(完整word版)材料意义+材料基本表征方法

(完整word版)材料意义+材料基本表征方法
(完整word版)材料意义+材料基本表征方法

1、材料对人类社会的重要意义

材料material ,是人类用以制成用于生活和生产的物品、器件、物件、机器和其他产品的那些物质。

自古至今,材料与人类生活密切相关,是人类生存和发展、征服自然和改造自然的物质基础,也是人类社会现代文明的重要支柱。

纵观人类利用材料的历史可以清楚地看到每一种重要的新材料的发现和应用,都把人类支配自然的能力提高到一个新的水平,材料科学技术的每一次重大突破,都会引起生产技术的革命,大大加快社会发展的进程,并给社会生产和人们生活带来巨大的变化。因此,材料也成为人类历史发展过程的重要标志之一。

2、材料的表征方法:

1、XRD X 一射线衍射物相分析

原理:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依据XRD 衍射图,利用Schercr 公式:

θ

λθβcos )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为布拉格衍射角。用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径。

使用方法:

用途:用于对固体样品进行物相分析,还可用来测定晶体结构的晶胞参数、点阵型式及简单结构的原子坐标。主要适用于无机物,对于有机物的应用较少。

2、SEM 扫描电子显微镜

扫描电子显微镜的制造依据是电子与物质的相互作用。

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。 当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x 射线和连续谱X 射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。

2、热分析表征

热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制备过程中的重量变化、热变化和状态变化。

热重法(TG )、微商热重法(DTG )、差示扫描量热法(DSC )、差热分析(DTA )

3、STM 扫描隧道显微术

扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时,可以得到表面的扫描隧道谱,用以研究表面电子结构。

4、TEM 透射电子显微术

透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原子结构分析提供了有效手段,它可以观察到微小颗粒的固体外观,根据晶体形貌和相应的衍射花样、高分辨像可以研究晶体的生长方向。

5、EDS X射线能量弥散谱仪

每一种元素都有它自己的特征X射线,根据特征X射线的波长和强度就能得出定性和定量的分析结果,这是用X射线做成分分析的理论依据。EDS分析的元素范围Be4-U9a,一般的测量限度是0.01%,最小的分析区域在5~50A,分析时间几分钟即可。X射线能谱仪是一种微区微量分析仪。用谱仪做微区成分分析的最小区域不仅与电子束直径有关,还与特

. X射线谱仪的分析方法包括点分析、征X射线激发范围有关,通常此区域范围为约1m

线分析和面分析。

6、FTIR傅里叶一红外光谱仪

傅里叶一红外光谱仪可检验金属离子与非金属离子成键、金属离子的配位等化学环境情况及变化。

7、拉曼光谱

拉曼光谱是一种研究物质结构的重要方法,特别是对于研究低维纳米材料,它已经成为首选方法之一。拉曼光谱是分子的非弹性光散射现象所产生,非弹性光散射现象是指光子与物质分析发生相互碰撞后,在光子运动方向发生改变的同时还发生能量的交换(非弹性碰撞)。拉曼光谱产生的条件是某一简谐振动对应于分子的感生极化率变化不为零时,拉曼频移与物质分子的转动和振动能级有关,不同物质有不同的振动和转动能级,同时产生不同拉曼频移‘拉曼光谱具有灵敏

度高、不破坏样品、方便快速等优点。

8、N2吸附脱附等温线分析和BJH孔径分析

N2吸附平衡等温线是以恒温条件下吸附质在吸附剂上的吸附量为纵坐标,以压力为横坐标的曲线。通常用相对压力P/P。表示压力;P为气体的真实压力;尸。为气体在测量温度下的饱和蒸汽压。吸附平衡等温线分为吸附和脱附两部分。平衡等温线的形状与材料的孔组织结构有着密切的关系。

9、XPS X射线光电子能谱

X射线光电子能谱(XPS )就是用X射线照射样品表面,使其原子或分子的电子受激而发射出来,测量这些光电子的能量分布,从而获得所需的信息。X射线光电子能谱理论依据就是爱因斯坦的光电子发散公式。根据Einstein的能量关系式有:

by=Eb+Ek

式中,入射光子能量by是已知的,借助光电子能谱仪可以测出光电过程中被入射光子所激发出的光电子能量Ek,从而可求出内层电子的轨道结合能Eb。由于各种原子都有一定结构,所以知道Eb值后,即能够对样品进行元素分析鉴定。

2、X一射线衍射物相分析介绍

X射线是一种电磁波,其波长范围在0.001-10nm,常用波段为0.01-2nm。它是原子内层电子在高速运动电子的冲击下产生跃迁而发射的辐射。当X射线与晶面所呈的入射角为θ时,则与该晶面平行的晶体内的原子排列面的反射会受到干涉,因此,只有符合所规定的入射角θ的方向,才能看到X射线衍射。晶体内原子的排列,随着物质种类不同,可以具有各种不同的待征。

每种物质都有其特定的晶格类型、晶胞尺寸,晶胞中的原子数及各原子的位置也是一定

的,因而任何多晶体物质都有其特定的X 射线衍射谱。X 射线衍射图谱中各线条的角度位置所确定的晶面间距以及它们的相对强度I/I1(I1 是最强线的强度)是该多晶体的固有特性,即使该物质处在混合物中也不会改变。这就是X 光能作物相分析的依据。物相分析按作用目的不同分为定性相分析和定量相分析。前者确定试样中不同组成相分,后者在确定相成分的基础上再计算各相的相对含量。

