2020-2021学年福建省福州市八县(市)一中高二上学期期中联考数学试题 PDF版
人教A版数学高二弧度制精选试卷练习(含答案)1

人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
福建省龙岩市武平县第一中学2020-2021学年高二上学期月考数学试题(解析版)

公式可得所求事件的概率为 P B
A
P AB P A
.
【详解】记事件 A :甲获得冠军,事件 B :比赛进行三局,
事件 AB : 甲获得冠军,且比赛进行了三局,则第三局甲胜,前三局甲胜了两局,
由独立事件的概率乘法公式得
P
AB
C21
3 4
1 4
3 4
9 32
,
对于事件 A ,甲获得冠军,包含两种情况:前两局甲胜和事件 AB ,
5
3
4
不能破译出密码”发生的概率为 4 2 3 2 ,所以此密码被破译的概率为1 2 3 ,故 B 不正确;
534 5
55
对于 C,设“从甲袋中取到白球”为事件 A,则 P( A)
8
2
,设“从乙袋中取到白球”为事件 B,则
12 3
P(B) 6 1 ,故取到同色球的概率为 2 1 1 1 1 ,故 C 正确;
故选 A.
【点睛】本题考查了排列问题,不相邻一般采用插空法,同时要注意特殊优先原则.
3.
若二项式
x
2 x
n
的展开式中各项的系数和为
243,则该展开式中含
x
项的系数为(
)
A. 1
B. 5
C. 10
D. 20
【答案】C
【解析】
【分析】
对
x
2 xn Fra bibliotek令x
1
,结合展开式中各项的系数和为
243 列方程,由此求得
C62C
C2 2
42
A33
,
将三组书本分给甲、乙、丙三人的方法数: A33 ,
所以总的分法数为:
C62C24C22 A33
第四关 以立体几何为背景的新颖问题为背景的填空题-(原卷版)

压轴填空题第四关 以立体几何为背景的新颖问题为背景的填空题【名师综述】以立体几何为背景的新颖问题常见的有折叠问题,与函数图象相结合问题、最值问题,探索性问题等. 对探索、开放、存在型问题的考查,探索性试题使问题具有不确定性、探究性和开放性,对学生的能力要求较高,有利于考查学生的探究能力以及思维的创造性,是新课程下高考命题改革的重要方向之一;开放性问题,一般将平面几何问题类比推广到立体几何的中,不过并非所有平面几何中的性质都可以类比推广到立体几何中,这需要具有较好的基础知识和敏锐的洞察力;对折叠、展开问题的考查,图形的折叠与展开问题(三视图问题可看作是特殊的图形变换)蕴涵了“二维——三维——二维” 的维数升降变化,求解时须对变化前后的图形作“同中求异、异中求同”的思辩,考查空间想象能力和分析辨别能力,是立几解答题的重要题型.类型一 几何体在变化过程中体积的最值问题典例1.如图,等腰直角三角形ABE 的斜边AB 为正四面体A BCD -的侧棱,2AB =,直角边AE 绕斜边AB 旋转一周,在旋转的过程中,三棱锥E BCD -体积的取值范围是___________.【来源】山东省菏泽市2021-2022学年高三上学期期末数学试题【举一反三】如果一个棱锥底面为正多边形,且顶点在底面的射影是底面的中心,这样的棱锥称为正棱锥.已知正四棱锥P ABCD -内接于半径为1的球,则当此正四棱锥的体积最大时,其高为_____类型二 几何体的外接球或者内切球问题典例2.已知正三棱锥S ABC -的底面边长为32P ,Q ,R 分别是棱SA ,AB ,AC 的中点,若PQR 是等腰直角三角形,则该三棱锥的外接球的表面积为______.【来源】陕西省宝鸡市2022届高三上学期高考模拟检测(一)文科数学试题【举一反三】已知菱形ABCD 中,对角线23BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC 33= ,则三棱锥A BCD -的外接球的表面积为________. 【来源】江西宜春市2021届高三上学期数学(理)期末试题类型三 立体几何与函数的结合典例3. 已知正方体1111ABCD A B C D -的棱长为1,E 为线段11A D 上的点,过点E 作垂直于1B D 的平面截正方体,其截面图形为M ,下列命题中正确的是______. ①M 在平面ABCD 上投影的面积取值范围是17,28⎡⎤⎢⎥⎣⎦;②M 的面积最大值为334; ③M 的周长为定值.【来源】江西省九江市2022届高三第一次高考模拟统一考试数学(理)试题【举一反三】如图,点C 在以AB 为直径的圆周上运动(C 点与A ,B 不重合),P 是平面ABC 外一点,且PA ⊥平面ABC ,2PA AB ==,过C 点分别作直线AB ,PB 的垂线,垂足分别为M ,N ,则三棱锥B CMN -体积的最大值为______.【来源】百校联盟2020-2021学年高三教育教学质量监测考试12月全国卷(新高考)数学试题类型四 立体几何中的轨迹问题典例4. 已知P 为正方体1111ABCD A B C D -表面上的一动点,且满足2,2PA PB AB ==,则动点P 运动轨迹的周长为__________.【来源】福建省莆田市2022届高三第一次教学质量检测数学试题【举一反三】在棱长为2的正方体1111ABCD A B C D -中,棱1BB ,11B C 的中点分别为E ,F ,点P 在平面11BCC B 内,作PQ ⊥平面1ACD ,垂足为Q .当点P 在1EFB △内(包含边界)运动时,点Q 的轨迹所组成的图形的面积等于_____________.【来源】浙江省杭州市2020-2021学年高三上学期期末教学质量检测数学试题【精选名校模拟】1.已知在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.过直线12O O 的平面截圆柱得到四边形ABCD ,其面积为8.若P 为圆柱底面圆弧CD 的中点,则平面PAB 与球O 的交线长为___________. 【来源】江苏省南通市2020-2021高三下学期一模试卷2.已知二面角PAB C 的大小为120°,且90PAB ABC ∠=∠=︒,AB AP =,6AB BC +=.若点P 、A 、B 、C 都在同一个球面上,则该球的表面积的最小值为______.【来源】山东省枣庄市滕州市2020-2021学年高三上学期期中数学试题3.四面体A BCD -中,AB BC ⊥,CD BC ⊥,2BC =,且异面直线AB 和CD 所成的角为60︒,若四面体ABCD 的外接球半径为5,则四面体A BCD -的体积的最大值为_________. 【来源】浙江省宁波市镇海中学2020-2021学年高三上学期11月期中数学试题4.我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童,如图的刍童ABCD EFGH -有外接球,且43,4,26,62AB AD EH EF ====,点E 到平面ABCD 距离为4,则该刍童外接球的表面积为__________.【来源】江苏省苏州市张家港市2020-2021学年高三上学期12月阶段性调研测试数学试题5.已知正三棱柱111ABC A B C -的外接球表面积为40π,则正三棱柱111ABC A B C -的所有棱长之和的最大值为______.【来源】河南省中原名校2020-2021学年高三第一学期数学理科质量考评二6.已知体积为72的长方体1111ABCD A B C D -的底面ABCD 为正方形,且13BC BB =,点M 是线段BC 的中点,点N 在矩形11DCC D 内运动(含边界),且满足AND CNM ∠=∠,则点N 的轨迹的长度为______. 【来源】百校联盟2021届普通高中教育教学质量监测考试(全国卷11月)文科数学试卷7.矩形ABCD 中,3,1AB BC ==,现将ACD △沿对角线AC 向上翻折,得到四面体D ABC -,则该四面体外接球的表面积为______;若翻折过程中BD 的长度在710,22⎡⎤⎢⎥⎣⎦范围内变化,则点D 的运动轨迹的长度是______.【来源】江苏省无锡市江阴市青阳中学2020-2021学年高三上学期1月阶段检测数学试题8.如图,在四面体ABCD 中,AB ⊥BC ,CD ⊥BC ,BC =2,AB =CD =23,且异面直线AB 与CD 所成的角为60,则四面体ABCD 的外接球的表面积为_________.【来源】山东省新高考2020-2021学年高三上学期联考数学试题9.已知三棱锥P ABC -外接球的表面积为100π,PB ⊥平面ABC ,8PB =,120BAC ∠=︒,则三棱锥体积的最大值为________.【来源】江苏省徐州市三校联考2020-2021学年高三上学期期末数学试题10.已知直三棱柱111ABC A B C -的底面为直角三角形,且内接于球O ,若此三棱柱111ABC A B C -的高为2,体积是1,则球O 的半径的最小值为___________.【来源】广西普通高中2021届高三高考精准备考原创模拟卷(一)数学(理)试题11.如图,已知长方体1111ABCD A B C D -的底面ABCD 为正方形,P 为棱11A D 的中点,且6PA AB ==,则四棱锥P ABCD -的外接球的体积为______.【来源】2021年届国著名重点中学新高考冲刺数学试题(7)12.如图所示,在三棱锥B ACD -中,3ABC ABD DBC π∠=∠=∠=,3AB =,2BC BD ==,则三棱锥B ACD -的外接球的表面积为______.【来源】江西省南昌市八一中学、洪都中学、十七中三校2021届高三上学期期末联考数学(理)试题13.在三棱锥P ABC -中,平面PAB 垂直平面ABC ,23PA PB AB AC ====120BAC ∠=︒,则三棱锥P ABC -外接球的表面积为_________.【来源】福建省福州市八县(市)一中2021届高三上学期期中联考数学试题14.已知A ,B ,C ,D 205的球体表面上四点,若4AB =,2AC =,23BC =且三棱维A BCD -的体积为23CD 长度的最大值为________.【来源】福建省四地市2022届高三第一次质量检测数学试题15.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,//AB CD ,AB ⊥AD ,22CD AD AB ===,3PA =,若动点Q 在PAD △内及边上运动,使得CQD BQA ∠=∠,则三棱锥Q ABC -的体积最大值为______.【来源】八省市2021届高三新高考统一适应性考试江苏省无锡市天一中学考前热身模拟数学试题16.已知正三棱锥A BCD -的底面是边长为23其内切球的表面积为π,且和各侧面分别相切于点F 、M 、N 三点,则FMN 的周长为______.【来源】湖南省常德市2021-2022学年高三上学期期末数学试题17.在三棱锥P ABC -中,PA ⊥平面ABC ,AC CB ⊥,4===PA AC BC .以A 为球心,表面积为36π的球面与侧面PBC 的交线长为______.【来源】山东省威海市2021-2022学年高三上学期期末数学试题18.在棱长为1的正方体1111ABCD A B C D -中,过点A 的平面α分别与棱1BB ,1CC ,1DD 交于点E ,F ,G ,记四边形AEFG 在平面11BCC B 上的正投影的面积为1S ,四边形AEFG 在平面11ABB A 上的正投影的面积为2S .给出下面四个结论:①四边形AEFG 是平行四边形; ②12S S +的最大值为2; ③12S S 的最大值为14;④四边形AEFG 6则其中所有正确结论的序号是___________.【来源】北京西城区2022届高三上学期期末数学试题196,在该圆柱内放置一个棱长为a 的正四面体,并且正四面体在该圆柱内可以任意转动,则a 的最大值为__________.【来源】河南省郑州市2021-2022学年高三上学期高中毕业班第一次质量预测数学(文)试题20.在三棱锥P -ABC 中,P A =PB =PC =2,二面角A -PB -C 为直二面角,∠APB =2∠BPC (∠BPC <4π),M ,N 分别为侧棱P A ,PC 上的动点,设直线MN 与平面P AB 所成的角为α.当tan α的最大值为2532时,则三棱锥P -ABC 的体积为__________.【来源】湖南省长沙市长郡中学2020-2021学年高三上学期入学摸底考试数学试题21.体积为8的四棱锥P ABCD -的底面是边长为22底面ABCD 的中心为1O ,四棱锥P ABCD -的外接球球心O 到底面ABCD 的距离为1,则点P 的轨迹长度为_______________________.22.如图,在ABC 中,2BC AC =,120ACB ∠=︒,CD 是ACB ∠的角平分线,沿CD 将ACD △折起到A CD'△的位置,使得平面A CD '⊥平面BCD .若63A B '=,则三棱锥A BCD '-外接球的表面积是________.【来源】河南省2021-2022学年高三下学期开学考试数学理科试题23.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线P A ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.【来源】辽宁省营口市2021-2022学年高三上学期期末数学试题24.在棱长为2的正方体1111ABCD A B C D -中,E 是CD 的中点,F 是1CC 上的动点,则三棱锥A DEF -外接球表面积的最小值为_______.【来源】安徽省淮北市2020-2021学年高三上学期第一次模拟考试理科数学试题25.如图,在正方体1111ABCD A B C D -中,点M ,N 分别为棱11,B C CD 上的动点(包含端点),则下列说法正确的是___________.①当M 为棱11B C 的中点时,则在棱CD 上存在点N 使得MN AC ⊥;②当M ,N 分别为棱11,B C CD 的中点时,则在正方体中存在棱与平面1A MN 平行;③当M ,N 分别为棱11,B C CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形; ④直线MN 与平面ABCD 2;⑤若正方体的棱长为2,点1D 到平面1A MN 2.【来源】四川省成都市第七中学2021-2022学年高三上学期1月阶段性考试理科数学试题11。
2020-2021学年福建省福州市高二(上)期末数学试卷 (解析版)

2020-2021学年福建省福州市高二(上)期末数学试卷一、单项选择题(共8小题).1.若命题p:∃x0<1,x02<1,则¬p为()A.∀x<1,x2≥1B.∀x<1,x2<1C.∃x0<1,x02≥1D.∃x0≥1,x02<12.某校共有1500名学生,现用系统抽样的方法从中等距抽取50名学生参加志愿者活动,将这1500名学生依次编号为1,2,3,…,1500,已知第一位被抽到的学生编号为4,则下列编号被抽到的是()A.324B.184C.104D.243.下列求导运算正确的是()A.(sin x+cos x)′=cos x+sin xB.C.(e2x)′=e2xD.4.已知=(λ+1,0,1),=(3,2μ﹣1,2),其中λ,μ∈R,若∥,则λ+μ=()A.0B.1C.2D.35.设x∈R,则“x>0“是“x+≥2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.已知A,B是平面内两个定点,平面内满足|PA|•|PB|=a(a为大于0的常数)的点P的轨迹称为卡西尼卵形线,它是以发现土星卫星的天文学家乔凡尼•卡西尼的名字命名.当A,B坐标分别为(﹣1,0),(1,0),且a=1时,卡西尼卵形线大致为()A.B.C.D.7.将一个边长为a的正方形铁片的四角截去四个边长相等的小正方形,做成一个无盖方盒.若该方盒的体积为2,则a的最小值为()A.1B.2C.3D.38.已知椭圆的左、右焦点分别为F1,F2,M为E上一点.若,,则E的离心率为()A.B.C.D.二、多项选择题(共4小题).9.已知曲线E的方程为mx2+ny2=1(mn≠0),则E可能是()A.圆B.椭圆C.双曲线D.抛物线10.如图为我国2020年2月至10月的同城快递量与异地快递量的月统计图:根据统计图,下列结论正确的是()A.异地快递量逐月递增B.同城快递量,9月份多于10月份C.同城和异地的月快递量达到峰值的月份相同D.同城和异地的快递量的月增长率达到最大的月份相同11.如图,在正方体ABCD﹣A1B1C1D1中,M,N,P,Q分别是所在棱的中点,则下列结论正确的是()A.点C1,D1到平面PMN的距离相等B.PN与QM为异面直线C.∠PNM=90°D.平面PMN截该正方体的截面为正六边形12.已知函数f(x)=e|x|•sin x+1,则()A.f(x)的周期为2πB.f(x)的图象关于点(0,1)对称C.f(x)在上为增函数D.f(x)在区间[﹣5π,5π]上所有的极值之和为10三、填空题(共4小题).13.双曲线的渐近线方程是.14.在区间[﹣3,1]上随机取一个数x,若事件A:x≤m的概率为,则m的值为.15.某次数学竞赛有100位同学参加,如图为这100位同学此次竞赛成绩的频率分布直方图,则a=,这100位同学此次竞赛成绩的中位数约为.(中位数精确到0.01.)16.如图所示,在平行四边形ABCD中,E为AB中点,DE⊥AB,DC=8,DE=6.沿着DE将△ADE折起,使A到达点A′的位置,且平面A′DE⊥平面BCDE.设P为△A′DE内的动点,若∠EPB=∠DPC,则P的轨迹的长度为.四、解答题(共6小题).17.已知函数f(x)=+3.(1)求曲线y=f(x)在x=1处的切线方程;(2)求f(x)在[﹣2,1]上的最大值和最小值.18.已知抛物线E:y2=2px的焦点为F,P(1,1)为E上一点.(1)求E的方程及F的坐标;(2)设斜率为1的直线l与E交于A,B两点,若=﹣2,求l的方程.19.在①PD⊥AB,②∠PCA=∠PCB,③平面PCD⊥平面ABC这三个条件中任选一个,补充在下面问题的横线上,并解答.问题:已知在三棱锥P﹣ABC中,D为AB的中点,_____,AC=BC=2.(1)证明:PC⊥AB;(2)若PC=2,∠PCB=∠ACB=90°,E为线段PB上一点,且EB=3PE,求二面角D﹣CE﹣B的余弦值.20.已知椭圆E:=1(a>b>0)的离心率为,A(0,1)为E的上顶点.(1)求E的方程;(2)以A为直角顶点的Rt△ABC的另两个顶点均在E上运动,求证:直线BC过定点.21.为了研究某班男生身高和体重的关系,从该班男生中随机选取6名,得到他们的身高和体重的数据如表所示:编号123456身高x(cm)165171167173179171体重y(kg)62m64747466在收集数据时,2号男生的体重数值因字迹模糊看不清,故利用其余5位男生的数据得到身高与体重的线性回归方程为.后来得到2号男生的体重精准数值m后再次计算得到线性回归方程为.(1)求回归方程;(2)若分别按照和来预测身高为180cm的男生的体重,得到的估计值分别为w1,w2,且w2﹣w1=2,求m的值;(3)BMI指数是目前国际上常用的衡量人体胖瘦程度以及是否健康的一个标准,其中BMI指数在24到27.9之间的定义为超重.通过计算可知这6人的BMI指数分别为:22.8,27.4,22.9,24.7,23.1,22.6,现从这6人中任选2人,求恰有1人体重为超重的概率.附:回归直线的斜率和截距的最小二乘估计公式分别为:,.22.已知函数f(x)=lnx+.(1)讨论函数f(x)的单调性;(2)证明:当a≥时,f(x)>e﹣x+.参考数据:e≈2.7183.参考答案一、单项选择题(共8小题).1.若命题p:∃x0<1,x02<1,则¬p为()A.