基于嵌入式的室内环境信息采集控制演示系统设计
基于stm32单片机的智能家居系统设计共3篇

基于stm32单片机的智能家居系统设计共3篇基于stm32单片机的智能家居系统设计1智能家居系统是智能化技术的一种应用,通过技术手段实现家居生活的自动化、便利化、智能化。
而基于STM32单片机的智能家居系统就是将STM32芯片引用到智能家居系统设计中,实现家居控制、数据采集、物联网通信与运算处理等多种功能,从而实现家居生活的智能化服务。
接下来我们将从设计原理、实现方法、功能模块、硬件环境等方面进行详细介绍。
一、设计原理智能家居系统的设计原理主要基于物联网和嵌入式技术,物联网采用各种射频技术(如WIFI、ZigBee等),使得系统中的各个设备可以互相交换信息,从而实现人机交互。
嵌入式技术使用微控制器作为核心,为系统提供数据采集、计算、控制等功能。
而STM32芯片作为一种高性能的32位微控制器,同时集成了低功耗模式、硬件除错、多种通信接口和丰富的外设接口等,可以实现智能家居系统的各种功能模块,如温湿度监测、烟雾报警、灯光控制、智能语音交互等。
二、实现方法智能家居系统具有复杂的硬件和软件部分,需要结合STM32单片机和其他的硬件组件和软件实现,如WIFI模块、传感器、执行器、通信协议等。
下面是一个基于STM32单片机的智能家居系统的实现方法:1.硬件设计:硬件设计主要包括各种传感器、执行器、单片机、通讯模块等硬件设备的选型、电路设计、PCB设计等。
传感器有温湿度传感器、烟雾传感器、人体红外传感器等,执行器有LED灯、电机、继电器等。
STM32单片机作为主控芯片,负责对其他硬件设备的控制和数据采集与处理。
通信模块使用WIFI模块或ZigBee模块,实现家居设备之间的互联互通。
2.软件设计:软件设计主要包括各个模块驱动程序的编写,主程序的编写等。
驱动程序包括各传感器、执行器和通信模块的驱动程序,主程序负责各模块之间的协调和控制,以及数据采集和传输。
主程序通过使用操作系统或者任务调度技术,实现系统中各个模块的协调运行。
基于嵌入式系统的室内移动机器人定位与导航

基于嵌入式系统的室内移动机器人定位与导航一、概述随着科技的快速发展,室内移动机器人已成为智能家居、物流运输、医疗护理等领域的重要组成部分。
要实现机器人的高效、准确运作,其定位与导航技术至关重要。
基于嵌入式系统的室内移动机器人定位与导航技术,通过集成传感器、控制算法和路径规划算法,使机器人能够在复杂的室内环境中实现自主定位与导航。
嵌入式系统作为机器人的核心部分,具备体积小、功耗低、实时性强等特点,能够满足机器人对于硬件资源的需求。
通过集成多种传感器,如激光雷达、超声波传感器、摄像头等,机器人可以获取环境中的距离、障碍物、图像等信息,为定位与导航提供丰富的数据支持。
在定位方面,基于嵌入式系统的室内移动机器人可以采用多种技术,如SLAM(同时定位与地图构建)、惯性导航、WiFi指纹定位等。
这些技术各有优缺点,可以根据具体应用场景进行选择和优化。
通过实时获取机器人的位置信息,可以实现对机器人的精确控制。
在导航方面,嵌入式系统可以根据定位信息以及预设的目标位置,结合路径规划算法,为机器人规划出最优的行驶路径。
同时,机器人还需要具备避障功能,能够在遇到障碍物时及时调整行驶方向,确保安全到达目的地。
基于嵌入式系统的室内移动机器人定位与导航技术是实现机器人自主化、智能化的关键。
通过不断优化算法和硬件设计,可以提高机器人的定位精度和导航效率,为各领域的应用提供更加便捷、高效的解决方案。
1. 嵌入式系统概述及其在机器人技术中的应用嵌入式系统,作为一种专用的计算机系统,被设计用于执行特定的控制、监视或辅助功能。
它通常嵌入在设备或系统内部,是设备智能化、自动化的核心所在。
嵌入式系统结合了硬件和软件,具有体积小、功耗低、实时性强、可靠性高等特点,因此广泛应用于各种领域,如智能家居、医疗设备、航空航天以及机器人技术等。
在机器人技术中,嵌入式系统发挥着举足轻重的作用。
嵌入式系统为机器人提供了强大的计算和控制能力。
通过嵌入式处理器和相应的算法,机器人能够实时地处理传感器数据、执行复杂的运动控制任务,并实现自主导航和定位。
基于物联网技术的智能家居环境监测系统设计