物相鉴定的依据是衍射线方向和衍射强度,在衍射图谱上即为衍射峰的位置及峰高,利用X衍射仪、可以直接测定和记录晶体所产生衍射线的方向θ和强度I。通常用d(晶面间距表征衍射线位置)和I(衍射线相对强度)的数据代表衍射花样。用d-I数据作为定性相分析的基本判据。定性相分析方法是将由试样测得的d-I数据组与已知结构物质的标准d-I 数据组(PDF卡片)进行对比,以鉴定出试样中存在的物相。通常我们只要辨认出样品的粉末衍射图谱分别和哪些已知晶体的粉末衍射图“相关”,就可以判定该样品是由哪些晶体混和组成的。

材料的表征方法总结

材料的表征方法 2.3.1 X 一射线衍射物相分析 粉末X 射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。X 射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物 质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依 据XRD 衍射图,利用Schercr 公式: θ λθβcos )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为 布拉格衍射角。用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径, 由X 一射线衍射法测定的是粒子的晶粒度。样品的X 一射线衍射物相分析采用日本理 学D/max-rA 型X 射线粉末衍射仪,实验采用CuKa 1靶,石墨单色器,X 射线管电压 20 kV ,电流40 mA ,扫描速度0.01 0 (2θ) /4 s ,大角衍射扫描范围5 0-80 0,小角衍 射扫描范围0 0-5 0o 2.3.2热分析表征 热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。本论文采用的热分析技术是在氧化物 分析中常用的示差扫描热法(Differential Scanning Calorimetry, DSC)和热重法 ( Thermogravimetry, TG ),简称为DSC-TG 法。采用STA-449C 型综合热分析仪(德 国耐驰)进行热分析,N2保护器。升温速率为10 0C.1min - . 2.3.3扫描隧道显微镜 扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原 子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的 表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子 和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时, 可以得到表面的扫描隧道谱,用以研究表面电子结构。测试样品的制备:将所制 的纳米Fe203粉末分散在乙醇溶液中,超声分散30 min 得红色悬浊液,用滴管吸取 悬浊液滴在微栅膜上,干燥,在离子溅射仪上喷金处理。采用JSM-6700E 场发射扫 描电子显微镜旧本理学),JSM-6700E 场发射扫描电子显微镜分析样品形貌和粒 径,加速电压为5.0 kV o 2.3.4透射电子显微镜 透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范 围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不 是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原 子结构分析提供了有效手段,它可以观察到微小颗粒的固体外观,根据晶体形貌 和相应的衍射花样、高分辨像可以研究晶体的生长方向。测试样品的制备同SEM

材料表征的方法(英语)

材料表征的方法 1.Elemental Analysis 元素分析 Atomic absorption spectroscopy 原子吸收光谱 Auger electron spectroscopy (AES) 俄歇电子能谱 Electron probe microanalysis (EPMA) 电子探针微分析 Electron spectroscopy for chemical analysis (ESCA) 化学分析电子能谱 Energy dispersive spectroscopy (EDS) 能量色散谱 Flame photometry 火焰光度法 Wavelength dispersive spectroscopy (WDS) X-ray fluorescence X射线荧光 2. Molecular and Solid State Analysis 分子与固态分析 Chromatography [gas chromatography (GC), size exclusion chromatography (SEC)] 色谱[气相色谱,体积排除色谱] Electron diffraction 电子衍射 Electron microscopy [scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning TEM (STEM)] 电子显微镜 Electron spin resonance (ESR) 电子自旋共振 Infrared spectroscopy (IR) 红外光谱 Mass spectrometry 质谱 Mercury porosimetry 压汞法 Mossbauer spectroscopy 穆斯堡尔谱 Nuclear magnetic resonance (NMR) 核磁共振 Neutron diffraction 中子衍射 Optical microscopy 光学显微镜 Optical rotatory dispersion (ORD) 旋光色散 Raman spectroscopy 拉曼光谱 Rutherford back scattering (RBS) 卢瑟福背散射 Small angle x-ray scattering (SAXS) 小角X射线散射 Thermal analysis [differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), differential thermal analysis (DTA) temperature desorption spectroscopy (TDS), thermomechanical analysis (TMA)] 热分析[差示扫描量热计法,热-重分析,微分热分析,升温脱附,热机械分析] UV spectroscopy 紫外光谱 X-ray techniques [x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), x-ray emission, x-ray absorption] X射线技术[x射线光电子能谱,x射线衍射,x射线发射,x射线吸收] 3. Surface Characterization Techniques 表面表征技术