∀x<1,x2≥1B.∀x<1,x2<1C.∃x0<1,x02≥1D.∃x0≥1,x02<1解:命题p:∃x0<1,x02<1,根据含有量词的命题的否定,则有¬p为∀x<1,x2≥1.故选:A.2.某校共有1500名学生,现用系统抽样的方法从中等距抽取50名学生参加志愿者活动,将这1500名学生依次编号为1,2,3,…,1500,已知第一位被抽到的学生编号为4,则下列编号被抽到的是()A.324B.184C.104D.24解:1500名学生系统抽样抽取50名,则每隔30名抽取1名,若4被抽取,则被抽取的是4,34,…,30k+4,(k为自然数),符合条件的只有答案B:184=6×30+4,故选:B.3.下列求导运算正确的是()A.(sin x+cos x)′=cos x+sin xB.C.(e2x)′=e2xD.解:A.(sin x+cos x)′=cos x﹣sin x.B.(xlnx)′=1+lnx.C.(e2x)′=2e2x.D.()′==.故选:D.4.已知=(λ+1,0,1),=(3,2μ﹣1,2),其中λ,μ∈R,若∥,则λ+μ=()A.0B.1C.2D.3解:∵∥,∴设,∴(3,2μ﹣1,2)=(kλ+k,0,k),∴,解得,∴λ+μ=1.故选:B.5.设x∈R,则“x>0“是“x+≥2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解:∵设x∈R,“”∴,∴,∴x>0,∴“”⇒“x>0”又当x>0时,成立.则“x>0“是““的充分必要条件;故选:C.6.已知A,B是平面内两个定点,平面内满足|PA|•|PB|=a(a为大于0的常数)的点P的轨迹称为卡西尼卵形线,它是以发现土星卫星的天文学家乔凡尼•卡西尼的名字命名.当A,B坐标分别为(﹣1,0),(1,0),且a=1时,卡西尼卵形线大致为()A.B.C.D.解:由题意设动点坐标为(x,y),则,即[(x+1)2+y2]•[(x﹣1)2+y2]=1,把原点O(0,0)代入,可得上式成立,故曲线过原点,排除C、D;把方程中的x被﹣x代换,y被﹣y代换,方程不变,故曲线C关于坐标原点对称,排除B;故选:A.7.将一个边长为a的正方形铁片的四角截去四个边长相等的小正方形,做成一个无盖方盒.若该方盒的体积为2,则a的最小值为()A.1B.2C.3D.3解:设截去的四个小正方形的边长为x,则无盖方盒底面是边长为a﹣2x的正方形,高为x,所以方盒的体积为,则,令V′(x)=0,解得,当时,V′(x)>0,所以V(x)单调递增,当时,V′(x)<0,所以V(x)单调递减,故,若该方盒的体积为2,则有,解得a≥3,所以a的最小值为3.故选:C.8.已知椭圆的左、右焦点分别为F1,F2,M为E上一点.若,,则E的离心率为()A.B.C.D.解:如图所示,以F2F1,F2M为邻边作平行四边形F1F2MN,对角线F1M,F2N交于点E,则,所以|F2N|=|F1F2|=2c,则|F2E|=c,则在三角形F1F2E中,,由余弦定理可得:|F=|F﹣2|F1E||F1F2|cos∠F2F1E,即c,整理可得:|F,解得|F,所以|MF1|=2,且由勾股定理可得F1E⊥F2E,又E为MF1的中点,则三角形F1F2M为等腰三角形,所以|MF2|=|F1F2|=2c,由椭圆的定义可得:|MF,解得,故选:B.二、多项选择题:本题共4小题,每小题5分,共20分。
2020-2021学年高二上学期期末考试数学试卷(含解析)

2020-2021学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3324A 10A n n =,则n =( )A .1B .8C .9D .102.期末考试结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有( ) A .192种B .216种C .240种D .288种3.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A .0.1536B .0.1808C .0.5632D .0.97284.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势5.若()2N 1,X σ~,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,已知()21,3X N ~,则(47)P X <≤=( )A .0.4077B .0.2718C .0.1359D .0.04536.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算()200.01P K k ≥=,根据这一数据分析,下列说法正确的是( )A .有1%的人认为该栏目优秀;B .有1%的把握认为该栏目是否优秀与改革有关系;C .有99%的把握认为电视栏目是否优秀与改革有关系;D .没有理由认为电视栏目是否优秀与改革有关系.7.若1021001210)x a a x a x a x =++++,则012310a a a a a -+-++的值为.A 1B 1C .101)D .101)8.关于()72x +的二项展开式,下列说法正确的是( ) A .()72x +的二项展开式的各项系数和为73B .()72x +的二项展开式的第五项与()72x +的二项展开式的第五项相同C .()72x +的二项展开式的第三项系数为4372CD .()72x +的二项展开式第二项的二项式系数为712C9.如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A .528B .514C .29D .1210.三棱锥P ABC -中P A 、PB 、PC 两两互相垂直,4PA PB +=,3PC =,则其体积( ) A .有最大值4B .有最大值2C .有最小值2D .有最小值4二、填空题11.最小二乘法得到一组数据(),(1,2,3,4,5)i i x y i =的线性回归方程为ˆ23yx =+,若5125ii x==∑,则51i i y ==∑___________.12.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种. 13.若随机变量X 的概率分布如表,则表中a 的值为______.14.设随机变量ξ~B (2,p ),若P (ξ≥1)=59,则D (ξ)的值为_________.15.已知等差数列{}n a 中,33a =,则1a 和5a 乘积的最大值是______.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.17.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是_____.18.点A ,B ,C 在球O 表面上,2AB =,BC =90ABC ∠=︒,若球心O 到截面ABC的距离为___________.19.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(℃)求证:1AA ⊥平面;(℃)若点E 是线段的中点,请问在线段是否存在点E ,使得面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由; (℃)求二面角的大小.20.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.三、解答题21.已知集合(){}()12,,,|,1,2,,1nn i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ℃若()1,2A ,()4,6B ,则(),7d A B =;℃在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ℃在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+;(3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.22.今年4月,教育部办公厅印发了《关于加强义务教育学校作业管理的通知》,规定初中学生书面作业平均完成时长不超过90分钟.某市为了更好地贯彻落实“双减”工作要求,作教育决策,该市教育科学研究院就当前全市初三学生每天完成书面作业时长抽样调查,结果是学生书面作业时长(单位:分钟)都在区间[]50,100内,书面作业时长的频率分布直方图如下:(1)若决策要求:在国家政策范围内,若当前初三学生书面作业时长的中位数估计值大于或等于平均数(计算平均数时,同一组中的数据用该区间的中点值代表)估计值,则减少作业时长;若中位数估计值小于平均数,则维持现状.请问:根据这次调查,该市应该如何决策?(2)调查统计时约定:书面作业时长在区间[]90,100内的为A 层次学生,在区间[)80,90内的为B 层次学生,在区间[70,80)内的为C 层次学生,在其它区间内的为D 层次学生.现对书面作业时长在70分钟以上(含70分钟)的初三学生,按作业时长出现的频率用分层抽样的方法随机抽取8人,再从这8人中随机抽取3人作进一步调查,设这3人来自X 个不同层次,求随机变量X 的分布列及数学期望.23.国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查.派出10人的调查组.先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分).他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,请说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率;(3)从对乙城市的打分中任取2个,设这2个分数中不小于80分的个数为X,求X的分布列和期望.参考答案:1.B【分析】根据排列数的运算求解即可.【详解】由332A 10A n n =得,2(21)(22)10(1)(2)n n n n n n --=--,又3,n n *≥∈N ,所以2(21)5(2)n n -=-,解得8n =, 所以正整数n 为8. 故选:B. 2.B【分析】对第一节课的安排进行分类讨论,结合分步乘法计数原理和分类加法计数原理可得结果.【详解】分以下两种情况讨论:℃若第一节课安排语文,则后面五节课的安排无限制,此时共有55A 种;℃若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有444A 种.综上所述,不同的排法共有54544216A A +=种.故选:B. 3.D【详解】设在一个小时内有ξ台机床需要工人照看,则ξ~B (4,0.2),所以P (ξ≤2)=04C (0.8)4+14C (0.8)3×0.2+24C (0.8)2×(0.2)2=0.972 8. 故选D 4.D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D . 5.C【分析】由题意,得(47)(2)P X P X μσμσ<≤=+<≤+,再利用3σ原则代入计算即可.【详解】℃()21,3X N ~,由()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,℃1(47)(2)(0.95450.6827)0.13592P X P X μσμσ<≤=+<≤+=-=.故选:C 6.C【分析】利用独立性检验的基本原理即可求出答案.【详解】解:℃()200.01P K k ≥=表示“电视栏目是否优秀与改革没有关系”的概率,℃有99%的把握认为电视栏目是否优秀与改革有关系, 故选:C .【点睛】本题主要考查独立性检验的基本应用,准确的理解判断方法是解决本题的关键,属于基础题. 7.D【详解】分析:令1021001210())f x x a a x a x a x ==++++,再求f(-1)的值得解.详解:令1021001210())f x x a a x a x a x ==++++,1001210(1)1)f a a a a -==-+++.故答案为D .点睛:(1)本题主要考查二项式定理中的系数求法问题,意在考查学生对这些基础知识 的掌握水平.(2) 二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()?··n n f x a a x a x a x =++++,0123(1)n a a a a a f ++++⋅⋅⋅+=, 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-.8.A【分析】利用赋值法求出展开式各项系数和,即可判断A ,根据二项式展开式的通项,即可判断B 、C 、D ;【详解】解:()72x +展开式的通项为7172rrr r T C x -+=⋅⋅,故第二项的二项式系数为177C =,故D 错误; 第三项的系数为2572C ⋅,故C 错误;()72x +的展开式的第五项为43472C x ⋅⋅,()72x +的展开式的第五项为44372C x ⋅⋅,故B 错误; 令1x =则()7723x +=,即()72x +的二项展开式的各项系数和为73,故A 正确; 故选:A 9.B【解析】将问题抽象成“向左三次,向前两次,向上三次”,计算出总的方法数,然后利用插空法计算出最近的行走路线中不连续向上攀登的事件数,最后根据古典概型概率计算公式,计算出所求概率.【详解】从A 的方向看,行走方向有三个:左、前、上. 从A 到B 的最近的行走线路,需要向左三次,向前两次,向上三次,共8次.所以从A 到B 的最近的行走线路,总的方法数有88332332560A A A A =⋅⋅种. 不连续向上攀登的安排方法是:先将向左、向前的安排好,再对向上的方法进行插空.故方法数有:53563232200A C A A ⨯=⋅.所以最近的行走路线中不连续向上攀登的概率为200556014=. 故选:B【点睛】本小题主要考查古典概型的计算,考查有重复的排列组合问题,考查插空法,属于中档题. 10.B【分析】依题意可得1113332P ABC PABV PC SPA PB -=⋅=⨯⨯⋅再利用基本不等式计算可得; 【详解】解:依题意21111132332222P ABCPABPA PB V PC S PA PB PA PB -+⎛⎫=⋅=⨯⨯⋅=⋅≤= ⎪⎝⎭,当且仅当2PA PB ==时取等号,所以()max 2P ABC V -=, 故选:B11.65【分析】由最小二乘法得到的线性回归方程过点(),x y ,代入即可解决 【详解】由5125i i x ==∑可知,数据的平均数2555x ==, 又线性回归方程ˆ23yx =+过点(),x y , 所以25313y =⨯+=,故51551365i i y y ===⨯=∑故答案为:65 12.42【分析】由题意可知,甲可排在第二、三、四、五个,再根据甲、乙相邻,分别计算. 【详解】由题意可知,甲可排在第二、三、四、五个,当甲排在第二、三、四个时,甲乙相邻,有22A 种排法,将甲乙当做一个整体,剩下三个节目全排列,共3×22A ×33A =36种当甲排在第五个时,甲乙相邻,只有一种排法,剩下三个节目全排列,共33A =6种 综上,编排方案共36+6=42种【点睛】本题考查了分类计数原理,分类时要注意不重不漏;解决排列问题时,相邻问题常用捆绑法,特殊位置要优先考虑. 13.0.2【解析】利用概率和为1可求出答案. 【详解】由随机变量X 的概率分布表得: 0.20.30.31a +++=,解得0.2a =. 故答案为:0.2【点睛】本题考查的是分布列的性质,较简单. 14.49【分析】由二项分布的特征,先求出13p =,套公式即可求出D (ξ). 【详解】因为随机变量ξ~B (2,p ),且P (ξ≥1)=59,所以P (ξ≥1)=()11P ξ-<= ()10P ξ-==()25119p --=. 解得:13p =. 所以D (ξ)()12412339np p =-=⨯⨯=.故答案为:4915.9【分析】设出公差,根据等差数列的性质,表示出15,a a ,再列式即可求得结果. 【详解】因为{}n a 是等差数列,设公差为d ,可得13532,2a a d a a d =-=+,于是得()()2153322949a a a d a d d =-+=-≤,当且仅当d =0,即153a a ==时,取得最大值. 故答案为:9.【点睛】本题考查等差数列的下标和性质,属基础题. 16.1443125##0.04608 【分析】认真分析该选手所有可能的答题情况,是本题的关键【详解】由该选手恰好回答了5个问题就晋级下一轮,说明他第4、第5两个问题是连续答对的,第3个问题没有答对,第1和第2两个问题也没有全部答对,即他答题结果可能有三种情况:⨯⨯⨯√√或⨯√⨯√√或√⨯⨯√√,根据独立事件同时发生的概率公式,可得该选手恰好回答了5个问题就晋级下一轮的概率为0.20.20.20.80.8+0.20.80.20.80.8+0.80.20.20.80.8=0.04608⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯故答案为:0.04608 17.0.74【详解】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.18.【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,BC =90ABC ∠=︒,所以4AC ==,所以三角形外接圆半径22ACr ==,又球心O 到截面ABC 的距离为R =球体积为(334433V R ππ==⨯=.故答案为:.19.(℃)(℃)(℃)见解析【详解】试题分析:(℃)由正方形的性质得1AC AA ⊥,然后由面面垂直的性质定理可证得结果;(℃)当点E 是线段1AB 的中点时,利用中位线定理可得1DE AC ,进而得出DE 面11AAC C ;(℃)利用二面角的定义先确定11C AC ∠是二面角111C A B C --的平面角,易求得11tan C A C ∠,从而求得二面角的平面角为的度数.试题解析:(℃)因为四边形11AAC C 为正方形,所以1AC AA ⊥. 因为平面ABC ⊥平面11AAC C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(℃)当点E 是线段1AB 的中点时,有DE 面11AAC C , 连结1AB 交1AB 于点E ,连结BC ,因为点E 是1AB 中点,点⊄是线段DE 的中点,所以1DE AC . 又因为BC ⊂面11AAC C ,11A C 面11AAC C ,所以DE 面11AAC C .(℃)因为1AA ⊥平面ABC ,所以.又因为,所以面11AAC C ,所以11A B ⊥面11AAC C ,所以11A B ⊥1A C ,11A B ⊥11A C ,所以11C AC ∠是二面角111C A B C --的平面角, 易得,所以二面角111C A B C --的平面角为45°.考点:1、线面垂直的判定;2、线面平行的判定;2、二面角.【方法点睛】立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.解决这类问题时一般根据探索性问题的设问,假设其存在并探索出结论,然后在假设下进行推理,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. 