+234+345+111+111=234+(123+567)=234+690=924方法2:原式=123+(123+111)+(123+222)-(123+333)+(123+444)-(123+555)+(123+666)=123×3+(111+222-333+444-555+666)=369+555=924【例8】(★★★仁华试题)计算1234+3142+4321+2413分析:原式=(1000+200+30+4)+(3000+100+40+2)+(4000+300+20+1)+(2000+400+10+3)=(1000+2000+3000+4000)+(100+200+300+400)+(10+20+30+40)+(1+2+3+4)=10000+1000+100+10=11110【例9】(★★★★仁华试题)计算19971997+9971997+971997+71997+1997+997+97+7分析:原式=(19972000-3)+(9972000-3)+(972000-3)+(72000-3)+(2000-3)+(1000-3)+(100-3)+(10-3)=19972000+9972000+972000+72000+2000+1000+100+10-8×3=30991110-24=30991086【例10】(★★★★★仁华试题)在右图的36个格子中各有一个数,最上面一横行和最左面一竖列中的数已经填好,其余每个格子中的数等于每个格子同一横行最左面数与同一竖列最上面数之和(例如:a=14+17=31),问这36个数的总和是多少?分析:第二横行的空格应该填的数字分别是11+12,13+12,15+12,17+12,19+12,同理,下面每一横行都是用竖列的一个数与横行的每一个数相加.我们最后要求这36个格子中的所有数字之和,第一横行的和为:10+11+13+15+17+19=(10+15)+(11+19)+(13+17)=85,第二横行的和为:12+11+12+13+12+15+12+17+12+19+12=12×6+(11+13+15+17+19)=147,同理,第三横行的和为:14+11+14+13+14+15+14+17+14+19+14=14×6+(11+13+15+17+19)=159,第四横行的和为16×6+75=171,第五横行的和为:18×6+75=183,第六横行的和为:20×6+75=195.所以36个格子的和为85+147+159+171+183+195=940.方法2:法1比较笨拙,没有体现该题解法的精髓,在我们解这道题之前,我们看看下面的例子:2 3 4 5468上表空格处的数等于每个格子同一横行最左面数与同一竖列最上面数之和,求这16个数之和。