材料表征方法思考题答案

第一章XRD 1.X射线的定义、性质、连续X射线和特征X射线的产生、特点。 答:X射线定义:高速运动的粒子与某种物质相撞击后猝然减速,且与该物质中的内层电子相互作用而产生的。性质:看不见;能使气体电离,使照相底片感光,具有很强的穿透能力,还能使物质发出荧光;在磁场和电场中都不发生偏转;当穿过物体时只有部分被散射;能杀伤生物细胞。 连续X射线产生:经典物理学解释——由于极大数量的电子射到阳极上的时间和条件不相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。量子力学解释——大量的电子在到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。特点:强度随波长连续变化 特征X射线产生:当管电压达到或高于某一临界值时,阴极发出的电子在电场的加速下,可以将物质原子深层的电子击到能量较高的外部壳层或击出原子外,使原子电离。此时的原子处于激发态。处于激发态的原子有自发回到激发态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量降低。原子从高能态变为低能态时,多出的能量以X射线的形式释放出来。因物质一定,原子结构一定,两特定能级间的能级差一定,故辐射出波长一定的特征X射线。特点:仅在特定的波长处有特别强的强度峰。 2.X射线与物质的相互作用 答:X射线与物质的相互作用,如图所示 一束X射线通过物体后,其强度因散射和吸收而被衰减,并且吸收是造成强度衰减的主要原因。 散射分为两部分,即相干散射和不相干散射。当X射线照射到物质的某个晶面时可以产生反射线,当反射线与X射线的频率、位相一致时,在相同反射方向上的各个反射波相互干涉,产生相干散射;当X射线经束缚力不大的电子或自由电子散射后,产生波长比入射X射线波长长的X射线,且波长随着散射方向的不同而改变,这种现象称为不相干散射。其中相干散射是X射线在晶体中产生衍射现象的基础。 物质对X射线的吸收是指X射线通过物质时,光子的能量变成了其它形式的能量,即产生了光电子、俄歇电子和荧光X射线。当X射线入射到物质的内层时,使内层的电子受激发而离开物质的壳层,则该电子就是光电子,与此同时产生内层空位。此时,外层电子将填充到内层空位,相应伴随着原子能量降低,放出的能量就是荧光X射线。当放出的荧光X射线回到外层时,将使外层电子受激发,从而产生俄歇电子而出去。产生光电子和荧光X射线的过程称为光电子效应,产生俄歇电子的过程称为俄歇效应。示意图见下:

最新材料结构表征重点知识总结

第一章,绪论 材料研究的四大要素:材料的固有性质,材料的结构,材料的使用使用性能。 材料的固有性质大都取决于物质的电子结构,原子结构和化学键结构。 材料表征的三大任务及主要测试技术:1、化学成分分析:质谱,色谱,红外光谱,核磁共振;2、材料结构的测定,X射线衍射,电子衍射,中子衍射;3、形貌观察:光学显微镜,电子显微镜,投射显微镜。 第二章,红外光谱及激光拉曼光谱 2.1红外光谱的基本原理 红外光谱的定义:当一束具有连续性波长的红外光照射物质时,该物质的分子就有吸收一定的波长红外光的光能,并将其转变为分子的振动能和装动能,从而引起分子振动—转动能级的跃迁,通过仪器记录下来不同波长的透射率的变化曲线,就是该物质的红外吸收光谱。中红外去波数范围(4000—400cm-1) 简正振动自由度(3n-6或3n-5)及其特点:3n-6是分子振动自由度3n-5是直线分子的振 动自由度 特点:分子质点在振动过程中保持不变,所有的原子都在同一瞬间通过各自的平衡位置。每 个简谐振动代表一种振动方式,有它自己的特 征频率 简正振动的类型:1、伸缩振动2、弯曲振动 分子吸收红外辐射必须满足的条件:主要振动过程中偶极矩的变化、振动能级跃迁几率 2.2红外光谱与分子结构 红外光谱分区:官能团去(4000-1330cm-1)指纹区(1330-400cm-1) 基团特征频率定义:具有相同化学键或官能团的一系列化合物有共同的吸收频率,这种频率就叫基团特征频率 影响因素,内部因素:诱导效应,共振效应,键应力的影响,氢键的影响,偶合效应,费米共振;外部因素:物态的变化的影响,折射率和粒度的影响,溶剂的影响 诱导效应:在具有一定极性的共价键中,随着取代基的电负性不同而产生不同程度的静电诱导作用,引起分子中电荷分布的变化,从而改变了键的常熟,使振动的频率发生改变,这就是诱导效应。 2.3红外光谱图的解析方法 普带的三个特征:1位置:基因存在的最有用的特征;2形状:有关基因存在的一些信息;3相对强度:把红外光谱中一条普带的强度和另一条谱带相比,可以得出一个定量的概念 影响谱图质量的因素:1仪器参数的影响;2环境的影响:空气湿度,样品污染等;3厚度的影响(要求10——50um) 2.7激光拉曼光谱 基本概念: 拉曼散射:人射光照射在样品上,人射光子与样品之间发生碰撞有能量交换称为拉曼散射斯托克斯线:拉曼散射中,散射光能量减少,在垂直方向测量到散射光中,可以检测到频率为()的线,称为斯托克斯线。 反斯托克斯线:相反,若样子分子获得能量,在大于人射光频率出收到散射光线 拉曼位移:斯托克斯线或反斯托克斯线与人射光频率之差称了拉曼位移

材料结构与表征

基本概念集锦 1、材料(materials):人类能用来制作有用物件的物质。 2、材料的四大家族 A. 金属材料 B. 无机非金属材料 C. 高分子材料 D. 复合材料 3、材料的结构与组成 第一层次:原子结构(电子构型、化学键、原子与电子性缺陷)。 第二层次:原子在空间的排列(单晶、多晶、非晶)。 第三层次:材料的显微组织形貌(各种缺陷)。 4、简正振动: 整个分子质心不变、整体不转动、各原子在原地作简谐振动且频率及相位相同、所有的原子都在同一瞬间通过各自的平衡位置,此时分子中的任何振动可视为所有上述简谐振动的线性组合。 将振动形式分成两类: a. 伸缩振动(νs、νas) b. 变形振动(又称弯曲振动或变角振动,用符号δ表示) 同一键型: ?反对称伸缩振动的频率大于对称伸缩振动的频率; ?伸缩振动频率远大于弯曲振动的频率; ?面内弯曲振动的频率大于面外弯曲振动的频率。 vas > vs >>δ面内>δ面外 5、分子吸收红外光谱的条件 (1)振动必须能够引起分子偶极矩的变化 (2)红外辐射光的频率与分子振动的频率相当 6、红外光谱信息区 ① 4000~2500 cm-1 X—H伸缩振动区 ② 2500~2000 cm-1 叁键、累积双键伸缩振动区 ③ 2000~1500 cm-1 双键伸缩振动区 ④ 1500~ 670 cm-1 单键振动(X—Y伸缩,X—H变形振动区)及指纹区