20.12600【详解】问题等价于编号为1,2,3,10的10个小球排列,其中2,3号,4,5,6号,7,8,9,10号的排列顺序是固定的,据此可得:将这些气球都打破的不同打法数是101023423412600A A A A =⨯⨯. 21.(1)℃;(2)证明见解析;(3)125n =,证明见解析.【解析】(1)℃根据新定义直接计算.℃根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;℃由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,℃若()1,2A ,()4,6B ,则(),41627d A B =-+-=,℃正确;℃在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y ,所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,℃错误; ℃在ABC 中,若()(),,d A B d A C =,在℃中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,℃错误.空格处填℃(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥.,(3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,℃04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,℃,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=,现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立. 22.(1)该市应该作出减少作业时长的决策; (2)分布列见解析;期望为167.【分析】(1)根据题意,结合频率分布直方图,分别求出中位数和平均数,即可求解; (2)根据题意,结合分层抽样以及离散型随机变量的分布列与期望求法,即可求解. (1)作业时长中位数的估计值为直方图中等分面积的线对立的值,设为x .0.01100.01100.02100.5⨯+⨯+⨯<. 0.01100.01100.02100.03100.5⨯+⨯+⨯+⨯>,()0.01100.01100.02100.03800.5x ∴⨯+⨯+⨯+⨯-=.解得2503x =,即中位数的故计值2503分钟.又作业时长平均数估计值为0.0110550.0110650.021075⨯⨯+⨯⨯+⨯⨯ 2500.0310850.031095813+⨯⨯+⨯⨯=<. 因为中位数的估计值2503分钟大于平均数估计值81分钟, 所以,根据这次调查,该市应该作出减少作业时长的决策. (2)由题,作业时长在70分钟以上(含70分钟)为[90.100],[80,90),[70,80)三个区间,其频率比为3:3:2,分别对应A ,B ,C 三个层次.根据分层抽样的方法,易知各层次抽取的人数分别为3,3,2, 因此X 的所有可能值为1,2,3.因为333821(1)28C P X C ⨯===,111233389(3)28C C C P X C ⋅⋅===, 121221333232382229(2)14C C C C C C P X C ⨯⋅+⨯⋅+⨯⋅===, 所以X 的分在列为:故数学期望19916()1232814287E X =⨯+⨯+⨯=. 23.(1)乙城市更应该入围“国家文明城市”.理由见解析. (2)425; (3)分布列见解析,期望为1.【分析】(1)根据得分的平均值与方差说明,极差最值也可用来说明;(2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,由()()(|)()()P AC P C P C A P A P A ==计算; (2)X 的可能值是0,1,2,分别求得概率得概率分布列,由期望公式计算出期望. (1)乙城市更应该入围“国家文明城市”. 理由如下:由茎叶图,计算两个城市的得分的均值为 甲:6365987910x +++==,乙:6568927910y +++==,均值相等,方差为甲:222211[(16)(14)19]13610s =-+-++=, 乙:222221[(14)(11)13]59.810s =-+-++=,甲的方差远大于乙的方差,说明乙的得分较稳定,甲极其不稳定,因此乙城市更应该入围“国家文明城市”. (2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,262102()13C P B C =-=,252107()19C P C C =-=,2725()1(1)(1)3927P A =--⨯-=,7()()9P AC P C ==, 所以()()()()749(|)1(|)111252527P AC P C P C A P C A P A P A =-=-=-=-=;(3)乙城市10个人中5个大于80分,5个小于80,X 的可能是0,1,2,252102(0)9C P X C ===,11552105(1)9C C P X C ===,252102(2)9C P X C ===,所以X 的分布列为:52()12199E X =⨯+⨯=.。
专题03 复数必刷100题(解析版)

专题03 复数必刷100题任务一:善良模式(基础)1-50题一、单选题1.(四川省资阳市2021-2022学年高三第一次诊断考试数学(文)试题)已知复数2i 1i-=-( )A .3i 22+ B .13i 22- C .33i 22- D .1i 22+ 【答案】A 【分析】根据复数除法运算法则计算即可. 【详解】()()()()2i 1i 2i 3i 3i1i 1i 1i 222-+-+===+--+. 故选:A.2.(广东省清远市博爱学校2022届高三上学期11月月考数学试题)在复平面内,复数3i1iz +=-(其中i 为虚数单位)对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【分析】利用复数的乘除法运算化简,再结合复数的几何意义即可得出结果. 【详解】 因为3i (3i)(1i)24i=12i 1i (1i)(1i)2z ++++===+--+, 所以复数z 对应的点的坐标为(1,2),位于第一象限. 故选:A.3.(山西省太原市第五中学2022届高三上学期第四次模块诊断数学(文)试题)已知复数z 满足i 2z z +=,则复数z 的虚部为( )A .1B .i -C .iD .1-【答案】D【分析】先由i 2z z +=求出复数z ,然后可求出其虚部 【详解】 由i 2z z +=,得22(1i)1i 1i (1i)(1i)z -===-++-, 所以复数z 的虚部为1-, 故选:D.4.(四川省成都市第七中学2021-2022学年高三上学期期中考试文科数学试题)复数43i2iz -=+(其中i 为虚数单位)的虚部为( ) A .2- B .1- C .1 D .2【答案】A 【分析】根据复数除法的运算法则,求出复数z ,然后由虚部的定义即可求解. 【详解】 解:因为复数()()()()2243i 2i 43i 510i12i 2i 2i 2i 21z ----====-++-+, 所以复数z 的虚部为2-, 故选:A.5.(云南省师范大学附属中学2022届高三高考适应性月考卷(四)数学(理)试题)复数i(,)a b a b +∈R 与1i +之积为实数的充要条件是( ) A .0a b == B .0ab = C .0a b += D .0a b -=【答案】C 【分析】利用复数的乘法运算结合复数分类的概念即可得到答案. 【详解】因为(i)(1i)()i a b a b a b ++=-++是实数,所以0a b +=, 故选:C .6.(四川省南充市2022届高考适应性考试(零诊)理科数学试题)已知2(1i)34i z -=+,其中i 为虚数单位,则复数z 在复平面内对应的点在第( )象限 A .一 B .二 C .三 D .四【答案】B 【分析】由2(1i)34i z -=+求出复数z ,即可求得答案. 【详解】由2(1i)34i z -=+,得()234i34i 3i22i 21i z ++===-+--, 则复数z 在复平面内对应的点为32,2⎛⎫- ⎪⎝⎭,在第二象限,故选:B.7.(黑龙江省大庆市东风中学2021-2022学年高三上学期10月质量检测数学(文)试题)设复数1z =(i 是虚数单位),则z z +的值为( ) A .B .C .1D .2【答案】D 【分析】根据共轭复数的概念及复数模的公式,即可求解. 【详解】由复数1z =,可得1z =,所以112z z +=++=, 所以2z z +=. 故选:D.8.(江苏省南京市中华中学2021-2022学年高三上学期10月阶段检测数学试题)设4-,则z 的共轭复数的虚部为( ) A .32 B .3i 2C .32-D .3i 2-【答案】C 【分析】先对复数4-化简,从而可求出其共轭复数,进而可求出其虚部【详解】因为()()()()2i1i2i13i13i 1i1i1i222z++++====+--+,所以13i22z=-,所以z的虚部为32-,故选:C.9.(西南四省名校2021-2022学年高三上学期第一次大联考数学(理)试题)已知复数2,2,dq=⎧⎨=⎩,则z的虚部为()A.1-B.i-C.1D.2i-【答案】A【分析】先利用复数的除法法则化简,再利用共轭复数和虚部的概念进行求解. 【详解】因为22(1i)1i 1i2z+===+-,所以1iz=-,则z的虚部为1-.故选:A.10.(广东省深圳市普通中学2022届高三上学期质量评估(新高考I卷)数学试题)若复数1iiiza+=-+为纯虚数,则实数a的值为()A.1-B.12-C.0 D.1【答案】A【分析】根据复数运算规则及纯虚数的定义,化简求解参数即可.【详解】化简原式可得:()()()22212i1i i1ii ii11a a aaza a a++--+-+=-=-=+++z 为纯虚数时,221021a a a a +=--+,≠0即 1a =-,选项A 正确,选项BCD 错误. 故选A .11.(广东省深圳市罗湖区2022届高三上学期第一次质量检测数学试题)已知复数1(2)i z a a=+-(i 为虚数单位)在复平面内所对应的点在直线y x =上,若a ∈R ,则z =( ) AB .2C D .10【答案】A 【分析】先利用实部等于虚部,求出参数,即可求出模. 【详解】解:由题意得:1(2)a a=-,解得1a =,z 故选:A.12.(全国2022届高三第一次学业质量联合检测文科数学(老高考)试题)复数112i1iz +=+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【分析】利用复数的除法化简复数z ,利用复数的几何意义可得出结论. 【详解】112433i ii i ⨯+===-,则()()()()112i 1i 2i 2i 13i 13i 1i 1i 1i 2221i z +++++=====+--++,因此,复数z 对应的点位于第一象限. 故选:A.13.(神州智达省级联测2021-2022学年高三上学期第一次考试数学试题)在复平面内,点A 和C 对应的复数分别为42i -和24i -+,若四边形OABC 为平行四边形,O (为坐标原点),则点B 对应的复数为( ) A .1i +B .1i -C .22i -D .22i +【分析】由复数的几何意义,可得OA 与OC 的坐标,再根据向量加法的平行四边形法则即可求解OB 的坐标,从而可得点B 对应的复数. 【详解】解:由题意,4,2,2)4(,()OA OC =--=, 又OB OA OC =+, 所以()2,2OB =,所以点B 对应的复数为22i +. 故选:D.14.(广东省广州市西关外国语学校2022届高三上学期8月月考数学试题)已知复数()()1i 12i z =--,其中i 是虚数单位,则z 的共轭复数虚部为( ) A .3- B .3C .3i -D .3i【答案】B 【分析】利用复数的乘法运算化简复数13i --,再根据共轭复数的概念,即可得答案; 【详解】()()1i 12i 13i z =--=--,∴13i z =-+,∴z 的共轭复数虚部为3,故选:B.15.(广东省深圳市龙岗布吉中学2020-2021学年高一下学期中数学试题)已知i 是虚数单位,则复数202120212i 2i z -=+对应的点所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D 【分析】利用复数的乘方、除法运算化简z ,进而判断其所在的象限.由4i 1=,则20215054122021505412i 2i 2i (2i)34i2i (2i)(2i)52i 2i z ⨯+⨯+-----=====++-++, ∴z 对应的点34,55⎛⎫- ⎪⎝⎭所在的象限是第四象限.故选:D.16.(湖南省岳阳市岳阳县第一中学2021-2022学年高三上学期入学考试数学试题)已知复数122,i(R)1iz z a a ==+∈+,若12,z z 在复平面内对应的向量分别为12,OZ OZ (O 为直角坐标系的坐标原点),且12||2OZ OZ +=,则a =( ) A .1 B .-3 C .1或-3 D .-1或3【答案】C 【分析】利用复数代数形式的乘除运算化简1z ,然后求得12OZ OZ +,再由复数模的计算公式求解. 【详解】 122(1i)1i 1+i (1i)(1i)z -===-+-, 2i z a =+,则12|||(1,1)(,1)||(1,0)||1|2OZ OZ a a a +=-+=+=+=,解得1a =或3-. 故选:C.17.(甘肃省天水市秦州区2020-2021学年高二下学期第一阶段检测数学(文)试题)关于复数z 的方程31z -=在复平面上表示的图形是( )A .椭圆B .圆C .抛物线D .双曲线【答案】B 【分析】根据复数差的模的几何意义,分析即可得答案. 【详解】由于两个复数差的模表示两个复数在复平面内对应点之间的距离,所以关于复数z 的方程31z -=在复平面上表示的图形是以(3,0)为圆心,1为半径的圆.18.(江苏省无锡市辅仁高级中学2020-2021学年高一下学期期中数学试题)欧拉是一位杰出的数学家,为数学发展作出了巨大贡献,著名的欧拉公式:i cos isin e θθθ=+,将三角函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.结合欧拉公式,复数i412i 1i z π-=++在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【分析】利用欧拉公式代入直接进行复数的运算即可求解. 【详解】i412i 12i cos isin 1i 1=i 44z e πππ--⎫=++⎪++⎭12i 12ii 11i 1i =⎫--++=++⎪⎪++⎝⎭()()()()12i 1i 13i 11i 1i 1=i 1i 1i 222----=++=++-+-,所以复数z 在复平面对应的点为11,22⎛⎫- ⎪⎝⎭,位于第四象限,故选:D.19.(福建省2021届高三高考考前适应性练习卷(二)数学试题)法国数学家棣莫弗(1667-1754)发现的公式()cos isin cos isin nx x nx nx +=+推动了复数领域的研究.根据该公式,可得4ππcos isin 88⎛⎫+=⎪⎝⎭( ). A .1 B .iC .1-D .i -【答案】B 【分析】根据已知条件将4ππcos sin 8i 8⎛⎫+ ⎪⎝⎭化成i ππcos sin 22+,根据复数的运算即可.根据公式得4i i i ππππcos sin cos sin 8822⎛⎫+=+= ⎪⎝⎭, 故选:B.20.(福建省三明第一中学2021届高三5月校模拟考数学试题)复数z 满足21z -=,则z 的最大值为( ) A .1 BC .3D 【答案】C 【分析】由复数模的几何意义可得复数z 对应点Z 在以(2,0)A 为圆心,1为半径的圆上运动,数形结合可得z 的最大值. 【详解】设(,)z x yi x y R =+∈,21z -=,∴复数z 对应点(,)Z x y 在以(2,0)A 为圆心,1为半径的圆上运动.由图可知当点Z 位于点(3,0)B 处时,点Z 到原点的距离最大,最大值为3. 故选:C.【点睛】两个复数差的模的几何意义是:两个复数在复平面上对应的点的距离.21.(重庆一中2021届高三高考数学押题卷试题(三))系数的扩张过程以自然数为基础,德国数学家克罗内克(Kronecker ,1823﹣1891)说“上帝创造了整数,其它一切都是人造的”设为虚数单位,复数Z 满足()202012Z i i =+,则Z 的共轭复数是( ) A .2i + B .2i -C .12i -D .12i +【答案】C利用虚数单位的幂的运算规律化简即得12Z i =+,然后利用共轭复数的概念判定. 【详解】 解:()505202041,12,12i i Z i Z i ==∴=+∴=-,故选:C.22.(福建省福州市八县(市、区)一中2022届高三上学期期中联考数学试题)下面是关于复数2i1iz =-(i 为虚数单位)的命题,其中真命题为( ) A .2z =B .复数z 在复平面内对应点在直线y x =上C .Z 的共轭复数为1i --D .z 的虚部为1-【答案】C 【分析】由复数除法化简复数为代数形式,然后求模,写出对应点的坐标.得其共轭复数及虚部,判断各选项. 【详解】22i 2i(1i)2(i i )1i 1i (1i)(1i)2z ++====-+--+,所以z =A 错;对应点坐标为(1,1)-不在直线y x =上,B 错; 共轭复数为1i --,C 正确; 虚部为1,D 错. 故选:C .23.(江苏省南通市如皋市2021-2022学年高三上学期教学质量调研(一)数学试题)已知复数z 满足1i z z -=-,则在复平面上z 对应点的轨迹为( ) A .直线 B .线段C .圆D .等腰三角形【答案】A 【分析】根据复数的几何意义,结合1i z z -=-,得到点P 在线段,A B 的垂直平分线上,即可求解. 【详解】设复数i(,)z x y x y =+∈R ,根据复数的几何意义知:1z -表示复平面内点(,)P x y 与点(1,0)A 的距离,i z -表示复平面内点(,)P x y 与点(0,1)B 的距离,因为1i z z -=-,即点(,)P x y 到,A B 两点间的距离相等,所以点(,)P x y 在线段,A B 的垂直平分线上,所以在复平面上z 对应点的轨迹为直线. 故选:A.24.(北京一零一中学2022届高三9月开学练习数学试题)已知复数z 满足z +z =0,且z ·z =4,则z =( ) A .±2 B .2C .2i ±D .2i【答案】C 【分析】不妨设i z a b =+,代入0z z +=,4z z ⋅=,运算即得解 【详解】由题意,不妨设i z a b =+,则i z a b =-由0z z +=,可得i i 20a b a b a ++-==,故0,i a z b == 且2i (i)42z z b b b b ⋅=⨯-==∴=±2i z ∴=±故选:C.25.(第十章复数10.1复数及其几何意义10.1.2复数的几何意义)向量1OZ 对应的复数是54i -,向量2OZ 对应的复数是54i -+,则1OZ +2OZ 对应的复数是( )A .108i -+B .108i -C .0D .108i +【答案】C 【分析】由复数的代数形式写出对应复平面上的点坐标,应用向量坐标的线性运算求1OZ +2OZ ,即可知其对应的复数. 