电子技术与软件工程Electronic Technology & Software Engineering电子技术Electronic Technology基于物联网技术的智能家居环境监测系统设计庞博(商丘职业技术学院机电工程系河南省商丘市476000 )摘要:本文结合物联网和多种无线传输技术,设计了一种基于物联网的智能家居环境监测系统。
系统由感知层、网络层和应用层三 部分组成。
硬件包括无线传感网络糢块、传感器数据采集模块等;软件包括传感器节点软件程序、家庭网关及客户端的软件程序。
本系统 安装方便、无需布线,即使在偏远地区同样能提供可靠服务。
关键词:物联网;智能家居;环境监测随着科技发展,物联网技术从诞生到在生活中广泛应用,人们己经习惯了愈加舒适和智能的居家生活环境,同时对居住环境的智能化提出了更高的要求。
本文在研宄和总结现有物联网智能家居监控系统基础上,设计了一种基于物联网的嵌入式室内环境监控系统。
通过人工神经网络和模糊逻辑理论来综合评估家庭环境的舒适性。
1物联网和智能家居环境监测系统概述1.1物联网概述物联网最初是在1999年提出的。
物联网(Internet ofThings),实现嵌入式物理设备接入互联网,即万物互联。
它不再是传统意义上的互联网,其网络终端不仅包括传统的P C、移动电话等设备,更扩展到了可以交换信息的各种对象,如物联网技术广泛应用的汽车、家用电器等设备。
接入互联网的各种设备,都可以自动工作,通过设备携带的传感器感知环境变化,再由软件分析处理数据并与其他连网设备交换数据,最终控制这些设备做出对应的反应,整个过程完全不需要人为参与。
因此,物联网是无线网和互联网的结合而构建,其目的就是提高设备的设备和系统的工作效率和准确性。
物联网广泛应用在交通、家居、农业、物流、环境等多个领域。
1.2智能家居环境监测系统概述智能家居环境监测是利用物联网技术实现对居家环境的监控,使住宅本身与环境控制、设备终端管理与维护的有机结合。
关于嵌入式电子信息产品检测信息采集系统的设计

环球市场/电力工程-150-关于嵌入式电子信息产品检测信息采集系统的设计钟卫连湖南怀化职业技术学院摘要:在电子信息产品检测信息采集方面,为保证信息采集质量以及水平,应当选择合理系统进行信息采集,从而降低能耗与成本。
当前应用比较广泛的一种新型采集系统为嵌入式信息采集系统,要保证该采集系统的有效运用,应当对其进行合理设计,保证在实际应用过程中能够发挥其真正作用,促进电子信息产品发展,同时嵌入式信息采集系统是当前一种新型系统,本文就嵌入式电子信息产品检测信息采集系统的设计进行分析。
关键词:嵌入式;信息采集系统;设计嵌入式电子信息产品检测信息采集系统的设计不但解决了节点扩展的问题,而且无需淘汰原有的设备,从而提高了现有设备的利用率,节约了投资,还解决了特殊环境难于布线的问题。
1 嵌入式信息采集系统简述对于电子信息产品检测信息采集系统而言,其主要是在一定环境检测以及控制方面进行应用。
所以,在对该系统进行设计过程中,其主体就是通过主控单元对散落节点进行实时监控,同时实时有关信息收集工作。
另外,利用信息采集节点监测环境,并且对环境进行控制。
所以,在设计主控节点中相关硬件时,应当保证设计方案具备科学性以及合理性,并且要保证可行。
此外,在网络中设计采集节点之中硬件时,应当保证其可靠并且通用。
另外,对于嵌入式信息采集系统而言,要实施信息交换,并且控制用户,需其PC 上位机以及主控节点通过PS232 通信得以完成。
而在系统中所存在信息采集点会在一定范围之内的某处进行散落分布,进而实现监控环境。
2 系统总体方案设计本文旨在实现一种信息产品检测信息采集系统的设计,为无线传感网络的深入研究搭建平台。
信息产品检测信息采集系统主要实现主控单元对散落节点的实时监控和信息收集,以及信息采集节点对环境的监测和控制。
因此主控节点的硬件设计必须可用,而网络中采集节点的硬件设计也需要具有可靠性和通用性。
信息产品检测信息采集系统用于对一定环境进行监测并实现一定控制。
一种基于ZigBee的智能家居环境信号采集与控制系统设计

图1 感知家居需求与用户用例图图2 感知家居系统与芯片选型原有的信息孤岛相互联系起来将成为未来的大趋势。
2016年3月8日,海尔向开发者开放了U+平台,美的集团也向第三方开放了M-Smart 的SDK(软件开发工具包);3月31日,微软也发布了MS Bot Framework 机器人框架,巨头们的纷纷表率预示着更多的厂商将会开放自身的软硬件平台,使得家电设备,以及越来越多的智能硬件单品可以整合到一起。