7、振动偶合: 当两个振动频率相同或相近的基团相邻并由同一原子相连时,两个振动相互作用(微扰)产生共振,谱带一分为二(高频和低频)。 8、Fermi(费米)共振: 当一振动的倍频或组频与另一振动的基频接近时,由于发生相互作用而产生很强的吸收峰或裂分分裂成两个不同频率的峰。 9、 1. >3200:O—H(1个峰,强,宽)或N—H(H个峰,中强,锐) 2. 3000左右:C—H 3. Ω≥4:苯环(单取代双峰、邻位单峰、间位三峰、对位单峰兰移) 4. 3050、1600、1500:苯环 5. 1700:C=O 6. -CH3:4个峰(2960、2870、1460、1380) 7. -CH2-:3个峰( 2930、2850、1460) 8. 异丙基:1385、1375等强双峰 9. C=C:单取代双峰,多取代单峰;顺式(690)、反式(970)

东华大学材料结构表征及其应用作业答案

“材料研究方法与测试技术”课程练习题 第二章红外光谱法 1.为什么说红外光谱是分子振动光谱?分子吸收红外光的条件是什 么?双原子基团伸缩振动产生的红外光谱吸收峰的位置主要与哪些因素有关? 答案:这是由于红外光谱是由样品分子振动吸收特定频率红外光发生能级跃迁而形成的。分子吸收红外光的条件是:(1)分子或分子中基团振动引起分子偶极矩发生变化;(2)红外光的频率与分子或分子中基团的振动频率相等或成整数倍关系。双原子基团伸缩振动产生的红外光谱吸收峰的位置主要与双原子的折合质量(或质量)和双原子之间化学键的力常数(或键的强度;或键的离解能)有关。 2.用诱导效应、共轭效应和键应力解释以下酯类有机化合物的酯羰 基吸收峰所处位置的范围与饱和脂肪酸酯的酯羰基吸收峰所处位置范围(1735~1750cm-1)之间存在的差异。 芳香酸酯:1715~1730cm-1 α酮酯:1740~1755cm-1 丁内酯:~1820cm-1 答案:芳香酸酯:苯环与酯羰基的共轭效应使其吸收峰波数降低;α酮酯:酯羰基与其相连的酮羰基之间既存在共轭效应,也存在吸电子的诱导效应,由于诱导效应更强一些,导致酯羰基吸收峰的波数上升;丁内酯:四元环的环张力使酯羰基吸收峰的波数增大。

3.从以下FTIR谱图中的主要吸收峰分析被测样品的化学结构中可能 存在哪些基团?分别对应哪些吸收峰? 答案:3486cm-1吸收峰:羟基(-OH);3335cm-1吸收峰:胺基(-NH2或-NH-);2971cm-1吸收峰和2870cm-1吸收峰:甲基(-C H3)或亚甲基(-CH2-);2115cm-1吸收峰:炔基或累积双键基团(-N=C=N-);1728cm-1吸收峰:羰基;1604cm-1吸收峰、1526cm-1吸收峰和1458cm-1吸收峰:苯环;1108cm-1吸收峰和1148cm-1吸收峰:醚基(C-O-C)。1232cm-1吸收峰和1247cm-1吸收峰:C-N。 第三章拉曼光谱法 1. 影响拉曼谱峰位置(拉曼位移)和强度的因素有哪些?如果分子的同一种振动既有红外活性又有拉曼活性,为什么该振动产生的红外光谱吸收峰的波数和它产生的拉曼光谱峰的拉曼位移相等?

纳米材料的表征方法

纳米材料的表征及其催化效果评价方式纳米材料的表征主要目的是确定纳米材料的一些物理化学特性如形貌、尺寸、粒径、等电点、化学组成、晶型结构、禁带宽度和吸光特性等。 纳米材料催化效果评价方式主要是在光照(紫外、可见光、红外光或者太阳光)条件下纳米材料对一些污染物质(甲基橙、罗丹明B、亚甲基蓝和Cr6+等)的降解或者对一些物质的转化(用于选择性的合成过程)。评价指标为污染物质的去除效率、物质的转化效率以及反应的一级动力学常数k的大小。

1 、结构表征 XRD,ED,FT-IR, Raman,DLS 2 、成份分析 AAS,ICP-AES,XPS,EDS 3 、形貌表征 TEM,SEM,AFM 4 、性质表征-光、电、磁、热、力等 … UV-Vis,PL,Photocurrent

1. TEM TEM为透射电子显微镜,分辨率为~,放大倍数为几万~百万倍,用于观察超微结构,即小于微米、光学显微镜下无法看清的结构。TEM是一种对纳米材料形貌、粒径和尺寸进行表征的常规仪器,一般纳米材料的文献中都会用到。 The morphologies of the samples were studied by a Shimadzu SSX-550 field-emission scanning electron microscopy (SEM) system, and a JEOL JEM-2010 transmission electron microscopy (TEM)[1]. 一般情况下,TEM还会装配High-Resolution TEM(高分辨率透射电子显微镜)、EDX(能量弥散X射线谱)和SAED(选区电子衍射)。High-Resolution TEM用于观察纳米材料的晶面参数,推断出纳米材料的晶型;EDX一般用于分析样品里面含有的元素,以及元素所占的比率;SAED用于实现晶体样品的形貌特征与晶体学性质的原位分析。