【详解】由题意可知:1(5,4)OZ =-,2(5,4)OZ =-, ∴1OZ +2OZ =(5,4)-+(5,4)-=(0,0). ∴1OZ +2OZ 对应的复数是0. 故选:C.26.(广东省肇庆市2022届高三上学期一模考前训练(二)数学试题)已知i 为虚数单位,复数112i z =-,22i z =+,则复数12z z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】先由已知条件求出12z z ,然后求出12z z ,从而可求出复数12z z 在复平面上对应的点所在的象限 【详解】因为112i z =-,22i z =+,所以212(12i)(2i)2i 4i 2i 43i z z =-+=+--=-, 所以1243i z z =+,所以复数12z z 在复平面上对应的点位于第一象限, 故选:A.27.(福建省泉州科技中学2022届高三上学期第一次月考数学试题)若1i Z =+,则20202021()()Z Z ZZ --+的虚部为( ) A .i B .i -C .1D .1-【答案】D 【分析】根据1i Z =+,结合共轭复数,利用复数的除法和乘方运算求解. 【详解】因为1i Z =+,所以()()()()()()()()1i 1i 1i 1i 1i 1i i,i 1i 1i 1i 1i 1i 1i Z Z Z Z--++--+-======---+++-, 所以2020202120202021()()i (i)1i Z Z ZZ --+=+-=-, 故其虚部为-1, 故选:D.28.(河南省部分名校2021-2022学年高三上学期第一次阶段性测试文科数学试题)已知i 为虚数单位,复数z 满足1i 1iz +=+,则|z |等于( ) A .12BCD【答案】C 【分析】结合复数的减法和除法运算求出复数z ,进而利用复数的模长公式即可求出结果. 【详解】 因为11i 13i i i 1i 222z -=-=-=-++,所以z ==故选:C.29.(河南省许昌市2022届高三第一次质量检测(一模)理科数学试题)已知复数z 满足12(1i)iz +=+,其中i 为虚数单位,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D 【分析】设i z a b =+,,a b ∈R ,利用复数乘法化简(1i)z +并求出12i+,根据复数相等判断,a b 的符号,即可知复数z 对应的象限. 【详解】令i z a b =+,,a b ∈R ,则(1i)()(1i)(i )i z a b a a b b +=+=-+++,又122i i+=-,则12i +=∴()i a b a b -++0a b a b ⎧-=>⎪⎨+=⎪⎩,∴0a b >>,则复数z 在复平面内所对应的点在第四象限. 故选:D.30.(广西南宁市2022届高三高中毕业班上学期摸底测试数学(理)试题)已知复数13i z =+和21i z =+,则1122z z z z +=( ) A .34i + B .43i + C .36i + D .63i +【答案】B 【分析】利用复数的四则运算法则,求解即可 【详解】 由题意, 11212221z z z z z z z ⎛⎫+=+ ⎪⎝⎭ 11i 3+i (3i)1i (3i)1i (3i)1i (1i)(1)2i ⎛⎫-⎛⎫⎛⎫=+++=+++=+ ⎪ ⎪ ⎪++-⎝⎭⎝⎭⎝⎭(3i)(3i)86i 43i 22+++===+ 故选:B二、多选题31.(河北省石家庄市藁城新冀明中学2022届高三上学期第一次月考数学试题)设()1i 2i z -=+,则下列叙述中正确的是( ) A .z 的虚部为32-B .13i 22z =- C .∣z ∣D .在复平面内,复数z 对应的点位于第四象限【答案】BC 【分析】先根据复数的除法法则求得z值,再根据复数的概念求出复数的虚部、共轭复数、模,再根据复数的几何意义判定选项D错误.【详解】由()1i2iz-=+,得2i(2i)(1i)13i13i 1i(1i)(1i)222z++++====+--+,则:z的虚部为32,即选项A错误;13i22z=-,即选项B正确;z==C正确;复数z对应的点13(,)22位于第一象限,即选项D错误.故选:BC.32.(广东省珠海市艺术高级中学2020-2021学年高二下学期期中数学试题)若复数35i1iz-=-,则()A.z=B.z的实部与虚部之差为3C.4iz=+D.z在复平面内对应的点位于第四象限【答案】ACD【分析】由已知复数相等,应用复数的除法化简得4iz=-,即可判断各选项的正误.【详解】∵()()()()35i1i35i4i 1i1i1iz-+-===---+,∴z的实部与虚部分别为4,1-,z A正确;z的实部与虚部之差为5,B错误;4iz=+,C正确;z在复平面内对应的点为()41-,,位于第四象限,D正确.故选:ACD.33.(重庆市第八中学2021届高三下学期高考适应性考试(三)数学试题)已知复数20211i 11iz +=+-(i 为虚数单位)、则下列说法正确的是( ) A .z 的实部为1 B .z 的虚部为1-C .z =D .1i z =+【答案】AC 【分析】先对20211i 11i z +=+-化简求出复数z ,然后逐个分析判断即可【详解】解:202145051221i 1i 1i (1i)12i i 111111i 1i 1i 1i (1i)(1i)2z ⨯+++++++=+=+=+=+=+=+----+,所以复数z 的实部为1,虚部为1,所以A 正确,B 错误,z C 正确, 1i z =-,所以D 错误,故选:AC.34.(湖南师范大学附属中学2020-2021学年高一下学期第一次大练习数学试题)已知i 为虚数单位,以下四个说法中正确的是( ) A .2340i i i i +++= B .复数3z i =-的虚部为i -C .若2(12)z i =+,则复平面内z 对应的点位于第二象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线 【答案】AD 【分析】根据复数的概念、运算对选项逐一分析,由此确定正确选项. 【详解】A 选项,234110i i i i i i +++=--+=,故A 选项正确.B 选项,z 的虚部为1-,故B 选项错误.C 选项,214434,34z i i i z i =++=-+=--,对应坐标为()3,4--在第三象限,故C 选项错误.D 选项,()111z z z -=+=--表示z 到()1,0A 和()1,0B -两点的距离相等,故z 的轨迹是线段AB 的垂直平分线,故D 选项正确. 故选:AD.35.(2021届新高考同一套题信息原创卷(四))已知,a b ∈R ,()1i 32i a b --=-,()1i a b z -=+,则( ) A .z 的虚部是2i B .2z =C .2i z =-D .z 对应的点在第二象限【答案】BC 【分析】由复数相等,求出,a b 的值,然后求出2i z =,根据复数的相关概念判断选项. 【详解】由复数相等可得3,12,b a -=⎧⎨-=-⎩解得1,3,a b =-⎧⎨=-⎩所以()()21i 1i 2i a b z -=+=+=,z 的虚部是2,所以A 选项错误;2i 2z ==,所以B 选项正确; 2i z =-,所以C 选项正确;z 对应的点在虚轴上,所以D 选项不正确.故选:BC.36.(在线数学135高一下)下面关于复数()1z i i =-+(i 是虚数单位)的叙述中正确的是( ) A .z 的虚部为i - B .z =C .22z i = D .z 的共轭复数为1i +【答案】BC 【分析】先求出复数z ,然后根据复数的相关概念及运算法则对各选项逐一分析即可求解. 【详解】解:因为复数()11z i i i =-+=--,所以z 的虚部为1-,故A 选项错误;z B 选项正确;()2212z i i =--=,故C 选项正确;z 的共轭复数为1i -+,故D 选项错误;故选:BC.37.(云南省曲靖市罗平县第二中学2020-2021学年高一下期期末测试数学试题)已知复数21iz =+,则正确的是( ) A .z 的实部为﹣1 B .z 在复平面内对应的点位于第四象限 C .z 的虚部为﹣i D .z 的共轭复数为1i +【答案】BD 【分析】根据复数代数形式的乘除运算化简,结合复数的实部和虚部的概念、共轭复数的概念求解即可. 【详解】 因为22(1i)1i 1i (1i)(1i)z -===-++-, 所以z 的实部为1,虚部为-1,在复平面内对应的点为(1,-1),在第四象限, 共轭复数为1i z =+, 故AC 错误,BD 正确. 故选:BD.38.(河北省唐山市英才国际学校2020-2021学年高一下学期期中数学试题)复数1i z =-,则( ) A .z 在复平面内对应的点的坐标为()1,1- B .z 在复平面内对应的点的坐标为()1,1 C .2z = D .z =【答案】AD 【分析】利用复数的几何意义,求出复数对应的点坐标为()1,1-,即可得答案; 【详解】1i z =-在复平面内对应的点的坐标为()1,1-,z =故选:AD.39.(2021·湖北·高三月考)设1z ,2z 是复数,则( ) A .1212z z z z -=-B .若12z z ∈R ,则12z z =C .若120z z -=,则12z z =D .若22120z z +=,则120z z ==【答案】AC 【分析】结合共轭复数、复数运算等知识对选项逐一分析,由此确定正确选项. 【详解】设1i z a b =+,2i z x y =+,a ,b ,x ,y ∈R ,12()()i ()()i z z a x b y a x b y -=-+-=---12i (i)a b x y z z =---=-,A 成立; ()()12i 0z z a x b y -=-+-=,则22()()0a x b y -+-=,所以a x =,b y =,从而12z z =,所以12z z =,C 成立;对于B ,取1i z =,22i z =,满足12z z ∈R ,但结论不成立;对于D ,取1i z =,21z =,满足22120z z +=,但结论不成立.故选:AC.40.(2021·山东临沂·高三月考)已知m ,n R ∈,复数2i z m =+,()235i i z z n +=+,则( ) A .1m =- B .1n =C .i m n +=D .m ni +在复平面内对应的点所在象限是第二象限【答案】ACD 【分析】由题意得()()23225mi mi ni i +++=+,即()2655m mi n i -+=-,由复数相等求出,m n ,然后逐个选项分析判断. 【详解】因为复数2i z m =+,()235i i z z n +=+ 所以()()23225mi mi ni i +++=+()2655m mi n i -+=-所以2655m n m ⎧-=⎪⎨=-⎪⎩,即51n m =⎧⎨=-⎩,所以A 正确,B 错误;m ni +C 正确;m ni +在复平面内对应的点为()1,5-,所在象限是第二象限,故D 正确.故选:ACD.第II 卷(非选择题)三、填空题41.(山西省新绛中学2022届高三上学期10月月考数学(文)试题)已知1?21z i +=,则z 的最大值为_______.【答案】1 【分析】根据复数的几何含义,求解出z 的实部和虚部满足的关系式,再结合复数模的几何含义即可得出结果. 【详解】设()i ,z x y x y R =+∈, ()12i 12i 1z x y ∴+-=++-=即()()22121x y ++-=,所以点 (),x y 在以()1,2-为圆心,1为半径的圆上z z 表示点(),x y 到原点的距离, 所以原点与圆上的一点距离的最大值即表示z 的最大值所以11MAXz =1.42.(北京市第十三中学2022届高三上学期期中考试数学试题)在复平面内,复数z 所对应的点的坐标为(1,1)-,则z z ⋅=_____________.【答案】2 【分析】由已知求得z ,进一步得到z ,再根据复数代数形式的乘法运算法则计算可得. 【详解】解:由题意,1i z =-,∴1i z =+,2(1i)(1i)1i 2z z ∴⋅=-+=-=.故答案为:2.43.(安徽省合肥市庐阳高级中学2020-2021学年高三上学期10月第一次质检理科数学试题)复数z 满足22i z z =++,则1i z -+的最小值为___________.【分析】设复数i z a b =+,代入题干条件后求出a 与b 的关系,再代入到1i z -+的关系式中,求出最小值. 【详解】设复数i z a b =+,则z ,()22i 22i z a b ++=+++,22i z ++,因为22i z z =++2a b =--,则()()1i=11i z a b -+-++,1i z -+①,把2a b =--代入①式中,得:i 1z +-当2b =-1i z -+44.(广东省湛江市第二十一中学2022届高三上学期9月第2次月考数学试题)已知复数3i 1iz +=+,则z =__________.【分析】根据复数除法运算化简求出z ,即可求出模. 【详解】 ()()()()3i 1i 3i 42i2i 1i 1i 1i 2z +-+-====-++-,z ∴==.45.(天津市第二中学2021-2022学年高三上学期期中数学试题)若复数z 满足ii i1z +=(i 为虚数单位),则z =_____.【分析】根据复数的运算直接求出z 的代入形式,进而可得模. 【详解】 解:由已知21i1i iz +==--,z ∴==.46.(上海市交通大学附属中学2022届高三上学期10月月考数学试题)若复数z 满足3iiz +=(其中i 是虚数单位),z 为z 的共轭复数,则z =___________.【分析】利用复数的除法化简复数z ,可得出z ,再利用复数的模长公式可求得结果. 【详解】()223i i 3i 3i i 3i 113i i i i 1iz +++-=====-⋅-,所以,13i z =+,因此,z =47.(上海市向明中学2022届高三上学期9月月考数学试题)已知复数()()()13i 1i 12i z +-=-,则z=___________. 【答案】2 【分析】直接利用复数代数形式的乘除运算化简复数z ,再由复数求模公式计算得答案. 【详解】 解:()()()()()()13i 1i 42i 12i 42i 10i2i 12i12i 12i 12i 5z +-+++=====---+, 则2z z ==. 故答案为:2.48.(双师301高一下)若复数()i z a a =+∈R 与它的共轭复数z 所对应的向量互相垂直,则a =_______. 【答案】±1 【分析】利用数量积为0列方程,解方程求得a . 【详解】z a i =+对应坐标为(),1a ,z a i =-对应坐标为(),1a -,依题意()()2,1,110a a a ⋅-=-=, 解得1a =±. 故答案为:±1.49.(2021·上海·格致中学高三期中)定义运算()(),,a b c d ad bc =-,则满足()(),1,232i z z =+的复数z =______.【答案】23i 3+【分析】设i z a b =+,然后根据定义直接化简计算即可. 【详解】设i z a b =+,所以i z a b =- 由()(),,a b c d ad bc =-所以()(),1,223i=32i z z z z a b =-=++所以23,3a b ==所以23i 3z =+故答案为:23i 3+.50.(2021·全国·高三月考(理))已知复数z 满足||||z i z i ++-=z 的最小值是_______. 【答案】1 【分析】根据复数的几何意义,得到||||z i z i ++-=z 在椭圆2212y x +=上,结合椭圆的性质,即可求解. 【详解】由复数的几何意义,可得||||z i z i ++-=z 在椭圆2212y x +=上, 而z 表示椭圆上的点到椭圆对称中心()0,0的距离,当且仅当复数z 位于椭圆短轴端点(1,0)±时,z 取得最小值,z 的最小值为1. 故答案为:1.任务二:中立模式(中档)1-30题一、单选题1.(云南省昆明市第一中学2022届高三上学期第三次双基检测数学(理)试题)已知i 为虚数单位,则232021i i i i +++⋅⋅⋅+=( )A .iB .i -C .1D .-1【答案】A 【分析】根据虚数的运算性质,得到4414243i i i i 0n n n n ++++++=,得到2320212021i i i i i +++⋅⋅⋅+=,即可求解. 【详解】根据虚数的性质知4414243i i i i 1i 1i 0n n n n ++++++=+--=, 所以2320212021i i i i 5050i i +++⋅⋅⋅+=⨯+=. 故选:A.2.(辽宁省名校联盟2021-2022学年高三上学期10月联合考试数学试题)已知复数202120221111i i i i z -+⎛⎫⎛⎫=+ ⎪ ⎪+-⎝⎭⎝⎭,则z 的共轭复数z =( )A .1i +B .1i -C .1i -+D .1i --【答案】C 【分析】先利用复数的乘方化简复数z ,再求其共轭复数. 【详解】因为21(1)21(1)(1)2i i i i i i i ---===-++-,21(1)21(1)(1)2i i i i i i i ++===--+,所以20212022=(i)+i =i 1=1i z -----, 则1i z =-+,3.(上海市曹杨第二中学2022届高三上学期10月月考数学试题)设b 、c ∈R ,若2i -(i 为虚数单位)是一元二次方程20x bx c ++=的一个虚根,则( ) A .4b =,5c = B .4b =,3c = C .4b =-,5c = D .4b =-,3c =【答案】C 【分析】分析可知实系数一元二次方程20x bx c ++=的两个虚根分别为2i -、2i +,利用韦达定理可求得b 、c 的值,即可得解. 【详解】因为2i -是实系数一元二次方程20x bx c ++=的一个虚根,则该方程的另一个虚根为2i +, 由韦达定理可得()()()()2i 2i 2i 2i b c -++=-⎧⎪⎨-+=⎪⎩,所以45b c =-⎧⎨=⎩.故选:C.4.(第3章本章复习课-2020-2021学年高二数学(理)课时同步练(人教A 版选修2-2))若1是关于x 的实系数方程20x bx c ++=的一个复数根,则( ) A .2,3b c == B .2,1b c ==- C .2,1b c =-=- D .2,3b c =-=【答案】D 【分析】把1x =代入方程,整理后由复数相等的定义列方程组求解. 【详解】由题意1是关于x 的实系数方程20x bx c ++=∴2(1(10b c +++=,即()1i 0b c -+++= ∴10b c -++=⎧⎪⎨=⎪⎩,解得23b c =-⎧⎨=⎩.5.(专题1.3集合与幂指对函数相结合问题-备战2022年高考数学一轮复习一网打尽之重点难点突破)设集合{}22||cos sin |,M y y x x x R ==-∈,|1N x =<⎧⎫⎨⎬⎩⎭,i 为虚数单位,x ∈R ,则M ∩N 为( ) A .(0,1) B .(0,1]C .[0,1)D .[0,1]【答案】C 【分析】M 集合表示cos2y x =的值域,N 集合表示不等式1<的解集,先分别求出来再求其交集即可【详解】22|cos sin |cos 2y x x x =-=,其值域为[]0,1,所以[]0,1M =.因为1<,所以1x <,解得11x -<<,即()1,1N =-.所以M ∩N=[)0,1 故选:C.6.