旧版本的智能家居系统大多采用总线控制,装修布线的成本非常高,并且严重降低用户体验。
新一代智能家居产品以小米和华为的最新产品为例,均采用Wi-Fi 与ZigBee 协议。
本文介绍了一种兼容性强、性价比高的环境信息采集和家电控制系统。
1 系统概述要实现一套性价比较高的智能家居系统,所需的功能由用户的核心需求来决定。
根据马斯洛需求层级,生理和安全方面的需求应当放在首要实现的位置,实现的功能必须包含安全防盗、火警、有害气体检测和危险情况及时报警;其次是生活的便利化,包括对家庭环境的随时随地查看,家电的远程控制等;最后是需求的个性化,例如SOHU 办公、孕婴或行动不便、视力障碍或听觉障碍等情况,是用户分散的长尾需求指标。
用户用例如图1所示,通过PC 电脑浏览器或移动APP 均可传感器型号传感器描述DHT11温湿度传感器,有效测量范围:0~50℃;湿度有效测量范围:20%~90%RH 。
MQ-2烟雾传感器,可采集甲烷、丙烷、氢气、酒精和液化气等常见家用厨房可燃气体。
有效监测范围:100~20000ppm ;工作环境温度:-10℃~50℃;湿度65%±5%RH 。
BH1750FVI 光照传感器,其测量范围约为(1~65535lx),工作温度范围:-40℃~50℃。
HC-SR501人体红外活动探测传感器,工作温度:-15℃~70℃,有效范围15m 。
DSM501AP M 2.5探测传感器,工作温度范围:-20℃~80℃ 。
基于ZigBee技术的室内环境监测系统设计

基于 ZigBee技术的室内环境监测系统设计摘要:基于ZigBee技术的室内环境监测系统设计。
它有三大部分组成,所有的数据的传输都在ZigBee搭建的无线传感网络工作。
ZigBee模块A用来发送数据,ZigBee模块B用来接受数据,上位机用来显示数据。
温湿度传感器和stm32单片机用来采集数据发送给ZigBee模块A。
同时用IAR软件编写和编译ZigBee的程序,保证数据的传输。
应用于对信息传递的大小的要求很低,对功耗的需求也比较低的场合。
关键词:Zigbee技术;环境监测;无线传感器引言:随着科技的发展、社会的进步,当今对无线技术需求日益增长,从而孕育出了无线传感网络(Wireless Sensor Network,简称WSN)。
无线通信技术WiFi、蓝牙已经被人们熟知,由于他们的功耗大、组网麻烦等原因,很难应用在工业自动化中。
为了满足市场的需求,ZigBee就这样诞生了。
它有成本低、组网方便、安全性高等优点。
应用ZigBee技术可以制造一种低成本、低功耗的检测仪器。
1主要功能本设计以STM32单片机作为核心控制元件,ZigBee无线模块作为通信模块,以及DHT11温湿度传感器设计的一款无线传输的温湿度检测仪,其中温湿度传感器DHT11和stm32单片机用来采集数据发送给ZigBee模块A,然后在ZigBee组网内,ZigBee模块A用来发送数据,ZigBee模块B用来接收数据,最后上位机用来显示数据。
2工作原理本设计采用STM32单片机作为核心控制元件,使用两块ZigBee无线模块作为通讯模块,首先使接收电路正常供电,进入接收数据状态,等待数据的到来,接着单片机上的程序运行,将单片机上事先存放的数据由ZigBee模块A发射出去,如若发射模块和接收模块在可接受范围内,无线ZigBee B模块接收到信号,在上位机实时显示温湿度数据。
3硬件设计本设计的方案是把温湿度传感器采集的数据通过单片机stm32发送给ZigBee模块A,再运用ZigBee无线通讯协议把数据传输给ZigBee模块B,最后通过串口把数据在上位机上显示出来。
一种基于嵌入式技术的远程数据采集系统
3科技资讯科技资讯S I N &T NOLOGY I NFORM TI ON 2008NO .27SC I ENCE &TECH NO LOG Y I NFOR M A TI O N 信息技术数据采集,作为计算机和外部物理世界沟通的一个桥梁,是构造多数工业控制系统不可缺少的一部分。
而在一些人们无法长期操作的自然环境或者无需人工24小时监护、且重复性强、实时性要求严格的室内环境中,设计远程数据的采集系统是很有必要的,例如,在无人值守的变电站内,掌握室内温度、照明、工作状况、有无人(小动物)闯入等情况都需要由现场各类不同的数据采集卡或传感器来完成,再通过一定的传输方式将信息输送到监控中心。
远程数据采集系统通常由两部分构成,一部分是放置在现场用来采集数据的采集终端,一部分是用于远程控制及数据调度、存储的服务器。