介孔材料常用的表征方法[1]

介孔吸附材料常用的表征方法 摘要:介孔材料具有优越的性能和广泛的应用价值,成为各个领域研究的热点。本文简单介绍了介孔材料在吸附方面的应用以及常用的表征方法,如XRD、电镜分析、热重分析、BET法等。 关键词:介孔材料、吸附、XRD、BET、电镜分析 介孔材料是一种具有多种优良性质,应用广泛的新型材料。新型介孔吸附材料具有吸附容量大,选择性高,热稳定性好等[1]优点,成为研究的热点。对于气体的分离,如CO2的吸附(缓解温室效应)具有重要意义。 1.介孔吸附材料的简介 1.1介孔材料 介孔材料是一种多孔材料,IUPAC分类标准规定孔径2.0~50nm的为中孔,也就是介孔[2]。随着不断深入的研究,从最初的硅基介孔材料到现在各种各样的非硅基介孔材料被制备出来,并广泛应用于催化剂制备,新型吸附材料等行业。最初的介孔材料源于沸石,沸石是指多孔的天然铝硅酸盐矿物。这类矿物的骨架中含有结晶水,骨架结构稳定,在结晶水脱附或吸附时都不会被破坏掉[2]。后来人们根据沸石的性质结合实际需要相继合成了人造沸石(分子筛)。目前以SiO2为基础合成的介孔材料成为国际众多领域研究的热点。主要的研究方法是通过浸渍的方法在分子筛上负载相应的有机物分子,优化分子筛的表面特性,如较高的吸附容量,好的选择性及较多的活性位等,在生物材料,吸附分离,催化,新型复合材料等领域具有重要的应用价值和前景。 介孔材料具有独特的有点[3,4]:①孔道高度有序,均一性好,孔道分布单一,孔径可调范围宽。②具有较高的热稳定性和水热稳定性。③比表面积大,孔隙率高。④通过优化可形成具有不同结构、骨架、性质的孔道,孔道形貌具有多样性。 ⑤可负载有机分子,制备功能材料。 1.2新型吸附材料 上世纪90年代,Mobil Oil公司以二氧化硅作为主要氧化物,用长链烷基伯胺作模板剂,水热法制备出含有均匀孔道,孔径可调,呈蜂窝状的MCM-41介孔材料。它具有孔道呈六方有序排列、大小均匀、孔径可在2~10nm内连续调节,比表面积大等特点[2],对于开发新型的吸附剂具有重要意义。目前,研究的热点是由负载改性的介孔材料制备出选择性高、吸附容量大、热稳定性好、再生容易的复合吸附材料。研究较多的是用有机胺改性的MCM-41和SBA-15介孔材料制备高效的CO2吸附剂[5]。研究发现二异丙醇胺通过浸渍的方法负载到MCM-41和SBA-15上可显著提高其吸附容量,XRD图像说明负载前后的吸附剂孔径结构并未发生改变,负载不同的胺可得到不同的吸附效果[6]。 2.常用的表征方法

材料基本表征方法

化学化工学院材料化学专业实验报告 实验名称:材料基本表征方法 年级: 2010级 日期: 2012—9—12 姓名: 学号: 同组人: 一、预习部分 1、材料的表征方法: 1.1 X 一射线衍射物相分析 粉末X 射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。X 射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物 质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依 据XRD 衍射图,利用Schercr 公式: θ λθβcos )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为 布拉格衍射角。用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径。 1.2热分析表征 热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。. 1.3扫描隧道显微镜 扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原 子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的 表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子 和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时, 可以得到表面的扫描隧道谱,用以研究表面电子结构。 1.4透射电子显微镜 透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范 围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不 是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原 子结构分析提供了有效手段,它可以观察到微小颗粒的固体外观,根据晶体形貌 和相应的衍射花样、高分辨像可以研究晶体的生长方向。 1.5 X 射线能量弥散谱仪 每一种元素都有它自己的特征X 射线,根据特征X 射线的波长和强度就能得 出定性和定量的分析结果,这是用X 射线做成分分析的理论依据。EDS 分析的元 素范围Be4-U9a ,一般的测量限度是0.01%,最小的分析区域在5~50A ,分析时 间几分钟即可。X 射线能谱仪是一种微区微量分析仪。用谱仪做微区成分分析的 最小区域不仅与电子束直径有关,还与特征X 射线激发范围有关,通常此区域范

材料结构与表征复习整理(周玉第三版)

材料结构与表征 2017-2018复习整理 2018-1-4 暨南大学 ——D.S

2017-2018材料结构与表征重点整理 目录 绪论 (1) 第一章 X射线物理学基础 (2) 第二章 X射线衍射方向 (3) 第三章 X射线衍射强度 (3) 第四章多晶体分析方法 (4) 第五章物相分析及点阵参数精确测定 (5) 第六章(不考) (5) 第七章(不考) (5) 第八章电子光学基础 (5) 第九章透射电子显微镜 (6) 第十章电子衍射 (7) 第十一章晶体薄膜衍衬成像分析 (7) 第十二章(不考) (8) 第十三章扫描电子显微镜 (8) 第十四章(不考) (8) 第十五章电子探针显微镜分析 (8) 第十六章 (9) 参考文献 (10)