(考点38复数-备战2022年高考数学一轮复习考点帮(新高考地区专用))若2ii(,,)1ia x y a x y +=+∈+R ,且1xy >,则实数a 的取值范围是( ) A .)+∞B .(,)-∞-⋃+∞C .()-⋃+∞ D .(,2)(2,)-∞-+∞【答案】B 【分析】根据复数的乘法运算和相等复数的性质,求出,x y ,再根据1xy >,得出2414a ->,从而可求出a 的取值范围. 【详解】 解:因为2ii(,,)1ia x y a x y +=+∈+R , 所以2i ()i a x y x y +=-++, 所以2x y x y a -=⎧⎨+=⎩,解得:22,22a a x y +-==,因为1xy >,所以2414a ->,解得:a <-a >, 则实数a 的取值范围是(,)-∞-⋃+∞. 故选:B.7.(四川省成都市树德中学2021-2022学年高三上学期入学考试文科数学试题)已知复数()2231i z a a a =-+-,R a ∈,则“0a =”是“z 为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【分析】根据纯虚数的定义求出a 的值,再由充分条件和必要条件的定义即可求解. 【详解】若复数()2231i z a a a =-+-为纯虚数, 则223010a a a ⎧-=⎪⎨-≠⎪⎩,解得:0a =或3a =,所以由0a =可得出()2231i z a a a =-+-为纯虚数, 但由()2231i z a a a =-+-为纯虚数,得不出0a =, 所以“0a =”是“z 为纯虚数”的充分不必要条件, 故选:A.8.(第25讲数系的扩充与复数的引入(练)-2022年高考数学一轮复习讲练测(课标全国版))设复数1i1iz -=+,()202020191f x x x x =++++,则()f z =( )A .iB .i -C .1D .1-【答案】C 【分析】利用复数的除法化简得出i z =-,然后利用复数的乘方法则可求得结果. 【详解】()()()21i 1i 2ii 1i 1i 1i 2z ---====-++-, 又因为()4i 1-=,对任意的k 、n Z ∈,()()()()44i i i i n k n k k +-=-⋅-=-, 而()()()()234i i i i i 1i 10-+-+-+-=--++=, 因此,()()()()()20202019i i i i 1505011f z f =-=-+-++-+=⨯+=.故选:C.9.(河北正中实验中学2021届高三上学期第二次月考数学试题)棣莫弗定理:若两个复数111cos isin z θθ=+,222cos isin z θθ=+,则()()121212cos isin z z θθθθ⋅=+++,已知1i2a +,2021b a =,则a b +的值为( )A .i - B .i C .D 【答案】B 【分析】推导出()111cos isin nz n n n N θθ*=+∈,求出b 的值,即可得出a b +的值.【详解】由已知条件可得2111cos 2isin 2z θθ=+,()()32111111111cos 2isin 2cos3isin 3z z z θθθθθθ==+++=+,,以此类推可知,对任意的n *∈N ,111cos isin n z n n θθ=+,31i cos isin 2266a ππ=+=+, 所以,202120212021cos isin cos 337isin 3376666b a ππππππ⎛⎫⎛⎫==+=-+- ⎪ ⎪⎝⎭⎝⎭1cosisini 662ππ=-+=, 因此,i a b +=. 故选:B.10.(第25讲数系的扩充与复数的引入(讲)-2022年高考数学一轮复习讲练测(课标全国版))欧拉公式i co sin s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】先由欧拉公式计算可得i312e π=+,然后根据复数的几何意义作出判断即可.【详解】根据题意i co sin s i x e x x +=,故i3isin 1cos 332e πππ==+,对应点12⎛ ⎝⎭,在第一象限.故选:A.11.(山东省济宁邹城市2021-2022学年高三上学期期中考试数学试题)定义运算a bad bc c d=-,若复数z 满足i 11i 1z z -=-,则z =( ) A .1i +B .1i -C .i -D .i【答案】D 【分析】直接利用新定义,化简求解即可. 【详解】 由a bad bc c d=-, 则i 1i 1i 1z z z z -=+=-, ()()()2i 11i 2ii i 1i 1i 12z ---∴====-++--,则i z =.故选:D.12.(上海市徐汇中学2022届高三上学期期中数学试题)已知方程()20x x m m R ++=∈有两个虚根,αβ,若3αβ-=,则m 的值是( ) A .2-或52B .2-C .52 D .52-【答案】C 【分析】由于是,αβ虚根,所以方程判别式小于0,且,αβ是一对共轭复数,因此可以通过设出复数,通过韦达定理代入条件解出参数 【详解】由已知方程有两个虚根,αβ,因此方程判别式小于0,即.1140,4m m -<>, 设=i,i a b a b αβ+=-由韦达定理可知1m αβαβ+=-=, 所以2221,a a b m =-+=, 即214m b =+3αβ-=, 即2i 3b =, 所以239,24b b ==所以915442m =+= 故答案为:C.13.(专题12.3复数的几何意义(重点练)-2020-2021学年高一数学十分钟同步课堂专练(苏教版2019必修第二册))若z 是复数,|z +2-2i|=2,则|z +1-i|+|z |的最大值是( ) AB .C .2D .4【答案】D 【分析】设z =x +y i (x ,y ∈R ),由题意可知动点(),P x y 的轨迹可看作以()2,2C -为圆心,2为半径的圆,|z +1-i|+|z |可看作点P 到()1,1A -和()0,0O 的距离之和,然后即可得到P ,A ,O 三点共线时|z +1-i|+|z |取得最大值时,从而可求出答案. 【详解】设z =x +y i(x ,y ∈R),由|z +2-2i|=2知,动点(),P x y 的轨迹可看作以()2,2C -为圆心,2为半径的圆, |z +1-i|+|z |可看作点P 到()1,1A -和()0,0O 的距离之和, 而|CO |=|CA |易知当P ,A ,O 三点共线时,|z +1-i|+|z |取得最大值时, 且最大值为|PA |+|PO |=(|CA |+2)+(|CO |+2)=4, 故选:D .14.(专题07复数-备战2022年高考数学一轮复习核心知识全覆盖(新高考地区专用))如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( ) A .1 B .12C .2D【答案】A 【分析】直接利用复数模的几何意义求出z 的轨迹.然后利用数形结合求解即可. 【详解】解:|i ||i |2Z Z ++-=∴点Z 到点(0,1)A -与到点(0,1)B 的距离之和为2. ∴点Z 的轨迹为线段AB .而|i 1|Z ++表示为点Z 到点C (1,1)--的距离. 数形结合,得最小距离为1 所以|z +i +1|min =1. 故选:A.15.(百师联盟2021届高三二轮复习联考(三)数学(理)全国Ⅰ卷试题)已知i 是虚数单位,复数z 的共轭复数为z ,下列说法正确的是( ) A .如果12z z +∈R ,则1z ,2z 互为共轭复数B .如果复数1z ,2z 满足1212z z z z +=-,则120z z ⋅=C .如果2z z =,则1z =D .1212z z z z = 【答案】D 【分析】对于A ,举反例11i z =+,22i z =-可判断;对于B ,设111i z a b =-,222i z a b =+代入验证可判断;对于C ,举反例0z =可判断;对于D ,设1i z a b =+,2i z c d =+,代入可验证. 【详解】对于A ,设11i z =+,22i z =-,123z z +=∈R ,但1z ,2z 不互为共轭复数,故A 错误; 对于B ,设111i z a b =-(1a ,1b ∈R ),222i z a b =+(2a ,2b ∈R ).由1212z z z z +=-,得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-,则12120a a b b +=,而()()()()()12112212121221121221i i i 2i z z a b a b a a b b a b a b a a a b a b ⋅=++=-++=++不一定等于0,故B 错误;对于C ,当0z =时,有2z z =,故C 错误; 对于D ,设1i z a b =+,2i z c d =+,则1212z z z z ==,D 正确故选:D.16.(黑龙江省哈尔滨市第六中学2021届高三第四次模拟数学(理)试题)设z 为复数,则下列命题中错误的是( ) A .2z zz = B .若1z =,则i z +的最大值为2 C .22z z =D .若11z -=,则02z ≤≤【答案】C 【分析】根据复数的概念和运算以及几何意义,逐项分析判断即可得解. 【详解】设()i ,z a b a b =+∈R ,则i z a b =-,222222(i)(i)i z z a b a b a b a b z =+-=-=+=⋅,故A 正确;由1z =,得221(11)a b b +=-≤≤,则i z += 当1b =时,i z +的最大值为2,故B 正确;2222(i)2i z a b a b ab =+=-+,222z a b =+,2z 与2z 不一定相等,故C 错误;满足11z -=的z 的轨迹是以()1,0为圆心,以1为半径的圆,如图所示, 则02z ≤≤,故D 正确. 故选:C .17.(陕西省汉中市2021-2022学年高三上学期第一次校际联考文科数学试题)设复数1z ,2z 满足121z z ==,1212z z -=-+,则12z z +=( )A .1B .12CD 【答案】D 【分析】利用性质2||z zz =,结合已知求出2112z z z z +,再由2121212()()z z z z z z ++=+即可求12z z +. 【详解】由题设,121212112122122|()()|1z z z z z z z z z z z z z z -=-+-=--=,又121z z ==,。
2020-2021学年福建省福州一中八年级(上)期中数学试卷(附答案详解)
2020-2021学年福建省福州一中八年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A. B. C. D.2.下列运算中正确的是()A. √22=±2B. √(−3)2=−3C. √2×√3=√6D. √2+√3=√53.点A(−3,1)关于x轴的对称点为()A. (−3,1)B. (−3,−1)C. (3,1)D. (3,−1)4.小明从镜中看到电子钟示数,则此时时间是()A. 12:01B. 10:51C. 11:59D. 10:215.下列运算中正确的是()A. a2⋅a3=a6B. (a2)3=a6C. (ab3)2=ab6D. ab2+ab=a2b36.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=6,则△ABD的面积是()A. 6B. 8C. 10D. 127.下列说法中,错误的是()A. 全等三角形对应角相等B. 全等三角形对应边相等C. 全等三角形的面积相等D. 两边和一角对应相等的两个三角形一定全等8.等腰三角形的一边长为6,一边长为2,则该等腰三角形的周长为()A. 8B. 10C. 14D. 10或149.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由旋转,就做成了一个测量工件,则A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A. SSSB. SASC. AASD. ASA10.已知√(2x−1)(1−2x)=y−2,则()B. 2x−1−y=0C. √xy=1D. x−y=2A. x y=12二、填空题(本大题共6小题,共24.0分)11.等腰三角形的一个内角为130°,则这个等腰三角形顶角的度数为______.12.若式子√x+1在实数范围内有意义,则x的取值范围是______.13.已知x m=5,x n=3,则x m+n的值为______.14.在△ABC中,AD为∠BAC的角平分线,AB//DE,AC=7,CD=3,则△CDE的周长为______.15.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H;经测量可知,BC=3,CH=2,∠B=30°.则H点到直线AB的距离为______.16.如图,△ABC的内部有一点P,且点D,E,F是点P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠BAC=70°,∠ABC=60°,∠ACB=50°,PD、PE恰好分别为边AB、BC的中垂线,则下列命题中正确的是______.(1)A,C两点关于直线PF对称;(2)PF=BE;(3)∠ADB+∠BEC+∠CFA=360°;(4)∠DBA+∠FAC=∠BAC.三、解答题(本大题共9小题,共86.0分)17.计算:(1)2a2⋅a4+(a3)2;(2)(−2a2b)3.18.计算:÷√2;(1)√10×√34(2)√8−√12+√1.219.已知;如图,AB=AD,∠1=∠2,∠B=∠D.求证:△ABC≌△ADE.20.△ABC如图所示,(1)下列各点的坐标为:A(______,______),B(______,______),C(______,______);(2)在图中作△A1B1C1使得△A1B1C1与△ABC关于y轴对称;(3)求△ABC的面积.21.已知:Rt△ABC中,∠C=90°,AB=10,BC=8,AC=6.(1)在AC上求作一点P,使得点P到边AB、BC的距离相等.(2)求S△ABC:S△BAP的值.22.已知√a−1+(b+2)2=0,求出a,b的值,并计算b√2a的值.−b23.证明:等腰三角形的两腰上的中线相等.24.如图,在△ABC中,DE是边BC的垂直平分线,EF⊥AB交AB的延长线于点F,EG⊥AC交AC于点G,且EF=EG.(1)求证:△AFE≌△AGE;(2)在AE上求作一点P,使得BP+PF的值最小;(3)求证:AF+AG=AB+AC.25.如图,AB⊥y轴,且与y轴交于点R,OR=AR=BR,点P为x轴上一点,记点A,P,C的横坐标分别为x A、x P、x C且x A<x P<0,连接AP,作PC⊥AP交OB于点C.(1)判断△OAB的形状并证明;(2)证明:∠PAO+∠OPC=∠AOR;(3)求证;x P−x A=x C.答案和解析1.【答案】D【解析】【分析】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的概念.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.2.【答案】C【解析】解:A、原式=2,所以A选项错误;B、原式=3,所以B选项错误;C、原式=√2×3=√6,所以C选项正确;D、√2与√3不能合并,所以D选项错误.故选:C.利用二次根式的性质对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的加减法对D进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.【答案】B【解析】解:点A(−3,1)关于x轴的对称点为(−3,−1),故选:B.利用关于x轴的对称点的坐标特点可得答案.此题主要考查了关于x轴的对称点,关键是掌握关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.4.【答案】D【解析】解:此时实际时间是10:21.故选:D.根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称即可得出答案.本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.5.【答案】B【解析】解:A、a2⋅a3=a5,故本选项不合题意;B、(a2)3=a6,故本选项符合题意;C、(ab3)2=a2b6,故本选项不合题意;D、ab2与ab不是同类项,所以不能合并,故本选项不合题意.故选:B.同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;积的乘方,等于每个因式乘方的积;合并同类项时,系数相加减,字母及其指数不变.本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.6.【答案】A【解析】解:如图,过点D作DE⊥AB于E,∵AB=6,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=12AB⋅DE=12×6×2=6.故选:A.过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线得到边AB上的高是解题的关键.7.【答案】D【解析】解:由全等三角形的性质可得:全等三角形对应角相等,全等三角形对应边相等,全等三角形的面积相等;故A,B,C选项正确,有两边一角对应相等,不一定全等,故此选项错误;故选:D.根据全等三角形的判定与性质得出答案.此题主要考查了全等三角形的判定与性质,关键是掌握判定两个三角形全等的方法:SSS、SAS、AAS、ASA、HL.8.【答案】C【解析】解:①当2为底时,其它两边都为6,2、6、6可以构成三角形,则该等腰三角形的周长为14;②当2为腰时,其它两边为2和6,∵2+2<6,∴不能构成三角形,故舍去.∴这个等腰三角形的周长为14.故选:C.因为已知长度为6和2两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.【答案】B【解析】解:△OAB 与△OA′B′中,∵AO =A′O ,∠AOB =∠A′OB′,BO =B′O ,∴△OAB≌△OA′B′(SAS).故选:B .由于已知O 是AA′、BB′的中点O ,再加对顶角相等即可证明△OAB≌△OA′B′,所以全等理由就可以知道了.此题主要考查全等三角形的判定方法,此题利用了SAS ,做题时要认真读图,找出有用的条件是十分必要的.10.【答案】C【解析】解:根据题意可得:(2x −1)(1−2x)≥0,∴x =12, ∴y −2=0,解得:y =2,A 、x y =122=14;B 、2x −1−y =2×12−2=−1;C 、√xy =√12×2=1; D 、x −y =12−2=−32;故选:C .(1)根据算术平方根的定义求出x 的值,从而得出y 的值,然后把x ,y 的值分别代入每一项进行解答,即可得出答案.本题考查了算术平方根,熟练掌握算术平方根的定义求出x 的值是解题的关键.11.【答案】130°【解析】解:∵若这个130°的内角是底角,则这两个底角的和就大于180°,∴等腰三角形的一个内角为130°,则这个等腰三角形顶角的度数为130°,故答案为130°.等腰三角形的一个内角是130°,则该角只能是顶角.