在终端设计上,传统的数据采集系统采用以单片机为核心的设计模式,系统的精度和运算能力有限,人机交互界面不够直观、信息量小,并且数据传输距离,存储容量和实时分析能力都有限[1]。
而嵌入式技术的应用使之成为一种新型的数据采集方式,这种方式的优点是:终端设备集中管理,其网络模式、数据流管理更为合理,更具实时性等[2]。
在本文中我们设计了一种由嵌入式处理器S 3C44B0为核心的远程数据采集系统。
1系统的硬件设计方案1.1系统的基本原理嵌入式系统是是一种以嵌入式芯片为基础的计算机系统,其特点是以应用为中心,以计算机技术为基础,并且软硬件可裁剪,适用于应用系统对功能、可靠性、成本、体积、功耗有严格要求的场合[3]。
它一般由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户的应用程序等四个部分组成,用于实现对其他设备的控制、监视或管理等功能,其中嵌入式微处理器是整个系统的核心部件。
目前市场上的嵌入式微处理器的种类很多,比如说ARM 公司的ARM 系列、AP P L E ,I BM ,M OT OROL A 的Po we r P C 、SUN 公司的S PARC 等等,而A R M 微处理器就是这里出类拔萃的一种,目前已遍及工业控制、消费类电子产品、通信系统、网络系统、无线系统等各类产品市场,基于AR M 技术的微处理器应用约占据了32位RI SC 微处理器75%以上的市场份额。
基于嵌入式的智能家居监控系统设计
基于嵌入式的智能家居监控系统设计作者:董玉华孙炎辉马彪来源:《数字通信》2013年第03期摘要:提出一种以嵌入式为平台的远程监测与家居控制的设计方案。
选用ARM9作为系统控制中心的处理器,利用GSM/GPRS实现智能化家居控制系统的远程通信。
该平台从GSM/GPRS接收远程的命令,通过射频模块nRF905实现对控制终端的通信,从而实现远程监控居室环境和智能化管理居室设备的预想。
此系统具有低功耗、高性能和可二次开发等特性,在智能家居控制设计中具有广泛的应用前景。
关键词:智能家居;嵌入式;Linux内核;GSM/GPRS中国分类号:TP212文献标识码:A文章编号:10053824(2013)030091040引言随着电子科学技术的高速发展和社会经济条件的日益改善,人们在生活上对精神享受和物质享受的要求也越来越高,这其中包括了对家庭居室安全防护与智能化居室管理的意识也越来越强。
一个强大的居室控制系统随之悄悄地走进我们的生活。
系统设计要能够满足家庭居室安全防护、智能化居室管理、节能和方便等要求。
使用嵌入式系统设计的居室控制系统已成为现代生活的首选。
智能家居控制系统的理念:在电子计算机中选用嵌入式控制系统,综合居室布线设计和现代通信网络科技,融合符合人体特性的需求,将居室内各种家用电子设备和家居生活的各个子系统装置统一联系起来[1],最后组合为一个居室控制中央总系统。
例如,将居室中的安全监测控制子系统、居室光感应自动控制子系统、家电管理设备控制子系统、居室地热监测控制子系统和煤气监测控制子系统等通过无线射频与中央主控制系统通信实现监测与控制,同时还能通过远程GSM/GPRS无线通信网络监测和控制中央系统,从而实现远程监测居室环境,智能控制居室安全防护设施,以及智能化管理居室设备。
1基于嵌入式的智能家居系统构成根据智能家居的概念[2],基于嵌入式的智能家居控制系统包括三部分:远程监控终端、家居控制中心和家居控制子系统,功能结构如图1所示[3]。
基于嵌入式系统的温湿度自动监测与控制系统设计
基于嵌入式系统的温湿度自动监测与控制系统设计摘要随着科技的不断发展和智能家居的兴起,温湿度自动监测与控制系统逐渐成为人们生活中的一部分。
本文介绍了一种基于嵌入式系统的温湿度自动监测与控制系统的设计。
该系统由传感器模块、嵌入式主控模块和执行模块组成,能够实现对温度、湿度的实时监测以及对室内环境的自动调节。
同时,该系统还具有实时远程监控、数据存储和分析等功能。
通过实验验证,该系统具有较高的稳定性和实用性,能够有效提高人们的生活质量。