2017-2018材料结构与表征重点整理 绪论 1.组织结构与性能 本书主要介绍X射线衍射和电子显微镜分析材料的微观结构。 材料的组织结构与性能:a.结构决定性能;b.通过一定方法控制其显微组织形成条件。 加工齿轮实例: a.预先将钢材进行退火处理,使其硬度降低,以满足容易铣等加工工艺性能要求; b.加工好后再进行渗碳处理,使其强度、硬度提高,以满足耐磨损等使用性能的要求。 2. 显微组织结构分析表征: a.表面形貌观察(形态、大小、分布和界面状态等——光学显微镜、电子显微镜、原子力显微镜等; b.晶体结构分析(物相,晶体缺陷,组织结构等)——X射线衍射、电子衍射、热谱分析; c.化学成分分析(元素与含量、化学价态、分子量、分子式等)——光谱分析,能谱分析等。 3.传统测试方式 a.光学显微镜——分辨率200nm——只能观察表面形态而不能观察材料内部的组织结构,更不能进行对所观察的显微组织进行同位微区分析; b.化学分析——能给出试样的平均成分,不能给出元素分布,和光谱分析相同。 4.X射线衍射与电子显微镜 1.XRD——分辨率mm级——是利用X射线在晶体中的衍射现象来分析材料的晶体结构、晶格参数、晶体缺陷(位错等)、不同结构相的含量及内应力的方法,可以计算样品晶体晶体结构与晶格参数。 2.电子显微镜 透射电子显微镜——分辨率0.1nm——通过透过样品的电子束成像,可以观察微观组织形态并对观察区域进行晶体结构鉴定; 扫描电子显微镜——分辨率1nm——利用电子束在样品表面扫描激发出的代表样品表面特征的信号成像,观察表面形貌(断口)和成分分布; 电子探针显微分析——利用聚焦很细的电子束打在样品微观区域,激发出特征X射线,可以确定样品微观区域的化学成分,可与扫描电镜同时使用进行化学成分同位分析。

材料的表征方法总结

2.3.1 X 一射线衍射物相分析 粉末X 射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。X 射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物 质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依 据XRD 衍射图,利用Schercr 公式: θ λθβcos )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为 布拉格衍射角。用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径, 由X 一射线衍射法测定的是粒子的晶粒度。样品的X 一射线衍射物相分析采用日本理 学D/max-rA 型X 射线粉末衍射仪,实验采用CuKa 1靶,石墨单色器,X 射线管电压 20 kV ,电流40 mA ,扫描速度0.01 0 (2θ) /4 s ,大角衍射扫描范围5 0-80 0,小角衍 射扫描范围0 0-5 0o 2.3.2热分析表征 热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。本论文采用的热分析技术是在氧化物 分析中常用的示差扫描热法(Differential Scanning Calorimetry, DSC)和热重法 ( Thermogravimetry, TG ),简称为DSC-TG 法。采用STA-449C 型综合热分析仪(德 国耐驰)进行热分析,N2保护器。升温速率为10 0C.1 min - . 2.3.3扫描隧道显微镜 扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原 子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的 表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子 和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时, 可以得到表面的扫描隧道谱,用以研究表面电子结构。测试样品的制备:将所制 的纳米Fe203粉末分散在乙醇溶液中,超声分散30 min 得红色悬浊液,用滴管吸取 悬浊液滴在微栅膜上,干燥,在离子溅射仪上喷金处理。采用JSM-6700E 场发射扫 描电子显微镜旧本理学),JSM-6700E 场发射扫描电子显微镜分析样品形貌和粒 径,加速电压为5.0 kV o 2.3.4透射电子显微镜 透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范 围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不 是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原 子结构分析提供了有效手段,它可以观察到微小颗粒的固体外观,根据晶体形貌 和相应的衍射花样、高分辨像可以研究晶体的生长方向。测试样品的制备同SEM 样品。本研究采用 JEM-3010E 高分辨透射电子显微镜(日本理学)分析晶体结构, 加速电压为200 kV o 2.3.5 X 射线能量弥散谱仪 每一种元素都有它自己的特征X 射线,根据特征X 射线的波长和强度就能得

材料分析与表征方法实验报告

材料分析与表征法实验报告 热重分析实验报告 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造。 2.掌握热重分析仪的使用法。 二、实验原理 热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。 三、实验原料 一水草酸钙Ca C2O4·H2O 四、实验仪器 美国TA公司TGA55 升温与降温速率(K/min)0.1-100℃/min 天平灵敏度(μg)0.1μg 温度围(°C)室温-1000℃

五、操作条件 第一组:10℃/min空气条件下和20℃/min空气条件下,对TG和DTG 曲线进行对比。 第二组:10℃/min空气条件下和10℃/min氮气条件下,对DSC进行对比。 第三组:10℃/min氮气条件下,得到TG、DTG、DSC曲线。 六、结果与讨论 含有一个结晶水的草酸钙(242CaC.OHO)在100℃以前没有失重现象,其热重曲线呈水平状,为TG曲线的第一个平台。DTG曲线在0刻度。 在100℃和200℃之间失重并出现第二个平台。DTG曲线先升后降,在108.4℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在188.4℃达到最小值,即热功率的最小值。这一步的失重量占试样总质量的12.47%,相当于每mo CaC2O4·H2O失掉1mol H2O,其热分解反应为:

材料结构表征及应用知识点总结

第一章绪论 材料研究的四大要素:材料的固有性质、材料的结构、材料的使用性能、材料的合成与加工。 材料的固有性质大都取决于物质的电子结构、原子结构和化学键结构。 材料结构表征的三大任务及主要测试技术: 1、化学成分分析:除了传统的化学分析技术外,还包括质谱(MC)、紫外(UV)、可见光、红外(IR)光谱分析、气、液相色谱、核磁共振、电子自旋共振、二次离子色谱、X射线荧光光谱、俄歇与X射线光电子谱、电子探针等。如质谱已经是鉴定未知有机化合物的基本手段;IR在高分子材料的表征上有着特殊重要地位;X射线光电子能谱(XPS)是用单色的X射线轰击样品导致电子的逸出,通过测定逸出的光电子可以无标样直接确定元素及元素含量。 2、结构测定:主要以衍射方法为主。衍射方法主要有X射线衍射、电子衍射、中子衍射、穆斯堡谱等,应用最多最普遍的是X射线衍射。在材料结构测定方法中,值得一提的是热分析技术。 3、形貌观察:光学显微镜、扫描电子显微镜、透射电子显微镜、扫描隧道显微镜、原子力显微镜。 第二章X射线衍射分析 1、X射线的本质是电磁辐射,具有波粒二像性。 X射线的波长范围:0.01~100 ? 或者10-8-10-12 m 1 ?=10-10m (1)波动性(在晶体作衍射光栅观察到的X射线的衍射现象,即证明了X射线的波动性); (2)粒子性(特征表现为以光子(光量子)形式辐射和吸收时具有的一定的质量、能量和动量)。 2、X射线的特征: ①X射线对物质有很强的穿透能力,可用于无损检测等。 ②X射线的波长正好与物质微观结构中的原子、离子间的距离相当,使它能被晶体衍射。晶体衍射波的方向与强度与晶体结构有关,这是X射线衍射分析的基础。 ③X射线光子的能量与原子内层电子的激发能量相当,这使物质的X射线发射谱与吸收谱在物质的成分分析中有重要的应用。 一、X射线的产生 1.产生原理 高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高。 2.产生条件 (1)产生自由电子;(2)使电子作定向的高速运动;(3)在其运动的路径上设置一个障碍物使电子突然减速或停止。 3.X射线管的结构 封闭式X射线管实质上就是一个大的真空二极管。基本组成包括: ①阴极:阴极是发射电子的地方。 ②阳极:亦称靶,是使电子突然减速和发射X射线的地方。 ③窗口:窗口是X射线从阳极靶向外射出的地方。 ④焦点:焦点是指阳极靶面被电子束轰击的地方,正是从这块面积上发射出X射线。 二、X射线谱 由X射线管发射出来的X射线可以分为两种类型:(1)连续X射线;(2)标识X射线。 1、连续X射线 具有连续波长的X射线,构成连续X射线谱,它和可见光相似,亦称多色X射线。 (1)产生机理

薄膜材料的表征

薄膜材料的表征 新能源12级3班 杨铎 12191070

摘要:薄膜材料和薄膜器件日益广泛应用及其可靠性指标体系的日益健全,要 求学术界对其结构和性能的特殊性给出科学解释。因此,薄膜材料的表征对材料的应用是至关重要的。薄膜样品结构和性能的表征依赖测试设备及测试方法。薄膜材料的表征参数通常包括薄膜厚度,这通常用探针法等进行测量;薄膜形貌表征,主要通过扫描隧道显微镜、原子力显微镜等进行测量;薄膜成分的表征,它主要用X射线电子能谱、俄歇电子能谱来测量;薄膜晶体结构的表征,它通常使用X射线衍射仪或电子衍射仪来测量;薄膜的应力表征,这可以通过直接测量变形量方法和简介X射线衍射测量方法等对其来进行测量。通过对以上内容的概括和总结及对比总结出薄膜材料的测试的研究情况。 关键词:薄膜,测试,表征 1. 薄膜简介 1.1薄膜材料的发展 在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。 1.2薄膜材料的应用 人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。它的一个很重要的应用就是海水的淡化。虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的2.5%~3%,随着人口增长和工业发展,当今世界几乎处于水荒之中。因此将浩瀚的海水转为可以饮用的淡水迫在眉睫。淡化海水的技术主要有反渗透法和蒸馏法,反渗透法用到的是具有选择性的高分子渗透膜,在膜的一边给海水施加高压,使水分子透过渗透膜,达到膜的另一边,而把各种盐类离子留下来,就得到了淡水。反渗透法的关键就是渗透膜的性能,目前常用有醋酸纤维素类、聚酰胺类、聚苯砜对苯二甲酰胺类等膜材料.这种淡化过程比起蒸法法,是一种清洁高效的绿色方法。利用膜两边的浓度差不仅可以淡化海水,还可以提取多种有机物质。工业生产中,可用膜法过滤含酚、苯胺、有机磺酸盐等工业废水,膜法过滤大大节约了成本,有利于我们的生存环境。 薄膜的应用还体现在表面化学上面。在日常生活中,我们会发现在树叶表面,水滴总是呈圆形,是因为水不能在叶面铺展。喷洒农药时,如果在农药中加入少量的润湿剂(一种表面活性剂),农药就能够在叶面铺展,提高杀虫效果,降低农药用量。更重要的,研究人员还将膜材料用于血液透析,透析膜的主要功能是移除体内多余水份和清除尿毒症毒素,大大降低了肾

材料分析与表征方法实验报告

材料分析与表征方法实验报告 热重分析实验报告 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造。 2.掌握热重分析仪的使用方法。 二、实验原理 热重分析指温度在程序控制时,测量物质质量与温度之间的关系的技术。热重分析所用的仪器是热天平,它的基本原理是,样品重量变化所引起的天平位移量转化成电磁量,这个微小的电量经过放大器放大后,送入记录仪记录;而电量的大小正比于样品的重量变化量。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。 三、实验原料 一水草酸钙CaC2O4·H2O 四、实验仪器 美国TA公司TGA55 升温与降温速率(K/min) 0.1-100℃/min 天平灵敏度(μg) 0.1μg 温度范围(°C)室温-1000℃ 五、操作条件 第一组:10℃/min空气条件下和20℃/min空气条件下,对TG和DTG曲线进行对比。 第二组:10℃/min空气条件下和10℃/min氮气条件下,对DSC进行对比。 第三组:10℃/min氮气条件下,得到TG、DTG、DSC曲线。 六、结果与讨论

含有一个结晶水的草酸钙(242CaC.OHO)在100℃以前没有失重现象,其热重 曲线呈水平状,为TG曲线的第一个平台。DTG曲线在0刻度。 在100℃和200℃之间失重并出现第二个平台。DTG曲线先升后降,在108.4℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在188.4℃达到最小值,即热功率的最小值。这一步的失重量占试样总质量的12.47%,相当于每 mo CaC2O4·H2O失掉1mol H2O,其热分解反应为: CaC2O4·H2O CaC2O4 + H2O 在400℃和500℃之间失重并开始呈现第三个平台,DTG曲线先升后降,在510.4℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在103.1℃达到最小值,即热功率的最小值。其失重量占试样总质量的18.76%,相当于每 mol CaC2O4分解出1mol CO,其热分解反应: CaC2O4 CaCO3 + CO 在600℃和800℃之间失重并开始呈现第四个平台,DTG曲线先升后降,在749.2℃达到最大值,即失重速率的最大值。DSC曲线先降后升,在758.9℃达到最小值,即热功率的最小值。其失重量占试样总质量的29.38%,相当每 mol CaC2O4分解出1mol CO2,其热分解反应: CaCO3 CaO + CO2 六、结论

材料意义+材料基本表征方法

1、材料对人类社会的重要意义 材料material ,是人类用以制成用于生活和生产的物品、器件、物件、机器和其他产品的那些物质。 自古至今,材料与人类生活密切相关,是人类生存和发展、征服自然和改造自然的物质基础,也是人类社会现代文明的重要支柱。 纵观人类利用材料的历史可以清楚地看到每一种重要的新材料的发现和应用,都把人类支配自然的能力提高到一个新的水平,材料科学技术的每一次重大突破,都会引起生产技术的革命,大大加快社会发展的进程,并给社会生产和人们生活带来巨大的变化。因此,材料也成为人类历史发展过程的重要标志之一。 2、材料的表征方法: 1、XRD X 一射线衍射物相分析 原理:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依据XRD 衍射图,利用Schercr 公式: θ λθβcos )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为布拉格衍射角。用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径。 使用方法: 用途:用于对固体样品进行物相分析,还可用来测定晶体结构的晶胞参数、点阵型式及简单结构的原子坐标。主要适用于无机物,对于有机物的应用较少。 2、SEM 扫描电子显微镜 扫描电子显微镜的制造依据是电子与物质的相互作用。 扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。 当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x 射线和连续谱X 射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。 2、热分析表征 热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制备过程中的重量变化、热变化和状态变化。 热重法(TG )、微商热重法(DTG )、差示扫描量热法(DSC )、差热分析(DTA ) 3、STM 扫描隧道显微术 扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时,可以得到表面的扫描隧道谱,用以研究表面电子结构。 4、TEM 透射电子显微术

材料表征与仪器分析

材料表征与仪器分析 引言 一. 通用X射线粉末衍射 二. 无定形结构、纤维和层状结构的衍射 三. EXAFS 四. HRTEM 五. 电子衍射 六. 光谱 七. 结构预测 引言 材料表征或结构测定是大部分材料和化学研究工作重要的第一步。Accelrys的软件可帮助研究者用先进算法预测结构,模拟、解释及应用由分析仪器得到的数据。这些工具集成于Cerius2软件,一个支持分子结构的模型搭建、操纵和高质量三维结构显示的成熟的软件环境。 了解你制备出了什么物质以及它的物理性质怎样,是能够明智和有益地使用一种材料所必需的。基于晶体结构和原子组成的可靠的材料表征技术的使用仅有50年历史。这些工具的存在对科学家们了解材料的结构带来了巨大变化。 计算技术的使用可以有两种方式: · 通过分析解释传统分析手段的结果来鉴别一种实验化合物; ·通过模拟分析仪器来预测分子模型的性质。 分析手段可分为下面三大类: · 衍射 · 光谱 · 显微技术 对上述分析方法计算机都可以进行模拟。 衍射 衍射是电磁辐射波动性的一种表现,当辐射经过一边缘或通过一小孔时发生弯曲而形成。当电磁辐射经过一化合物时波的干涉就揭示了材料的结构信息。 辐射的种类影响所得衍射图像的分辨率,并由此判断是否适合测定该种材料。常用的有电子衍射、中子衍射和X射线衍射,而X射线衍射是用于确定晶体结构的最常用的工具。 粉末衍射是X射线在粉末状晶体物质上的衍射。粉末X射线衍射给出的信息比单晶X射线衍射少,但更简单和快捷。 光谱 光谱技术根据原子或分子(或者原子和分子的离子)对电磁波的吸收、发射或散射来定性定量研究原子、分子或物理过程。 IR(红外)光谱测定样品对中红外线的吸收波长和强度。对红外发射的吸收取决于化学键。 显微技术 显微技术是利用辐射和光学来得到一物体的放大图像。电子显微学分析手段有扫描电镜(SEM)、扫描隧道电镜(STM)和透射电镜(TEM)。 结构预测 用分子动力学可以对分子体系进行快速近似的能量计算,快速得到最低能量结构。量子力学技术提供精确的第一原理的原子和电子结构预测。

相关文档
最新文档