本题考查了等腰三角形的性质,三角形内角和定理,熟练掌握等腰三角形两底角相等和三角形内角和180°是解题的关键.12.【答案】x≥−1【解析】解:根据题意得:x+1≥0,解得x≥−1,故答案为:x≥−1.根据二次根式的定义可知被开方数必须为非负数,列不等式求解.主要考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.【答案】15【解析】解:∵x m=5,x n=3,∴x m+n=x m⋅x n=5×3=15.故答案为:15.同底数幂相乘,底数不变,指数相加;据此解答即可.本题主要考查了同底数幂的乘法,熟记运算法则是解答本题的关键.14.【答案】10【解析】解:∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵AB//DE,∴∠BAD=∠ADE,∴∠DAE=∠ADE,∴AE=DE,∴△CDE的周长=CE+DE+CD=AE+CE+CD=AC+CD,∵AC=7,CD=3,∴△CDE的周长为7+3=10,故答案为:10.根据AD为∠BAC的角平分线,得到∠BAD=∠CAD,由平行线的性质得到∠BAD=∠ADE,等量代换得到∠DAE=∠ADE,求得AE=DE,于是得到结论.本题考查了等腰三角形的判定和性质,平行线的性质,角平分线的定义,熟练掌握等腰三角形的判定和性质定理即可得到结论.15.【答案】52【解析】解:如图,图形即为所求.过点H作HT⊥AB于H.∵∠BTH=90°,BC=3,CH=2,∠HBT=30°,∴BH=BC+CH=3+2=5,∴HT=12BH=52.故答案为52.根据要求作出图形即可,利用直角三角形30度角的性质解决问题即可.本题考查作图−基本作图,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.【答案】(1)(2)(3)(4)【解析】【分析】根据线段垂直平分线的性质定理和判定定理判断(1);根据等边三角形的判定定理和性质定理、等腰三角形的性质判断(2);根据轴对称的性质和周角的概念判断(3);根据线段垂直平分线的性质、轴对称的性质判断(4).本题考查的是轴对称的性质、线段垂直平分线的性质、等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.【解答】解:连接PA、PB、PC,∵PD、PE分别为边AB、BC的中垂线,∴PA=PB,PC=PB,∴PA=PC,∴PE为AC的垂直平分线,∴A,C两点关于直线PF对称,A命题正确;∵∠ABC=60°,∴∠BAC+∠BCA=120°,∵PA=PB,PB=PC,∴∠PAB=∠PBA,∠PCB=∠PBC,∴∠PAB+∠PCB=∠PBA+∠PBC=60°,∴∠PAC+∠PCA=60°,∵PA=PC,∴∠PCA=30°,∴∠CPF=60°,∵CF=PC,∴△PCF为等边三角形,∴PF=PC,∵PC=PB=BE,∴BE=PF,B命题正确;∵点P、D关于AB对称,∴∠ADB=∠APB,同理可得,∠BEC=∠BPC,∠AFC=∠APC,∴∠ADB+∠BEC+∠CFA=∠APB+∠BPC+∠CPA=360°,C命题正确;∵PD是AB的垂直平分线,∴DB=DA,∴∠DBA=∠DAB,∵点P、D关于AB对称,∴∠DAB=∠PAB,同理,∠FAC=∠PAC,∴∠DBA+∠FAC=∠PAB+∠PAC=∠BAC,D命题正确;故答案为:(1)(2)(3)(4).17.【答案】解:(1)2a2⋅a4+(a3)2=2a6+a6=3a6;(2)(−2a2b)3=−8a6b3.【解析】(1)根据单项式乘单项式的运算法则、幂的乘方法则计算;(2)根据积的乘方法则计算即可.本题考查的是单项式乘单项式,积的乘方,掌握它们是运算法则是解题的关键.18.【答案】解:(1)原式=√10×3÷24=√15;4(2)原式=2√2−2√3+√22−2√3.=5√22【解析】(1)直接利用二次根式的乘除运算法则计算得出答案;(2)直接利用二次根式的加减运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.19.【答案】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,在△ABC和△ADE中,{∠B=∠DAB=AD∠BAC=∠DAE,∴△ABC≌△ADE(ASA).【解析】根据∠1=∠2,可得∠BAC=∠DAE,再根据全等三角形的判定方法,角边角即可证明△ABC≌△ADE.本题考查了全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.20.【答案】2 −2 1 2 −2−1【解析】解:(1)由题意A(2,−2),B(1,2),C(−2,−1).故答案为:2,−2,1,2,−2,−1.(2)如图,△A1B1C1即为所求.(3)S△ABC=4×4−12×3×3−12×1×4−12×1×4=7.5.(1)根据A,B,C的位置写出坐标即可.(2)分别作出A,B,C的对应点A1,B1C1即可.(3)利用分割法求解即可.本题考查作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【答案】解:(1)如图,点P即为所求.(2)过点P作PH⊥AB于H.∵PC⊥CB,PH⊥AB,BP平分∠ABC,∴PH=PC,∴S△PABS△PBC =12⋅AB⋅PH12⋅PC⋅BC=ABBC=108=54,∴S△PABS△ABC =59.【解析】(1)作∠ABC的角平分线交AC于点P,点P即为所求.(2)利用角平分线的性质定理,面积法解决问题即可.本题考查作图−复杂作图,角平分线的性质等知识,解题的关键是学会利用面积法解决问题,属于中考常考题型.22.【答案】解:根据题意得:a−1=0,b+2=0,解得:a=1,b=−2,则b√2a−b =(−2)×√2×1−(−2)=(−2)×1=−2.即b√2a−b的值是−2.【解析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.23.【答案】已知:等腰△ABC中,AB=AC,AD=DC,AE=EB,求证:BD=CE.证明:∵AB=AC,AD=DC,AE=EB,∴DC=BE,∠DCB=∠EBC.∵BC=CB,∴△BDC≌△CEB(SAS).∴BD=CE.即等腰三角形的两腰上的中线相等.【解析】先根据题意作图,结合图形写出已知,求证,然后再根据已知和图形进行证明.可根据等腰三角形的性质得出相关的等角或相等的线段:DC=BE,∠DCB=∠EBC,BC= CB,可证明△BDC≌△CEB,所以BD=CE,即等腰三角形的两腰上的中线相等.主要考查了等腰三角形的性质和文字证明题的相关步骤.要注意文字证明题的一般步骤是:①根据题意作图,②根据图形写出已知、求证,③证明.24.【答案】(1)证明:在Rt△AFE和Rt△AGE中,{EF=EGAE=AE,∴Rt△AFE≌Rt△AGE(HL);(2)解:如图1,作点B关于AE的对称点B′,连接B′F交AE于点P,则点P即为所求;(3)证明:如图2,连接BE、CE,∵DE是边BC的垂直平分线,∴EB=EC,在Rt△BFE和Rt△CGE中,{EF=EGEB=EC,∴Rt△BFE≌Rt△CGE(HL),∴BF=GC,∵Rt△AFE≌Rt△AGE,∴AF=AG,∴AF+AG=AB+BF+AG=AB+GC+AG=AB+AC.【解析】(1)利用HL定理证明Rt△AFE≌Rt△AGE;(2)根据轴对称−最短路径问题解答;(3)连接BE、CE,根据线段垂直平分线的性质得到EB=EC,根据全等三角形的性质证明结论.本题考查的是全等三角形的判定和性质、轴对称−最短路径问题、线段垂直平分线的性质,掌握直角三角形确定的判定定理和性质定理、线段垂直平分线的性质是解题的关键.25.【答案】解:(1)△OAB是等腰直角三角形,理由如下:∵AB⊥y轴,且与y轴交于点R,∴∠ARO=∠BRO=90°,∵OR=AR=BR,∴∠AOR=∠OAR=∠OBR=∠BOR=45°,∴OA=OB,∠AOB=90°,∴△OAB是等腰直角三角形;(2)如图1,过点P作PH⊥x轴,交AO于H,∵∠AOR=∠BOR=45°,∴∠POH=45°,∠POC=135°,∵PH⊥AO,PC⊥AP,∴∠APC=∠OPH=90°,∴∠APH=∠CPO,∠PHO=∠POH=45°,∴∠PAO+∠APH=∠PHO=45°,∴∠PAO+∠OPC=45°=∠AOR;(3)如图3,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,∵∠PHO=∠POH=45°,∴PO=PH,∠AHP=135°=∠POC,在△APH和△CPO中,{∠AHP=∠POC PH=PO∠APH=∠CPO,∴△APH≌△CPO(SAS),∴AP=PC,∵AE⊥x轴,CF⊥x轴,∴∠AEP=∠CFP=90°,∵∠APE+∠PAE=90°,∠APE+∠CPF=90°,∴∠CPF=∠PAE,在△AEP和△PFC中,{∠AEP=∠CFP ∠PAE=∠CPF AP=CP,∴△AEP≌△PFC(AAS),∴PE=CF,∵∠COF=∠ROF−∠BOR=45°,∴∠COF=∠OCF=45°,∴OF=CF,∴PE=OF,∴x P−x A=x C.【解析】(1)由等腰三角形的性质可得∠AOR=∠OAR=∠OBR=∠BOR=45°,可证△OAB是等腰直角三角形;(2)过点P作PH⊥x轴,交AO于H,由直角三角形的性质可得∠APH=∠CPO,∠PHO=∠POH=45°,由外角的性质可得结论;(3)过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,由“SAS”可证△APH≌△CPO,可得AP=PC,由“AAS”可证△AEP≌△PFC,可得PE=CF,进而可得PE=OF=CF,即可得结论.本题是三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.。
【名师推荐资料】福建省福州市八县一中2020-2021学年高一数学上学期期中试题
福建省福州市八县一中2017-2018学年高一数学上学期期中试题完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的)(1)设全集{}0,1,2,3,4U =,集合{}1,2,3A =, {}2,4B =,则()U AC B =( )(A ){}01,3, (B ){}13, (C ){}12,3,(D ){}0,1,2,3(2)函数()ln(1)f x x =-的定义域是( ) (A ))10(, (B )]1,0( (C ))1,0[ (D )]1,0[ (3)已知幂函数()y f x =的图象过(4,2)点,则()2f =( )(A )2 (B )2 (C )4 (D (4)设函数⎩⎨⎧>≤⋅=2log 22)(2x x x a x f x ,, )(R a ∈,若()1)4(=f f ,则a 的值为( )(A )2 (B )1 (C )21 (D )41(5)下列函数中,既是偶函数,又在)(0,+∞上单调递增的是( )(A )x y =(B )3x y = (C )21x y -= (D )x y ln =(6)已知函数2)1(log ++=x y a )10(≠>a a 且的图象恒过定点A ,若点A 也在函数b x f x +=2)(的图象上,则b =( )(A )0 (B )1 (C )2 (D )3 (7)利用二分法求方程3log 3x x =-的近似解,可以取的一个区间是( )(A )()0,1(B )()1,2(C )()2,3(D )()3,4(8)已知 1.20.8612,(),2log 22a b c -===,则,,a b c 的大小关系为( )(A ) c b a << (B )c a b << (C )b c a << (D )b a c << (9)已知函数)(x f 是定义在R 上的偶函数,且在]0,(-∞上是减函数,若()()211f x f -<-,则实数x 的取值范围是( )(A )),0(+∞ (B ))1,0( (C ))1,(-∞ (D )),1()0,(+∞-∞ (10)若函数xay =)10(≠>a a 且的反函数在定义域内单调递增,则函数()log (1)a f x x =-的图象大致是( )(A ) (B ) (C ) (D ) (11)已知1log >b a )10(≠>a a 且,则下列各式一定..正确的是( ) (A )b a 22< (B )b a 22log log > (C )baa a < (D )ba b b >(12)已知函数⎪⎩⎪⎨⎧>-≤<=3,log 130,log )(33x x x x x f ,若)()()(c f b f a f ==且c b a <<,则ca bc ab ++的取值范围为( ) (A ))4,1( (B ))5,1( (C ))7,4( (D ))7,5(二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) (13)已知集合{}1log 2≤∈=x N x A ,则集合A 子集的个数为_______________(14)计算:1lg 55)12(15log 3log )278(----+32 =_________________(15)已知)(x f 是定义在R 上的奇函数, 当0x ≥时,()22x f x x m =++,则21(log )4f 的值为________________(16)如果存在函数b ax x g +=)((b a 、为常数),使得对函数()f x 定义域内任意x 都有()()f x g x ≤成立,那么称()g x 为函数()f x 的一个“线性覆盖函数”.给出如下四个结论:①函数xx f 2)(=存在“线性覆盖函数”;②对于给定的函数()f x ,其“线性覆盖函数”可能不存在,也可能有无数个; ③2121)(+=x x g为函数()f x =; ④若b x x g +=2)(为函数2()f x x =-的一个“线性覆盖函数”,则1b >其中所有正确结论的序号是___________三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本题满分10分)已知全集R U =,集合{}42A ≤=xx ,}{41B ≤<=x x (1)求)C (A U B ;(2)若集合}4|{a x a x C <<-=,且B C ⊆,求实数a 的取值范围.(18)(本题满分12分)已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()2f x x x =--;(1)求函数)(x f 在R 上的解析式并画出函数()f x 的图象(不要求列表描点,只要求画出草图)(2)(ⅰ)写出函数()f x 的单调递增....区间; (ⅱ)若方程()=0f x m +在),0[+∞上有两.个.不同的实数根,求实数m 的取值范围。
2020-2021学年福州市八县(市)一中高三上学期期中数学试卷(文科)(含解析)
2020-2021学年福州市八县(市)一中高三上学期期中数学试卷(文科)一、单选题(本大题共12小题,共60.0分) 1.已知集合A ={x|x 2−2x −3<0},B ={x||x|<2},则A ∩B 等于( )A. (−1,2)B. (−2,−1)C. (−2,3)D. (−1,3)2.已知i 是虚数单位,则(1+i)2的共轭复数是( )A. −2iB. −2+iC. 2iD. 1+2i3.函数是( )A. 偶函数B. 既是奇函数又是偶函数C. 奇函数D. 非奇非偶函数函数4.已知函数f(x)是函数y =log a x(a >0且a ≠1)的反函数,则函数y =f(x)+2图象恒过点的坐标为( )A. (1,0)B. (0,1)C. (1,2)D. (0,3)5.“a >2”是“一元二次方程x 2+ax +1=0有实根”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.已知函数f(x)在R 上为奇函数,对任意的x 1,x 2∈(0,+∞)且x 1≠x 2,总有f(x 2)−f(x 1)x 2−x 1>0且f(1)=0,则不等式f(x)−f(−x)x<0的解集为( )A. (−1,0)∪(0,1)B. (−∞,−1)∪(0,1)C. (−∞,−1)∪(1,+∞)D. (−1,0)∪(1,+∞)7.已知,且对任意,都有则的值是( )A.B.C.D.8.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.若B =2A ,a =1,b =,则c = ( ).A. 2B. 2C.D. 19.已知三角形ABD 的边BD 上一点M 满足AM ⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗⃗ ,则1x +4y的最小值为( )A. 9B. 8C. 4D. 310. 函数y =Acos(ωx +φ)(A >0,ω>0,|φ|<π2)的图象如图所示,则函数y =Acos(ωx +φ)的递减区间是( )A. [2kπ+π4,2kπ+5π4],k ∈Z B. [2kπ−π4,2kπ+3π4],k ∈Z C. [kπ+π8,kπ+5π8],k ∈Z D. [kπ−π4,kπ+3π4],k ∈Z11. 下列运用基本不等式求最值,使用正确的个数是( )①已知ab ≠0,求ab +ba 的最小值;解答过程:a b+b a≥2√a b⋅ba=2;②求函数y =x 2+5√x 2+4的最小值;解答过程:可化得y =√x 2+4+1√x 2+4≥2;③设x >1,求y =x +2x−1的最小值;解答过程:y =x +2x−1≥2√2xx−1,当且仅当x =2x−1即x =2时等号成立,把x =2代入2√2x x−1得最小值为4.A. 0个B. 1个C. 2个D. 3个12. 已知函数f(x)=sinx ,f(x)的导数是( )A. 偶函数B. 奇函数C. 增函数D. 减函数二、单空题(本大题共4小题,共20.0分)13. 已知函数f(x)的定义域[−1,5],部分对应值如表,f(x)的导函数y =f′(x)的图象如图所示 x−1 0245 F(x) 1 21.5 21下列关于函数f(x)的命题; ①函数f(x)的值域为[1,2]; ②函数f(x)在[0,2]上是减函数③如果当x ∈[−1,t]时,f(x)的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y =f(x)−a 最多有4个零点. 其中正确命题的序号是______ .14. 等差数列{a n }中,a n 的前项和为S n ;若有a 1=−2014,S 20152015−S20132013=2,则S 2014= ______ . 15. 已知变量x ,y 满足{x +3≥0x −y +4≥02x +y −4≤0,则z =x +3y 的最大值为______.16. 若方程2 ax 2−1=0在(0,1)内恰有一解,则实数a 的取值范围是____________. 三、解答题(本大题共6小题,共70.0分)17. 在数列{a n }和{b n }中,已知a 1=2,a 2=6,a n+2a n =3a n+12(n ∈N ∗),b n =a n+1a n,(1)求证:数列{b n }是等比数列; (2)求数列{a n }的通项公式;(3)若P n =1log 3a n+12,S n 为数列{p n }的前n 项和,求S n .18. 已知函数f(x)=sinxcosx −sin 2x. (1)求f(x)的最小正周期;(2)设△ABC 为锐角三角形,角A 的对边长√2,角B 的对边长√3,若f(A)=0,求△ABC 的面积.19. 已知函数f(x)=lnx +ax .(1)当a >0时,求函数f(x)的单调区间;(2)若f(x)在[1,e]上的最小值为1,求实数a 的取值范围;(其中e 为自然对数的底数); (3)若f(x)<12x 在(1,+∞)上恒成立,求实数a 的取值范围.20. 各项为整数的数列{a n }的前n 项和为S n ,且满足S n =14a n2+12a n +14(n ∈N +). (1)求a n ;(2)设数列{a n +b n }的首项为1,公比为q 的等比数列,求{b n }的前n 项和S n .21. 已知△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c.向量m ⃗⃗⃗ =(a,√3b),n ⃗ =(cosA,sinB)且m ⃗⃗⃗ //n ⃗ . (I)求A ;(II)若a =3,求△ABC 周长的最大值.22. 已知函数f(x)=alnx+12x2−(1+a)x(x>0),其中a为实数.(1)求函数f(x)的单调区间;(2)若函数f(x)≥0对定义域内的任意x恒成立,求实数a的取值范围;(3)证明:对任意的正整数m,n,不等式1ln(m+1)+1ln(m+2)+⋯+1ln(m+n)>nm(m+n)恒成立.【答案与解析】1.答案:A解析:解:∵A={x|x2−2x−3<0}={x|−1<x<3}=(−1,3),B={x||x|<2}=(−2,2),∴A∩B=(−1,3)∩(−2,2)=(−1,2)故选:A.先分别求出集合A和集合B,然后再求出集合A∩B.本题考查集合的性质和运算,解题时要根据实际情况,注意公式的灵活运用.2.答案:A解析:解:复数(1+i)2=2i的共轭复数为−2i.故选:A.利用复数的运算法则、共轭复数的定义即可得出.本题考查共轭复数的定义、复数的四则运算法则,考查了推理能力与计算能力,属于基础题.3.答案:C解析:试题分析:因为f(−x)=−f(x),所以选C。