关键词:嵌入式系统;温湿度自动监测与控制;传感器;远程监控;数据存储与分析AbstractWith the continuous development of technology and the rise of smart homes, automatic temperature and humidity monitoring and control systems have gradually become a part of people's lives. This paper introduces a design of automatic temperature and humidity monitoring and control system based on embedded system. The system is composed of sensor module, embedded main control module and execution module, which can realize real-time monitoring of temperature and humidity, and automatic adjustment of indoor environment. At the same time, the system also has functions such as real-time remote monitoring, data storage and analysis. Through experiments, the system has high stability and practicality, which can effectively improve people's quality of life.Keywords: embedded system; automatic temperature and humidity monitoring and control; sensor; remote monitoring; data storage and analysis第一章绪论1.1 研究背景和意义近年来,随着科技的发展和社会的进步,人们对于生活质量的要求越来越高。
室内空气环境质量监测智能控制系统的设计与实现论文
室内空气环境质量监测智能控制系统的设计与实现论文室内空气环境质量一直是人们关注的问题,尤其是在现代城市密集的办公楼、学校、商场等场所。
优质的室内空气环境不仅能提高人们的生活质量和工作效率,还能保护人们的健康。
因此,设计与实现一套室内空气环境质量监测智能控制系统是十分重要的。
1.硬件设备的选择和布置:首先需要选择适用于室内环境监测的硬件设备,如传感器、空气净化器等。
传感器可以测量室内的温度、湿度、二氧化碳浓度以及PM2.5等参数,可以选择能够实时监测和记录这些参数的传感器。
布置传感器的位置也非常重要,需要根据室内的结构和布局进行合理设置,以保证监测数据的准确性。
2.数据采集与处理:将传感器采集到的数据进行处理和整理,可以使用微处理器、嵌入式系统或者单片机等设备进行数据的采集和处理。
采集的数据可以包括温度、湿度、二氧化碳浓度等参数的实时数据,也可以包括历史数据的记录。
处理后的数据可以在显示器上显示出来,也可以通过无线网络传输到其他设备进行进一步的分析和处理。
3.环境质量监测与分析:根据采集到的数据,可以对室内空气环境质量进行监测和分析。
例如,可以根据温度和湿度数据来判断室内空气的舒适度,根据二氧化碳浓度和PM2.5浓度来评估室内空气的污染程度。
监测和分析的结果可以显示在显示器上,也可以通过报警装置进行提示。
4.智能控制系统:根据环境质量监测结果,可以设计智能控制系统来调节室内空气环境。
例如,在空气质量较差时,可以自动启动空气净化器进行净化处理,或者调节空调系统来调节温度和湿度。
智能控制系统可以通过控制器控制各种设备的启停和调节,实现自动化控制。
室内空气环境质量监测智能控制系统的设计与实现需要综合考虑硬件设备的选择和布置、数据的采集与处理、环境质量监测与分析以及智能控制系统的设计和实现等多个方面。
通过合理的设计和实现,可以提升室内空气环境的质量,保障人们的健康与安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录 题目:基于嵌入式的室内环境信息采集控制演示系统设计 ....... 1 目录 ..................................................... 2 摘要 ..................................................... 3 关键词 ................................................... 3