福建省福州市八县(市、区)一中2022-2023学年高二下学期期中联考数学试题
福建省福州市连江第一中学2022—2023学年度第二学期期中联考高二年数学科试卷完卷时间:120分钟满 分:150分第Ⅰ卷一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知抛物线2:2C y x =上一点到y 轴的距离是3,则该点到抛物线C 焦点的距离是( )A. 3 B.72C. 4D.92【答案】B 【解析】【分析】求出抛物线的准线方程,由焦半径公式求出答案.【详解】由题意得:抛物线2:2C y x =的准线方程为1=2x -,由焦半径公式得:该点到抛物线C 焦点的距离等于17322+=.故选:B2. 已知随机变量X 的分布列为()(1i P X i i a===,2,3,4,5),则(25)P X ≤<=( )A.13B.12C.35D.910【答案】C 【解析】【分析】由随机变量的分布列的性质即概率和等于1,可求得a 的值,又由()()()()25234P X P X P X P X ≤<==+=+=,计算可得答案.【详解】根据题意,随机变量X 的分布列为()()1,2,3,4,5iP X i i a===,由分布列的性质,则有511i ia ==å,解得15a =,故()()()()25234P X P X P X P X ≤<==+=+=.23493151515155=++==.故选:C.3. 函数()2e xf x x=的图象大致为( )A. B.C. D.【答案】C 【解析】【分析】求导判断出函数()f x 的单调区间即可做出选择.【详解】∵()2e x f x x =,∴()()()22222222212e e e e e x xx x x x x x x f x x x x ¢¢×-×--¢===.令()0f x ¢=,得12x =.则函数()f x 在区间(),0¥-,10,2æöç÷èø上单调递减,在区间1,2æö+¥ç÷èø上单调递增.选项A :违背函数()f x 在区间(),0¥-上单调递减.判断错误;选项B :违背函数()f x 在区间10,2æöç÷èø上单调递减. 判断错误;选项C :函数()f x 在区间(),0¥-,10,2æöç÷èø上单调递减,在区间1,2æö+¥ç÷èø上单调递增.判断正确;选项D :违背函数()f x 在区间10,2æöç÷èø上单调递减. 判断错误.故选:C4. 将5个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A. 10种 B. 25种 C. 36种 D. 52种【答案】B 【解析】【分析】根据题意,可得1号盒子至少放一个,最多放3个小球,即分三种情况讨论,分别求出其不同的放球方法数目,相加可得答案.【详解】根据题意,每个盒子里的球的个数不小于该盒子的编号,分析可得,1号盒子至少放一个,最多放3个小球,分情况讨论:1号盒子中放1个球,其余4个放入2号盒子,有15C 5=种方法;1号盒子中放2个球,其余3个放入2号盒子,有25C 10=种方法;1号盒子中放3个球,其余2个放入2号盒子,有35C 10=种方法;则不同的放球方法有5101025++=种,故选:B .5. 已知某地市场上供应的一种电子产品中,甲厂产品占12,乙厂产品占14,丙厂产品占14,甲厂产品的合格率是95%,乙厂产品的合格率是90%,丙厂产品的合格率是90%,则从该地市场上买到一个产品,此产品是次品的概率是( )A. 0.925 B. 0.03C. 0.075D. 0.95【答案】C 【解析】【分析】应用对立事件概率求法,全概率公式求次品的概率.【详解】由题设,此产品是次品的概率1951901903(1(1)(1)0.07521004100410040´-+´-+´-==.故选:C6. 如下图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =××××××且,i i x y ÎZ .记n n n a x y =+,如()11,0A 记为11a =,()21,1A -记为20a =,()30,1A -记为31,a =-×××,以此类推;设数列{}n a 的前n 项和为n S ,则80S =( )A. 1B. 0C. —1D. 2【答案】B 【解析】【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,同时第n 圈的最后一个点对应坐标为(,)n n ,80a 在第4圈最后一个点上,则800.S =【详解】由图可知,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280,S a a a =+++=L 第二圈从点()2,1到点()2,2共16个点,由对称性可知910240a a a +++=L ,以此类推,可得第n 圈的8n 个点对应的这8n 项的和为0.第n 圈的最后一个点对应坐标为(,)n n ,80a 在第4圈最后一个点上,则800.S =故选:B .7. 已知双曲线22:13x C y -=的左右两个顶点分别为,A B ,12,,,n M M M L 点为双曲线右支上的n 个点,1212,,,,,,n n N N N M M M L L 分别与关于原点对称,则直线12,,,nAM AM AM L 12,,,,n AN AN AN L 这2n 条直线的斜率乘积为( )A. 13næöç÷èøB. 12næöç÷èøC. 3n -D. 2n-【答案】A 【解析】【分析】根据对称性,先算出11AM AN k k 的结果,然后将这2n 条直线分组,利用刚才的结果即可得出结论.【详解】设1(,)M m n ,由题意,1(,)N m n --,又(A,于是11223AM AN n k k m ==-,又1(,)M m n 在双曲线上,故2213mn -=,于是112222113333AM AN m n k k m m -===--,将2n 条直线两两分组,1122,;,;;,n n AM AN AM AN AM AN L ,类似上面的步骤,这n 组直线中的两条直线斜率之积均是13,于是这2n 条直线的斜率乘积为13næöç÷èø.故选:A8. 若对任意的()12,0,x x m Î,且12x x <,都有122112ln ln 1x x x x x x -<-成立,则实数m 的最大值是( )A. 2e -B. eC. 2e D. 1e -【答案】C 【解析】【分析】由题意可得122112ln ln x x x x x x ->-,变形得出2121ln 1ln 1x x x x -->,构造函数()ln 1x g x x-=,可知函数()y g x =在区间()0,m 上单调递增,利用导数求得函数()y g x =的单调递增区间,由此可求得实数m 的最大值.【详解】对()12,0,x x m Î",且12x x <,都有122112ln ln 1x x x x x x -<-,可得122112ln ln x x x x x x ->-,即()()1221ln 1ln 1x x x x ->-,两边同除12x x 得2121ln 1ln 1x x x x -->,构造函数()ln 1x g x x-=,则函数()y g x =在区间()0,m 上单调递增,()22ln xg x x-¢=,令()0g x ¢>,即2ln 0x ->,解得20e x <<,即函数()y g x =的单调递增区间为()20,e,()()20,0,e m \Í,则2e m ≤,因此,实数m 的最大值为2e .故选:C.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,漏选得2分,错选得0分)9. 在等差数列{}n a 中,已知48a =,128a =-,n S 是其前n 项和,则下列选项正确的是( )A. 2d =- B. 80a =C. 1554S = D.7878S S >【答案】ABD 【解析】【分析】由题意,根据等差数列的通项公式可得1a 与d 的方程组,可求出1a 与d ,再结合等差数列通项公式和前n 项和公式可判断各选项.详解】由48a =,128a =-,可得1138118a d a d +=ìí+=-î,解得1142a d =ìí=-î,()81714720a a d \=+=+´-=,故A ,B 正确;又()151151511502S a d ´-=+=,故C 错误;同理,756S =,856S =,787S \=,878S =,则7878S S>,故D 正确.故选:ABD.10. 若523455(21)(1),,,,,,x a bx cx dx ex fx x a b c d e f -=+++++++均为常数,则下列选项正确的是( )A. 2a =- B. 85e =-C. 272b c df +++=- D. 234570b c d e f ++++=-【答案】ABD 【解析】【分析】将()51x +展开与2345a bx cx dx ex fx +++++合并,利用二项展开式的通项公式,求得a ,b ,c ,d ,e ,f 的值,从而判断各个选项.【详解】()()552345211x a bx cx dx ex fx x -=+++++++Q 【()()()()()234515101051a b x c x d x e x f x =+++++++++++,令0x =,可得11a -=+,2a \=-,故A 正确;由于()521x -的展开式的通项公式为()5515C 12rrr r r T x --+=×-××,令0r =,得5x 项的系数为52,即512f +=,31f \=,令1r =,得4x 项的系数为()451C 12×-×,即580e +=-,85e \=-,令2r =,得3x 项的系数为()3522C 12×-×,即1080d +=,70d \=,令3r =,得2x 项的系数为()2533C 12×-×,即1040c +=-,50c \=-,令4r =,得x 项的系数为()454C 12×-×,即510b +=,5b \=,即解得31f =,85e =-,70d =,50c =-,5b =,550703156b c d f +++=-++=,234570b c d e f ++++=-,故B 正确;C 错误;D 正确.故选:ABD.11. 下列选项正确的是( )A. 空间向量()1,1,2a =-r 与向量()2,2,4b =--r共线B. 已知向量()2,,4a x =r ,()0,1,2b =r ,()1,0,0c =r ,若a r ,b r ,c r共面,则2x =C. 已知空间向量()1,1,0a =r ,()1,0,2b =-r ,则a r 在b r 方向上的投影向量为12,0,55æö-ç÷èøD. 点(2,1,1)A 是直线l 上一点,(1,0,0)a =r是直线l 的一个方向向量,则点(1,2,0)P 到直线l 【答案】ABC 【解析】【分析】利用空间向量的共线判断A ;利用向量共面定理判断B ;利用投影向量的求法判断C ;利用点到直线的距离公式判断D .【详解】对于A ,(1,1,2)a =-r Q ,(2,2,4)b =--r ,2b a \=-r r ,a \r 与b r共线,故A 正确;对于B ,设a b c l m =+r r r,即()())(2,,40,1,21,,0,)(,20x l m m l l =+=,则242x m l l =ìï=íï=î,得2x =,故B 正确;对于C,1,||a b b ×=-==rr r Q ,a \r 在b r 方向上的投影向量为2112(1,0,2)(,0,)555a b b b æö×ç÷=--=-ç÷ç÷èør r rr ,故C 正确,对于D ,(1,1,1)AP =--uuu r Q ,r是直线l 的一个单位方向向量,\点P到直线l ==,故D 错误.故选:ABC .12. 已知0,R,e a b >Î是自然对数的底,若e ln b b a a +=+,则a b -的值可以是( )A. 1 B. 1- C. 2 D.12【答案】AC 【解析】【分析】设()e xf x x =+,结合单调性可得e b a =,从而e b a b b -=-,令()e xg x x =-,利用导数求得()g x 的范围即可判断.【详解】设()e xf x x =+,则()f x 在R 上单调递增,∵()()()ln ln e ln ebaf b f a b a -=+-+ln (ln )0a a a a =+-+=,∴ln b a =,即e b a =,∴e b a b b -=-,令()e x g x x =-,则()e 1x g x ¢=-,当0x <时,()0g x ¢<,()g x 单调递减,当0x >时,()0g x ¢>,()g x 单调递增,∴()(0)1g x g ³=,从而1a b -³,故AC 符合.故选:AC.第Ⅱ卷三、填空题(本大题共4小题,每小题5分,共20分)13. 随机变量X 的概率分布列如下:X-101Pabc其中a ,b ,c 成等差数列,若随机变量X 的期望1()2E X =,则其方差()D X =______.【答案】512【解析】【分析】利用等差中项的性质,分布列中概率和为1以及均值的计算公式构建方程求得a ,b ,c ,再由方差的计算公式求得答案.【详解】因为a ,b ,c 成等差数列,则2a c b +=,又由分布列的性质,则1a b c ++=,所以得13b =,又因为随机变量的均值()11012E X a b c c a =-´+´+´=-=且23a c +=,故解得112a =,712c =,所以()22211117151011223212212D X æöæöæö=´--+´-+´-=ç÷ç÷ç÷èøèøèø.故答案为:512.14. 已知⊙M :()()22114x y -+-=,直线l :220x y ++=,点P 为直线l 上的动点,过点P 作⊙M 的切线PA ,切点为A ,则切线段PA 长的最小值为________.【答案】1【解析】【分析】由已知求得圆心坐标与半径,再求出圆心到直线l 的距离,利用勾股定理得答案.【详解】⊙M :22(1)(1)4x y -+-=的圆心坐标为(1,1)M ,半径为2,如图,||2MA =,且222PA PM MA =-,故要使||PA 最小,则||PM 最小,此时PM ⊥l ,因为圆心M 到直线l :220x y ++==∴||PA1.=故答案为:1.15. 若函数()2()e xf x x mx =+在13,22éù-êúëû上存在单调递减区间,则m 的取值范围是_________.【答案】3,2æö-¥ç÷èø【解析】【分析】先求()f x 的导函数,再将函数()f x 在区间13,22éù-êúëû上存在单调递减区间转化为()0f x ¢<在区间13,22éù-êúëû上有解,再根据参数分离,构造函数,结合函数在区间的单调性即可求解实数m 的范围.【详解】()()2e xf x x mx =+,则()()2e2xf x xmx x m ¢=+++,函数()f x 在区间13,22éù-êúëû上存在减区间,只需()0f x ¢<在区间13,22éù-êúëû上有解,即()220x m x m +++<在区间13,22éù-êúëû上有解,又13,22x éùÎ-êúëû,则151,22x éù+Îêúëû,所以221x xm x --<+在区间13,22éù-êúëû上有解,所以2max21x x m x æö--<ç÷+èø,13,22x éùÎ-êúëû,令1x t +=,15,22t éùÎêúëû,则()222112111x x x t x x t-++---+==++,令()1g t t t =-+,则()2110g t t ¢=--<在区间15,22t éùÎêúëû恒成立,所以()g t 在15,22t éùÎêúëû上单调递减,所以()max 1322g t g æö==ç÷èø,即2max 2312x x x æö--=ç÷+èø,所以32m <,所以实数m 的取值范围是3,2æö-¥ç÷èø.故答案为:3,2æö-¥ç÷èø.16. 北宋的数学家沈括博学多才,善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:“怎么求这些酒坛的总数呢?”他想堆积的酒坛、棋子等虽然看起来像实体,但中间是有空隙的,应该把它们看成离散的量.经过反复尝试,沈括提出对于上底有ab 个,下底有cd 个,从上到下,逐层长宽各多1个,共n 层的堆积物(如下图),可以用公式()()()2266n n S b d a b d c c a =++++-éùëû求出物体的总数,这就是沈括的“隙积术”,利用“隙积术”求得数列()(){}132n n ++-的前15项的和是________.(结果用数字表示)【答案】1735【解析】【分析】根据题意,求出a ,b ,c ,d 的值,代入公式计算即可得答案.【详解】解析:由题,在数列24´,35´,46´,L ,()()13n n ++中,可得2,4,16,18a b c d ====,根据隙积术公式,()()243546151153\´+´+´++++L ()()()151524182421816162176566éù=´+´++´´+-=ëû,()()152435461511532151765301735S \=´+´+´++++-´=-=L .故答案为:1735.四、解答题(本大题6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.)17. 函数()ln 1f x x x ax =-+在点(1(1))A f ,处的切线斜率为1-.(1)求实数a的值;(2)求()f x 的单调区间和极值.【答案】(1)2(2)增区间为()e,¥+,减区间为()0,e ,极小值1e -,无极大值.【解析】【分析】(1)求出()f x 导函数,根据导数的几何意义,可得a 的值;(2)求出()f x ¢,令()0f x ¢>,求得增区间,令()0f x ¢<,求得减区间,再根据极值的定义可得答案.【小问1详解】()ln 1f x x x ax =-+\函数的导数为()ln 1f x x a¢=+-\在点(1,(1))A f 处的切线斜率为1k a =-,(1)1f ¢\=-,即11a -=-,2a \=;【小问2详解】由(1)得,函数()ln 21f x x x x =-+()ln 1f x x ¢=-,()0,x Î+¥,令()0f x ¢>,得e x >,令()0f x ¢<,得0e x <<,即()f x 的增区间为()e,+¥,减区间为()0,e .故()f x 在e x =处取得极小值1e -,无极大值.18. 已知数列{}n a 的前n 项和为12,2,4,n S a a ==且212 2.n n n S S S ++-+=(1)求数列{}n a 的通项公式;(2)若m a ,m S ,13m a +成等比数列,求正整数m 的值.【答案】(1)2n a n =(2)3【解析】【分析】(1)由已知可得212,n n a a ++-=可得数列{}n a 公差为2的等差数列,进而可得数列{}n a 的通项公式;(2)由已知可得2[(1)]26(1)m m m m +=×+,求解即可.【小问1详解】2122n n n S S S ++-+=Q ,211()()2n n n n S S S S +++\---=,212n n a a ++\-=,又124,2,a a ==满足212a a -=,{}n a \是公差为2的等差数列,22(1)2.n a n n \=+-=【小问2详解】由(1)得:(22)(1)2n n n S n n +==+,又213m m m S a a +=×,()()21261,0m m m m m éù\+=×+>ëû,解得:3m =.19. 如图,在三棱柱111ABC A B C -中,1AA ^平面ABC ,D ,E 分别为AC ,11A C 的中点,AB BC ==,12AC AA ==.(1)求证:AC ^平面BDE ;(2)求直线DE 与平面ABE 所成角的正弦值;(3)求点D 到平面ABE 的距离.【答案】(1)证明见解析;(2(3.【解析】【分析】(1)根据线面垂直性质得到DEAC ^,根据等腰三角形三线合一的性质得到AC BD ^,然后利用线面垂直的判定定理证明即可;(2)利用空间向量的方法求线面角即可;(3)利用空间向量的方法求点到面的距离即可.【小问1详解】在三棱柱中,D ,E 为AC ,11A C 的中点,∴1DE AA ∥,∵1AA ^平面ABC ,∴DE ^平面ABC ,∵AC Ì平面ABC ,∴DE AC ^,在三角形ABC 中,AB BC =,D 为AC 中点,∴AC BD ^,∵DE BD D Ç=,,DE BD Ì平面BDE ,∴AC ^平面BDE .【小问2详解】如图,以D 为原点,分别以,,DA DB DE 为,,x y z 轴建立空间直角坐标系,在直角三角形ABD中,AB =112AD AC ==,∴2BD =,()0,0,0D ,()0,0,2E ,()1,0,0A ,()0,2,0B ,()0,0,2DE =uuu r ,()1,2,0AB =-uuu r ,()1,0,2AE =-uuu r ,设平面ABE 法向量为(),,m x y z =u r ,2020AB m x y AE m x z ì×=-+=ïí×=-+=ïîuuu r r uuu r r ,令2x =,则1y =,1z =,所以()2,1,1m =u r ,设直线DE 与平面ABE 所成角为q ,的的所以sin cos,DEq==uuu r.【小问3详解】设点D到平面ABE的距离为d,所以d=20. 我校即将迎来“第二届科技艺术节”活动,其中一项活动是“数学创意作品”比赛,为了解不同性别学生的获奖情况,现从去年举办的“首届科技艺术节”报名参加活动的500名学生中,根据答题情况评选出了一二三等奖若干名,获奖情况统计结果如下:获奖人数性别人数一等奖二等奖三等奖男生200101515女生300252540假设所有学生的获奖情况相互独立.(1)用频率估计概率,现分别从上述200名男生和300名女生中各随机抽取1名,求抽到的2名学生都获一等奖的概率;(2)用频率估计概率,从上述200名男生和300名女生中随机各抽取1名,以X表示这2名学生中获奖的人数,求X的分布列和数学期望E X();(3)用频率估计概率,从报名参加活动的500名学生中随机抽取1名,设抽到的学生获奖的概率为0p;从上述200男生中随机抽取1名,设抽到的学生获奖的概率为1p;从上述300名女生中随机抽取1名,设抽到的学生获奖的概率为2p,试比较0p与122p p+的大小,并说明理由.【答案】(1)1240;(2)分布列见解析,12;(3)1202p pp+>.【解析】【分析】(1)根据给定条件,利用古典概率计算作答.(2)利用频率估计概率,求出X的可能值,再计算各个值对应的概率列出分布列,求出期望作答.(3)利用频率估计概率求出0p,结合(2)中信息比较作答.【小问1详解】设事件A 为“分别从上述200名男生和300名女生中各随机抽取1名,抽到的2名学生都获一等奖”,则11102511200300C C 1()C C 240P A ==.【小问2详解】随机变量X 的所有可能取值为0,1,2,记事件B 为“上述200名男生中随机抽取1名,该学生获奖”,事件C 为“上述300名女生中随机抽取1名,该学生获奖”,依题意,事件B ,C 相互独立,且()P B 估计为10151512005++=,(C)P 估计为252540330010++=,因此1328(0)(()()(1)(1)51050P X P BC P B P C ====-´-=,131319(1)()()(()()(1(1)51051050P X P BC BC P B P C P B P C ==+=+=´-+-´=,133(2)()()()51050P X P BC P B P C ====´=,所以X 的分布列为X 012P 28501950350X 的数学期望()2819310125050502E X =´+´+´=.【小问3详解】1202p p p +>,理由:根据频率估计概率得04090135250050200p +===,由(2)知115p =,2310p =,则1213150510224200p p ++===,所以1202p p p +>.21. 已知椭圆C:()222210x y a b a b +=>>过点(,且离心率为12,设A 、B 分别为椭圆的左右顶点,1F 、2F 为椭圆的左右焦点,点P 为椭圆C 上不同于A 、B 的任意一点,点Q 是椭圆C 长轴上的不同于A 、B 的任意一点(1)求椭圆C 的标准方程;(2)当12PF F △内切圆的面积最大时,求内切圆圆心的坐标;(3)设直线PQ 与椭圆C 的另一个交点为点N ,若11PQ QN+的值为定值,则称此时的点Q 为“稳定点”,问:是否存在这样的稳定点?若有,试求出所有“稳定点”,并说明理由;若没有,也请说明理由.【答案】(1)22143x y += (2)(0, (3)存在,(1,0)±【解析】【分析】(1)由题意列出关于,,a b c 的方程组,求解即可;(2)当内切圆的半径最大时,即P 点为上顶点,由圆的对称性,可得内切圆的圆心坐标;(3)设过Q 点的直线的方程,与椭圆的方程联立,可得两根之和及两根之积,可求出||,||PQ PN 的表达式,进而求出11||||PQ QN +的表达式,由其值为定值可得Q 的横坐标的值,即求出稳定点的坐标.【小问1详解】因为椭圆C :()222210x y a ba b +=>>过点(,且离心率为12,所以22212b c aa b c ì=ïï=íï=+ïî,解得12b c a ì=ï=íï=î,所以椭圆C 的方程为22143x y +=;【小问2详解】12||2F F =,设12PF F △边上的高为h ,则12122PF F S h h =´´= ,设12PF F △的内切圆的半径为R ,因为12PF F △的周长为定值6,所以121632PF F R R S ´== ,当P 在椭圆上顶点时,h12PF F S于是R,由椭圆的对称性,此时内切圆圆心的坐标为(0,;【小问3详解】Q 点Q 是椭圆C 长轴上的不同于A 、B 的任意一点,故可设直线PN 的方程为01122,(,),(,)x my x P x y N x y =+,由022143x my x x y =+ìïí+=ïî,得22200(34)63120m y mx y x +++-=,0012222216312,,03434mx y y y y m x m --\+==D >++恒成立.又PQ =11PQ QN \+===要使其值为定值,则20413x -=,故当201x =,即01x =±时,1143PQ QN +=.综上,存在这样的稳定点(1,0)Q ±即椭圆的焦点为稳定点.22. 已知函数1()ln ,0f x x k x k x æö=-->ç÷èø.(1)若对()()0,1,0x f x "Î<恒成立,求k 的取值范围;(2)求证:对(0,1)x "Î,不等式 2212ln e x x x x x-<+ 恒成立.【答案】(1)(0,2](2)证明见解析【解析】【分析】(1)求导,根据导数分类讨论,结合函数单调性求解()f x 的范围,即可得解;(2)结合(1)的结论,构造函数2()((0,1))2e xm x x x =Î+,利用导数即可求解.【小问1详解】因为1()ln 0f x x k x x æö=--<ç÷èø在(0,1)上恒成立,而22211()1k x kx f x x x x¢-+=+-=,令()0f x ¢=得210x kx -+=,所以24,0k k D =->,①当2Δ40k =-≤,即02k <≤时,()0f x ¢³,的所以()f x (0,1)上单调递增,则()(1)0f x f <=,满足题意;②当2Δ40k =->,即2k >时,设2()1,01x x kx x j =-+<<,则()j x 的对称轴为1,(0)1,(1)202k x k j j =>==-<,所以()j x 在(0,1)上存在唯一零点1x ,当()1,1x x Î时,()0,()0x f x j ¢<<,所以()f x 在()1,1x 上单调递减,故()(1)0f x f >=,不合题意.综上,k 的取值范围为(0,2].【小问2详解】由(1)知,当02k <≤时,1ln 0x k x x--<在(0,1)上恒成立,即21ln x k x x ->,21 2.ln x x x-\>令2()((0,1))2e xm x x x =Î+,则222222(2)e 2[(1)1]()0(2)e )(e 2x x x x x x m x x x ¢+-×-+==>++恒成立,()m x \在(0,1)上单调递增,()(1)2e 3m x m \<=<,所以,对(0,1)x "Î,不等式2212ln e x x x x x-<+恒成立.在734924357等教学实用性资料!需要word版,请加高中数学资料共享群(群号:734924357),下载精品试卷、专题练习、题型总结、解题方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年第一学期八县(市)一中期中联考高中二年数学科试卷命题学校:永泰一中命题教师:叶长春审核教师:张华伟张慧敏考试时间:11月12日完卷时间:120分钟满分:150分第Ⅰ卷一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某单位有业务员和管理人员构成的职工160人,现用分层抽样方法从中抽取一个容量为20的样本,若样本中管理人员有7人,则该单位的职工中业务员有多少人()A.32人B.56人C.104人D.112人2.袋内装有8个红球、2个白球,从中任取2个,其中是互斥而不对立......的两事件是()
A.至少有一个白球;全部都是红球B.至少有一个白球;至少有一个红球C.恰有一个白球;恰有一个红球D.恰有一个白球;全部都是红球3.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的中心为原点,
焦点1F,2F在x轴上,椭圆C的面积为23π,且离心率为12,则C的标准方程为()
A.22143xyB.22112xyC.22134xyD.221163
xy
4.在区间]21,21[上任取一个数k,使直线(3)ykx与圆221xy相交的概率为()A.12B.24C.23D.2
2
5.永泰县全域旅游地图如图所示,它的外轮廓线是椭圆,根据图中的数据可得该椭圆的离心率为()
A.25B.35C.235D.255
6.已知双曲线C:22221yx
ab(a>0,b>0),斜率为1的直线l与双曲线C交于不同的
,AB两点,且线段AB的中点为P(2,4),则双曲线的渐近线方程为()
A.2yxB.12yxC.2yxD.22yx
7.第七届世界军运会于2019年10月18日至27日在中国武汉举行.某电视台在19日至24日六天中共有7场直播(如下表所示),张三打算选取其中的三场观看.则观看的任意两场直播中间至少间隔一天(如第一场19日观看直播则20日不能观看直播)的概率是()日期19日20日21日22日23日24日时间全天全天上午下午全天全天全天内容飞行比赛击剑射击游泳篮球定向越野障碍跑
A.358B.356C.71D.35
4
8.已知椭圆和双曲线有共同的焦点12,FF,,PQ分别是它们的在第一象限和第三象限的交点,且2=60QFP,记椭圆和双曲线的离心率分别为12,ee,则221231ee等于()A.4B.23C.2D.3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,漏选得3分,错选得0分.)
9.某校对甲、乙两个数学兴趣小组的同学进行了知识测试,现
从两兴趣小组的成员中各随机选取15人的测试成绩(单位:分)用茎叶图表示,如图,根据以上茎叶图,对甲、乙两兴趣小组的测试成绩作比较,下列统计结论正确的有()A.甲兴趣小组测试成绩的平均分高于乙兴趣小组测试成绩的平均分.B.甲兴趣小组测试成绩较乙兴趣小组测试成绩更分散.C.甲兴趣小组测试成绩的中位数大于乙兴趣小组测试成绩的中位数.D.甲兴趣小组测试成绩的众数小于乙兴趣小组测试成绩的众数.10.下列说法中错误..的是()
A.“8m”是“椭圆2214xym的离心率为22”的充要条件
B.设,xyR,命题“若
220xy
,则0xy”是真命题;
C.“42k”是“方程
2214+2
xy
kk表示的曲线为椭圆”的必要不充分条件
D.命题“若3x,则2430xx”的否命题是真命题11.某企业节能降耗技术改造后,在生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据如右表,现发现表中有个数据看不清,已知回归直线方程为ˆ6.36.8yx,下列说法正确的是()
x23456
y1925★3844A.看不清的数据★的值为34B.回归直线ˆ6.36.8yx
必经过样本点(4,★)
C.回归系数6.3的含义是产量每增加1吨,相应的生产能耗实际增加6.3吨D.据此模型预测产量为7吨时,相应的生产能耗为50.9吨
12.在平面直角坐标系xOy中,已知双曲线C:22221xy
ab(a>0,b>0)的离心率为
52,抛物线245yx
的准线过双曲线的左焦点,A,B分别是双曲线C的左,右顶
点,点P是双曲线C的右支上位于第一象限的动点,记PA,PB的斜率分别为1k,2
k,
则下列说法正确的是()
A.双曲线C的渐近线方程为y=±2xB.双曲线C的方程为221
4
xy
C.1k2k为定值14D.存在点P,使得1k+2
k=2
第Ⅱ卷三、填空题(本大题共4小题,每小题5分,共20分.)13.某印刷厂的工人师傅为了了解112个印张的质量,采用系统抽样的方法抽取若干个印张进行检查,为此先对112个印章进行编号为:01,02,03,,112,已知抽取的印张中最小的两个编号为05,13,则抽取的印张中最大的编号为_______.14.已知命题“2,(1)10xRxax”是真命题,则a的取值范围为____________.15.如图所示,抛物线形拱桥的跨度是20米,拱高是4米,在建桥时,每隔4米需要用一支柱支撑,则其中最长的支柱的长度为____________米.
16.已知抛物线24yx的焦点为F,抛物线的准线与x轴的交点
为K,点A(2,4),过点F的动直线l与抛物线交于,MN不同的两点,点M在y轴上的射影为点B,设直线KMKN,的斜率分别为1k和2
k.则
MAMB的最小值为_____________,12kk的值为_____________.(第一空3分,第
二空2分)四、解答题(本大题6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)
已知命题p:对于任意xR,不等式244210xmx
恒成立.
命题q:实数m满足的方程221(0)2mxmaaya表示双曲线;(1)当2a时,若“p或q”为真,求实数m的取值范围.(2)若p是q的充分不必要条件,求a的取值范围.
18.(本小题满分12分)已知双曲线C的离心率为233,点23,1在双曲线上,且抛物线22ypx(0p)
的焦点F与双曲线的一个焦点重合.
(1)求双曲线和抛物线的标准方程;(2)过焦点F作一条直线l交抛物线于A,B两点,当直线l的斜率为3时,求线段AB的长度.
19.(本小题满分12分)小张准备在某县城开一家文具店,为经营需要,小张对该县城另一家文具店中的某种水笔在某周的周一至周五的销售量及单支售价进行了调查,单支售价x元和销售量y支之间的数据如下表所示:星期12345单支售价x(元)1.41.61.822.2销售量y(支)1311763(1)根据表格中的数据,求出y关于x的回归直线方程;(2)请由(1)所得的回归直线方程预测销售量为18支时,单支售价应定为多少元?如果一支水笔的进价为0.56元,为达到日利润(日销售量×单支售价—日销售量×单支进价)最大,在(1)的前提下应该如何定价?
(其中:回归直线方程abxyˆ,1221niiiniixynxybxnx,5167iiixy,52116.6iix)20.(本小题满分12分)已知椭圆C:22221xyab(0ab)的左右焦点分别为12
FF,,焦距为2,且经过点
Q21
2(,).直线l过右焦点且不平行于坐标轴,l与椭圆C有两个不同的交点A,B,
线段AB的中点为M.(1)点P在椭圆C上,求12PFPF的取值范围;(2)证明:直线OM的斜率与直线l的斜率的乘积为定值;
21.(本小题满分12分)为让学生适应新高考的赋分模式某校在一次校考中使用赋分制给高二年段学生的生物成绩进行赋分,具体方案如下:A等级,排名等级占比7%,分数区间是83-100;B等级,排名等级占比33%,分数区间是71-82;C等级,排名等级占比40%,分数区间是59-70;D等级,排名等级占比15%,分数区间是41-58;E等级,排名等级占比5%,分数区间是30-40;现从全年段的生物成绩中随机抽取100名学生的原始成绩(未赋分)进行分析,其频率分布直方图如图所示:(1)求图中a的值;(2)以样本估计总体的办法,估计该校本次生物成绩原始分不少于多少分才能达到赋分后的C等级及以上(含C等级)?(3)若采用分层抽样的方法,从原始成绩在[40,50)和[50,60)内的学生中共抽取5人,查看他们的答题情况来分析知识点上的缺漏,再从中选取2人进行调查分析,求这2人中至少一人原始成绩在[40,50)内的概率.