前言 ..................................................... 3 系统分析及其设计 ......................................... 4 一、基本原理: ..................................... 4 二、系统方案设计 5 三、总体设计 ....................................... 7 四、系统测试 ...................................... 31
总结 .................................................... 31 参考文献 ................................................ 32 致谢 .................................................... 32 基于嵌入式的室内环境信息采集控制演示系统设计 摘要 智能家居已然成为一个热门话题,而室内环境监测是其中不可或缺的一个重要组成部分.加之嵌入式和无线传感技术已经较为成熟,因此,基于嵌入式系统的室内环境监测系统是可以实现的. 基于嵌入式的无线传感网络是多学科的高度交叉,知识的高度集成的前沿热点研究领域。它通过各类集成化的微型传感器协作地实时监测,感知和采集各种环境或监测对象的信息,这些信息通过无线方式被发送,并以自组多跳的网络方式传送到用户终端无线传感器网络的特性决定了其不需要较高的传输带宽,而要求较低的传输延时和极低的功率消耗。IEEES02.15.4/ZigBee技术是近年来通信领域中的研究热点,具有低成本、低功耗、低速率、低复杂度的特点和高可靠性、组网简单、灵活等优势,逐渐成为无线传感器网络事实上的国际标准。 此次课程设计并实现了用无线传感器网络构成的分布式温度湿度监控系统。 关键词:嵌入式、智能家居、ZIGBEE、串口通信 前言
家居环境是指家庭团聚、休息、学习和家务劳动的环境。家居环
境条件的好坏,直接影响着居民的发病率和死亡率。城市居民每天在室内工作、学习和生活的时间占全天时间的90%左右,因此,居室环境与人类健康和儿童生长发育的关系极为密切。 随着人们对健康的不断重视,加强对家居环境的环境状况的实时监测与治理,为人们提供一个安全、健康、舒适的生活环境,已经成为十分迫切的市场需求.嵌入式技术的发展,为环境环境检测提供了更进一步的保障。 基于嵌入式的环境信息采集系统包含感知层、传输层、应用层三个层面;传输层常见的有温湿度、烟感、一氧化碳、压力等嵌入式传感器模块,传输层包括有线通信和无线通信两部分,应用层包括各种终端。 在室内环境监测领域,以嵌入式技术为基础,结合ZigBee技术可以实现、准确、完整、可靠的反应环境信息,做到实时监控。
系统分析及其设计 一、基本原理: 温度传感器将被测点的温度采集后输出的模拟信号逐步送往放大电路、低通滤波器以及 A/D 转换器(即信号调理电路),然后再单片机的控制下将 A/D 转换器输出的数字信号传送到无线收发芯片中,并通过芯片的调制处理后由芯片内部的天线发送到上位机机监测软件上,在上位机模块上,发来的数据由单片机控制的无线收发芯片接收并解调,最后通过接口芯片发送到 PC 机中进行显示和处理。温度传感器被用在终端节点上,当上电后,温度传感器就是能够获取环境中某个地方温度的敏感元器件,它可以将环境中的温度或者是与温度相关的参量信息转换成电信号,我们可以根据这些电信号的强弱来识别被测点在环境中的温度数据。
• 系统方案设计 • 系统设计需求 湿度传感器和温度传感器采集到数据后,通过给RS232串口增加无线传输功能,替代设备电缆线进行无线传输, 无线温度采集系统改变了传统有线的数据采集系统搭建布线困难,监测区域受限等诸多不足。要求设计的短距离无线通信系统具有功耗少,性价比高,系统维护快捷方便,而且通过在传感器模块上添加 FLASH 存储设备,使得数据采集工作能够摆脱对监测过程网络辐射范围的限制,可应用到许多的场合更好的改善采集工作的便捷行。通过与其他通信技术(如 GSM/GPRS)的无缝接合,能够实现采集数据的远程传输,满足对数据采集区域的远程监控串口传输设计为双向全双工,无硬件流控制,强制允许OTA(多条)时间和丢包重传。 2、系统方案设计 方案一: 使用目前已经非常成熟且广泛应用的蓝牙技术,能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。利用“蓝牙”技术,能够有效地简化移动通信终端设备之间的通信,也能够成功地简化设备与因特网Internet之间的通信,从而数据传输变得更加迅速高效,为无线通信拓宽道路。蓝牙采用分散式网络结构以及快跳频和短包技术,支持点对点及点对多点通信,工作在全球通用的2.4GHz ISM(即工业、科学、医学)频段。其数据速率为1Mbps。采用时分双工传输方案实现全双工传输。方便快捷且不会遇到未知的技术难题. 方案二: 选择TI公司的2.4GHz片上系统解决方案CC2530,CC2530是用于IEEES02.15.4、Zigbee和RF4CE应用的一个片上系统解决方案,它能以较低的总成本建立强大的网络节点。CC2530结合了先进的RF收发器性能,业界标准的增强型8051内核,使操作更容易,具备不同的运行模式,尤其适用于低功耗的系统需求。
3、系统方案选择 通过对比以上两种方案开发的难易程度、开发周期和现有的实验环境我们选择方案二。 无线温度采集系统改变了传统有线的数据采集系统搭建布线困难,监测区域受限等诸多不足。ZigBee这种新兴的短距离无线通信系统具有功耗少,性价比高,系统维护快捷方便,而且通过在传感器模块上添加 FLASH 存储设备,使得数据采集工作能够摆脱对监测过程网络辐射范围的限制,可应用到许多的场合更好的改善采集工作的便捷行。通过与其他通信技术(如 GSM/GPRS)的无缝接合,能够实现采集数据的远程传输,满足对数据采集区域的远程监控。 一般以 ZigBee 技术为核心的无线温度采集系统的工作过程为:协调器节点首先应搭建网络,等待各自终端采集节点的入网请求;终端节点经过验证加入网络后,把温度传感器采集到的数据通过无线网络上传传输给协调器节点;协调器节点接收到数据包后,进行数据包解析,并通过串口将温度信息以及子节点地址等有效信息存储并显示在监控界面上。
三、总体设计 无线传感器温度测量系统主要由单个 ZigBee 协调器、单部 PC 机和放置在各处的温度采集节点—ZigBee 终端设备组成。ZigBee 协调器与各个终端节点形成了一个 ZigBee 星型网络。整个无线温度采集系统的拓扑结构图如图 1所示。各处的温度采集节点—ZigBee 终端设备组成。CC2530芯片的有效通信半径为 100m 时,终端节点可以安置在以协调器为中心100m 半径范围内。终端数据采集节点的结构较为简化,仅由一个 CC2530 模块,Flash 存储,2 节 1.5V 电池和温度传感器组成,各个终端节点被初始化为无信标网络中的终端设备。终端设备上电复位后,便启动搜索指定信道上的ZigBee协调器,并发送连接请求,终端设备在成功入网后,将被赋予一个 16 位短地址,在以后网络中的通信都以这个 16 位的短地址作为节点的标识;启动休眠定时器,间隔10 秒钟唤醒一次,醒来后使用一种简单的非时隙 CSMA- CA,通过竞争机制取得信道使用权,自己向协调器节点发送请求数据。利用模块上的温度传感器模块检测环境温度,并上传给协调器节点,然后立即再次进入休眠状态,最大限度地减少能耗,延长终端节点电源续航时间,同时也可以延伸采集范围,即利用 ZigBe网络的自组织性我们可以携带轻巧的终端数据采集节点到实际测量区域完成数据采集工作,如果超出了无线网络可以支持的传输范围,那可以将数据暂时存储在 Flash 存储器中。网络中的协调器节点负责搜集各温度采集节点的信息,并将信息快速的通过 RS232 串口按事先定义好的格式上传 PC 机,随即解析并显示出来。 1、总体设计框图如下: 图1 无线温湿度采集系统框图 2、硬件设计实物图如下:
2.1CC2530邮票孔节点模块 2.2无线节点模块
2.3温湿度采集模块 3、温湿度监测芯片说明
3.1 SHT10说明 SHT10是一款高度集成的温度湿度传感器芯片,提供全标定的数字输出。它采用专利的COMSens技术,确保了传感器具有极高的可靠性与卓越的长期稳定性。传感器包括包括一个电容性聚合体测湿敏感元件、一个能隙材料制成的测温元件,并在同一芯片上,与14位的A/D转换器以及串行接口电路进行连接。 SH10引脚特性如下: