钢的热处理温度Ac1、Ac3、Ar1具体温度

合集下载

45号钢热处理

45号钢热处理

45号钢要求硬度HRC40-50,是不是要淬火+低温回火?换算成布氏硬度大约是380~470HB,根据一般热处理规范,热处理制度与硬度关系大致如下:淬火温度:840℃水淬回火温度:150℃回火,硬度约为57HRC;200℃回火,硬度约为55HRC;250℃回火,硬度约为53HRC;300℃回火,硬度约为48HRC;350℃回火,硬度约为45HRC;400℃回火,硬度约为43HRC;500 ℃回火,硬度约为33HRC;600℃回火,硬度约为20HRC一般情况下热处理工艺都指标准范围内中间成分,且热处理温度都存在一个调整范围,如成分在范围内存在偏差,可以相应调整淬火温度和回火温度21.临界温度指钢材的奥氏体转变温度。

不同含量的钢材有着不同的临界点,但临界点有着一个范围内的浮动,所以下临界点温度指的就是奥氏体转变的最低温度。

2. 常用碳钢的临界点钢号临界点(℃)20钢735-855 (℃)45钢724-780 (℃)T8钢730 -770(℃)T12钢730-820 (℃)3 20Cr,40Cr,35CrMo,40CrMo,42CrMo:正火温度850-900℃,45号钢正火温度850℃左右。

4 20CrMnTi Ac1 Ac3 Ar1 Ar3740 825 680 7305Cr12MoV热处理知识Cr12MoV钢是高碳高铬莱氏体钢,常用于冷作模具,含碳量比Cr12钢低。

该钢具有高的淬透性,截面300mm以下可以完全淬透,淬火时体积变化也比Cr12钢要小。

其热处理制度为:钢棒与锻件960℃空冷+ 700~720℃回火,空冷。

最终热处理工艺:1、淬火:第一次预热:300~500℃,第二次预热840~860℃;淬火温度:1020~1050℃;冷却介质:油,介质温度:20~60℃,冷却至油温;随后,空冷,HRC=60~63。

2、回火:经过以下淬火工艺,可以达到降低硬度的作用,具体回火工艺如下:加热温度400~425℃,得到HRC=57~59。

机械工程材料-3章 钢的热处理

机械工程材料-3章 钢的热处理

珠光体型转变,在A1~550℃等温; 贝氏体型转变,在550℃~Ms等温; 马氏体型转变,冷却至MS以下。
共析钢等温冷却转变曲线
随着过冷度的增大,奥氏体转 变温度降低,生成的珠光体片层间 距变小。依据片层间距的大小,将 其分别称为珠光体、索氏体、屈氏 体。珠光体片越细,HB↑,Rm↑。
珠光体 符 号:P 等温温度: A1 ~ 650℃ 层片间距:>0.4μm
①钢加热温度由冷却前希望得到的组 织决定。如果希望得到单相奥氏体组织, 需要在Ac3和Accm以上温度加热,过共析钢 如果不希望二次渗碳体全部溶解到奥氏体 中,需要在Ac1和Accm之间温度加热。 ②加热温度越高,保温时间越长,奥 氏体成分均匀,但晶粒越粗大。 ③加热速度越快,相变的过热度增大, 奥氏体实际形成温度越高,生成的奥氏体 晶粒度愈小。 ④生成的奥氏体晶粒大小也与钢的化 学成分和原始组织有关,有的钢晶粒长大 倾向小。
表 面 热处理 化学热处理
渗碳 渗氮 碳氮共渗 渗金属等
3.1 钢的热处理原理
3.1.1 钢在加热时的组织转变
1 钢的组织转变温度
对不同成分和组织的钢,在 进行加热或冷却时,如果加热或 冷却速度非常缓慢,钢的组织变 化规律和铁碳相图一致。
经过PSK线(A1)时,发生 A P 转变 经过GS线(A3)时,发生 A F 转变 经过ES线(Acm)时,发生 A A+Fe3CⅡ
则A1、A3、Acm被称为碳钢固 态平衡组织转变临界温度。
铁碳相图
由于实际加热或冷却不可能非常 缓慢,加热时相变需要具有一定的过 热度,冷却时相变需要具有一定的过 冷度,组织转变才能进行。 习惯上,将碳钢加热时的相变温 度分别标记为Ac1、Ac3、Accm,其冷却 时的相变温度分别标记为Ar1、Ar3、 Arcm。 例如:对亚共析钢,当加热到 Ac1时发生P→A,加热到Ac3时才全部 转变为A;对共析钢当加热到Ac1时发 生P→A;对过共析钢加热到Ac1时发 生P→A,加热到Accm以上时渗碳体才 全部转变为A。

10钢的热处理 C曲线

10钢的热处理 C曲线

一、过冷奥氏体的等温转变 1.共析钢过冷奥氏体的等温转变 等温转变曲线(TTT曲线、C曲线)来分析。
T --- time T --- temperature T --- transformation
共析碳钢 TTT 曲线建立过程示意图
温度 (℃) 800 700 600 A1
500
400 300 200 100 0 -100 0 1 10 102 103 104 时间(s)
为什么热处理后材料性能会改变? 热处理后材料内部的微观结构(组织) 发生变化,使材料性能改变。 问题1:
加热、冷却时材料内部的微观结构如 何变化(热处理原理)?
问题2: 热处理工艺有哪些?工程实际中有何 应用?
热处理工艺曲线
钢加热奥氏体化后,冷却的方式有两种: (1) 等温处理 将钢迅速冷却到临界点以下 的给定温度,进行保温,恒温转变。 (2) 连续冷却 钢以某种速度 从高温到低温连续 冷却,在临界点以 下变温转变。
2.4.2 钢在冷却时的转变 当温度在A1以上时, 奥氏体是稳定的。
当温度降到A1以下后,奥氏体即处于过 冷状态,这种奥氏体称为过冷奥氏体。 过冷A是不稳定的,会转变为其它的组 织。钢在冷却时的转变,实质上是过冷A的 转变。
钢在热处理时的冷却方式
温 度 热 加 保温 临界温度
连续冷却
等温冷却
时间
2.4.1 钢在加热时的转变
一、奥氏体的形成
1.钢在加热时的临界温度 大多数热处理工艺将钢加热到临界温度以上, 获得全部或部分奥氏体组织,进行奥氏体化。
实际热处理,加热时相 变温度偏高,冷却时偏低。 加热和冷却速度愈大偏差愈 大。 加热时为Ac1、Ac3、Accm 冷却时为Ar1、Ar3、Arcm

钢的热处理及组织转变

钢的热处理及组织转变

二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
一、钢的热处理
钢的退火:
⑴ 退火的定义 将钢加热到一定温度,保温一定时间,然后缓慢冷却下 来,获得接近平衡状态的组织的热处理工艺,称为退火。 ⑵ 退火的目的
① 降低硬度,提高塑性和韧性;
② 消除残余内应力,减轻变形和防止开裂; ③ 均匀成分,细化晶粒,为最终热处理作准备; ④ 改善或消除铸造、轧制、焊接等加工中的组织缺陷。
降低钢的硬度和耐磨性。
温度过低,在淬火组织中出现铁素体,使淬火组织出现软 点,降低钢的强度和硬度。
一、钢的热处理
钢的淬火:
理想的淬火冷却曲线 应该是:在650~550 0 C范围要快冷,其它 温度区间不需快冷, 尤其在Ms点以下更不 需快冷,以免引起工 作变形或开裂。
一、钢的热处理
钢的淬火:
保持适当时间,缓慢冷却,重新形成均匀的晶粒,以消除
形变强化效应和残余应力的退火工艺。
目的:
温度 再结晶温度
消除加工硬化
提高塑性
改善切削加工性能
时间
一、钢的热处理
钢的正火:
⑴ 定义:将钢加热到 AC3 或 Accm 以上 30~50℃,保温一定
时间,出炉后在空气中冷却的热处理工艺,称为钢的正火。
上贝氏体 (羽毛状)
500
下贝氏体 (针叶状)
二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
性能上看上贝氏体的脆性较大,无实用价值;而下贝 氏体则是韧性较好的组织,是热处理时(如采用等温淬火) 常要求获得的组织。
原因:上贝氏体中的碳 化物呈较粗的片状,分
布在铁素体板条间,且
不均匀,使板条容易发 生脆废;
获得的球化效果较好,在大件和大批量生产中难以实现,

钢的五种热处理工艺

钢的五种热处理工艺

钢的五种热处理工艺热处理工艺——表面淬火、退火、正火、回火、调质工艺:1、把金属材料加热到相变温度(700度)以下,保温一段时间后再在空气中冷却叫回火。

2、把金属材料加热到相变温度(800度)以上,保温一段时间后再在炉中缓慢冷却叫退火。

3、把金属材料加热到相变温度(800度)以上,保温一段时间后再在特定介质中(水或油)快速冷却叫淬火.◆表面淬火•钢的表面淬火有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。

在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。

由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。

根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。

感应表面淬火后的性能:1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3单位(HRC)。

2。

耐磨性:高频淬火后的工件耐磨性比普通淬火要高.这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果.3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。

对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。

一般硬化层深δ=(10~20)%D。

较为合适,其中D。

为工件的有效直径.◆退火工艺退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。

退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。

总之退火组织是接近平衡状态的组织。

•退火的目的①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。

②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备.③消除钢中的内应力,以防止变形和开裂。

铸钢件常见热处理工艺

铸钢件常见热处理工艺

按加热和冷却条件不同,铸钢件的主要热处理方式有:退火、正火、均匀化处理、淬火、回火、固溶处理、沉淀硬化、消除应力处理及除氢处理。

1.退火:退火是将铸钢件加热到Ac3以上20~30℃,保温一定时间,冷却的热处理工艺。

退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。

碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。

适用于所有牌号的铸钢件。

2.正火:正火是将铸钢件加热到Ac3温度以上30~50℃保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。

正火的目的是细化钢的组织,使其具有所需的力学性能,也是作为以后热处理的预备处理。

正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。

经正火的铸钢强度稍高于退火铸钢,其珠光体组织较细。

一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。

正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火;可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组织,从而减少铸件在淬火时产生的缺陷。

3.淬火:淬火是将铸钢件加热到奥氏体化后(Ac。

或Ac•以上),保持一定时间后以适当方式冷却,获得马氏体或贝氏体组织的热处理工艺。

常见的有水冷淬火、油冷淬火和空冷淬火等。

铸钢件淬火后应及时进行回火处理,以消除淬火应力及获得所需综合力学性能铸钢件淬火工艺的主要参数:(1)淬火温度:淬火温度取决于铸钢的化学成分和相应的临界温度点。

原则上,亚共析铸钢淬火温度为Ac。

以上20~30℃,常称之为完全淬火。

共析及过共析铸钢在Ac。

以上30~50℃淬火,即所谓亚临界淬火或两相区淬火。

这种淬火也可用于亚共析钢,所获得的组织较一般淬火的细,适用于低合金铸钢件韧化处理。

(2)淬火介质:淬火的目的是得到完全的马氏体组织。

为此,铸件淬火时的冷却速率必须大于铸钢的临界冷却速率。

H13大型模具热处理

H13特大型模具的热处理洛阳恒焱热处理有限公司蒋世伟邮编471022摘要近年来随着工业的发展,锻件重量越来越大,质量要求也越来越高,与之配套热压模具越来越大,所承受的压力达四万吨或更高。

本文通过对H13热处理工艺参数与机械性能的关系的试验研究,确定了合理的热处理工艺。

成功研制了材料H13,硬度要求HRC40-45,外形尺寸4200*2200*550mm,压机为四万吨油压机,成型材料是耐高温合金压机模具。

在生产应用中,取得了良好的效果。

关键词特大型模具H13 热处理一.H13的主要化学成分及临界点H13的主要化学成分元素 C Si Mn Cr Mo V标准值0.32-0.45 0.80-1.20 0.20-0.50 4.75-5.50 1.10-1.75 0.80-1.20 实际值0.39 0.99 0.29 5.16 1.23 0.87H13钢等温转变曲线和连续冷却转变曲线。

H13钢的临界点Ac1 850℃Ac3 910℃Ar1 700℃Ar3 820℃Ms 335℃二.工艺试验及结果1. 淬火温度对H13的影响1).H13不同淬火温度对硬度影响2).H13不同淬火温度对机械性能的影响在1000-1100℃范围内随淬火温度的升高,H13的抗拉强度。

屈服强度呈上升趋势,延伸率呈波浪式;洛氏硬度随淬火温度的升高而升高,这是随着淬火温度的升高,加速碳化物的溶解,使淬火后的马氏体中碳和合金元素增加,从而提高了淬火后的强度和硬度。

3).H13不同淬火温度对晶粒度影响H13的晶粒度在1000-1060℃范围内加热淬火,晶粒度几乎没有变化,一旦超过1080℃后便开始长大。

对钢的塑性和韧性都有很大影响。

所以合理的淬火温度为1040℃1040℃淬火组织1080℃淬火组织腐蚀剂:苦味酸水溶液放大倍数500×2.回火温度对H13的影响1).H13在1040℃下淬火,回火温度对硬度影响回火在1040℃淬火后,随回火温度的升高,硬度开始下降,但下降到一定程度后硬度又开始上升,约在520℃左右回火时,硬度达到最高值,之后随回火温度的升高,硬度又开始下降。

热处理资料

热处理中的Acl和Ac3表示什么?钢的退火正火淬火回火的含义是什么?每种金属的都不同,我们通常指的是铁。

根据Fe-Fe3C相图,碳钢在缓慢加热或冷却过程中,在PSK线、GS线和ES线上都要发生组织转变,通常把PSK线称为A1线,GS线称为A3线,ES称为Acm线,而该线上的相变点,相应地用A1点、A3点及Acm点来表示。

A1、A3和Acm都是平衡状态下的相变点.在实际生产中,钢的加热和冷却速度都比较快,故其相变点在加热时要高于平衡相变点,冷却时要低于平衡相变点,且加热和冷却速度越大,其相变点偏离平衡相变点也越多。

通常将实际加热时的各相变点温度用Ac1、Ac3和Accm表示,冷却时的各相变点温度用Ar1、Ar3和Arcm表示。

注意,实际的相变临界温度不是固定的,一般手册中给出的数据仅供参考。

退火:把钢加热到临界点Ac1以上或以下的一定温度,保温一段时间,随后在炉中或埋入炉中或导热性较差的介质中,使其缓慢冷却以获得接近平衡状态的稳定的组织。

正火:将钢加热到Ac3或Accm以上30—50℃,适当保温后,从炉中取出在静止的空气中冷却至室温。

回火:将淬火后的钢加热到Ac1线以下的某一温度,在该温度下保温一定时间(2—4小时),然后取出在空气或油中冷却。

淬火:将钢加热到Ac3或Ac1线以上30—50℃,保温一定时间后,在水或油中快速冷却,以获得马氏体组织。

◆表面淬火? 钢的表面淬火有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。

在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。

由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。

根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等.? 感应加热表面淬火感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。

钢的热处理要点

1.3钢的热处理钢的热处理是指将钢在固态下进行加热、保温和冷却,以改变其内部组织,从而获得所需要性能的一种工艺方法。

热处理的目的是提高工件的使用性能和寿命。

还可以作为消除毛坯〔如铸件、锻件等〕中缺陷,改善其工艺性能,为后续工序作组织准备。

钢的热处理种类很多,根据加热和冷却方法不同,大致分类如下:钢在加热时的组织转变在Fe-Fe3C相图中,共析钢加热超过PSK线〔A1〕时,其组织完全转变为奥氏体。

亚共析钢和过共析钢必须加热到GS线〔A3〕和ES线〔Acm〕以上才能全部转变为奥氏体。

相图中的平衡临界点A1、A3、Acm是碳钢在极缓慢地加热或冷却情况下测定的。

但在实际生产中,加热和冷却并不是极其缓慢的。

加热转变在平衡临界点以上进行,冷却转变在平衡临界点以下进行。

加热和冷却速度越大,其偏离平衡临界点也越大。

为了区别于平衡临界点,通常将实际加热时各临界点标为Ac1、Ac3、Accm;实际冷却时各临界点标为Ar1、Ar3、Arcm,任何成分的碳钢加热到相变点Ac1以上都会发生珠光体向奥氏体转变,通常把这种转变过程称为奥氏体化。

1.奥氏体的形成共析钢加热到Ac1以上由珠光体全部转变为奥氏体第一阶段是奥氏体的形核与长大,第二阶段是剩余渗碳体的溶解,第三阶段是奥氏体成分均匀化。

亚共析钢和过共析钢的奥氏体形成过程与共析钢根本相同,不同处在于亚共析钢、过共析钢在Ac1稍上温度时,还分别有铁素体、二次渗碳体未变化。

所以,它们的完全奥氏体化温度应分别为Ac3、Accm以上。

2.奥氏体晶粒的长大及影响因素钢在加热时,奥氏体的晶粒大小直接影响到热处理后钢的性能。

加热时奥氏体晶粒细小,冷却后组织也细小;反之,组织那么粗大。

钢材晶粒细化,既能有效地提高强度,又能明显提高塑性和韧性,这是其它强化方法所不及的。

〔1〕奥氏体晶粒度晶粒度是表示晶粒大小的一种量度。

(2〕、影响奥氏体晶粒度的因素1〕加热温度和保温时间:加热温度高、保温时间长,A晶粒粗大。

实验一 钢连续冷却转变图 (CCT曲线) 的测定

材料加工测定实验一钢连续冷却转变图(CCT曲线)的测定一.实验目的1.了解钢的连续冷却转变图的概念及其应用;2.了解钢的连续冷却转变图的测量方法特别是热膨胀法的原理与步骤;3.利用热模拟仪观察钢在加热及冷却中的相变并测量临界点;4.建立钢的连续冷却转变图(CCT曲线)。

二.实验原理当材料在加热或冷却过程中发生相变时,若高温组织及其转变产物具有不同的比容和膨胀系数,则由于相变引起的体积效应叠加在膨胀曲线上,破坏了膨胀量与温度间的线性关系,从而可以根据热膨胀曲线上所显示的变化点来确定相变温度。

这种根据试样长度的变化研究材料内部组织的变化规律的称为热膨胀法(膨胀分析)。

长期以来,热膨胀法已成为材料研究中常用的方法之一。

通过膨胀曲线分析,可以测定相变温度和相变动力学曲线。

钢的密度与热处理所得到的显微组织有关。

钢中膨胀系数由大到小的顺序为:奥氏体〉铁素体〉珠光体〉上、下贝氏体〉马氏体;比容则相反,其顺序是:马氏体〉铁素体〉珠光体〉奥氏体〉碳化物(但铬和钒的碳化物比容大于奥氏体。

从钢的热膨胀特性可知,当碳钢加热或冷却过程中发生一级相变时,钢的体积将发生突变。

过冷奥氏体转变为铁素体、珠光体或马氏体时,钢的体积将膨胀;反之,钢的体积将收缩。

冷却速度不同,相变温度不同。

图1-1为40CrMoA钢冷却时的膨胀曲线。

不同的钢有不同的热膨胀曲线。

图1-1 40CrMoA钢冷却时的膨胀曲线连续钢连续冷却转变(Continuous Cooling Transformation)曲线图,简称CCT 曲线,系统地表示冷却速度对钢的相变开始点、相变进行速度和组织的影响情况。

钢的一般热处理、形变热处理、热轧以及焊接等生产工艺,均是在连续冷却的状态下发生相变的。

因此CCT曲线与实际生产条件相当近似,所以它是制定工艺时的有用参考资料。

根据连续冷却转变曲线,可以选择最适当的工艺规范,从而得到恰好的组织,达到提高强度和塑性以及防止焊接裂纹的产生等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢的热处理温度Ac1、Ac3、Ar1具体温度钢的热处理温度A1、A3与Ac1、Ac3、Ar1 Acm
铁碳合金,可以查阅Fe-C相图。

(铁碳相图有几条温度线---727度,1148
度,1495度)如果是合金钢,只能根据具体牌号查阅有关资料。

1. A1:在平衡状态下,奥氏体、铁素体、渗碳体或碳化物共存的温度,用A1
表示。

2. A3亚共析钢在平衡状态下,奥氏体和铁素体共存的最高温度。

用A3表示。

3.Ac1:钢加热时~开始形成奥氏体的温度,
4.Ac3:亚共析钢加热时~所有铁素体均转变为奥氏体的温度;
5.Ar1:钢高温奥氏体化后冷却时~奥氏体分解为铁素体和珠光体的温度,
6.Acm:过共析钢在平衡状态下~奥氏体和渗碳体或碳化物共存的最高温度~即过共析钢的上临界点。

即一般所说的下转变温度是A1或Ac1,上转变温度是A3或Ac3或Acm。

不同化学成分,有不同的临界点
这些都是一个温度范围,根据冷却速度的不同范围可能不一样,如果缓慢加热冷却的话会接近理论值。

但是理论值也根据不同的材料,C含量不同这温度都不一样。

合金含量的不同,Ac1、Ac3、Ar1......等的温度是不同,在铁碳相图你可以根据C含量找到一个大致的温度,但这个温度只能作为参考,具体的温度要经过试验才能确定下来。

可以采用膨胀法测定或者根据经验公式计算,当然经验公式可能有偏差。

不同钢材受其成分影响,临界温度不同。

根据铁碳相图查找,不同种类的钢有不同的合金元素含量,也就有不同的奥氏体转变温度,大体上说是钢在加热或冷却时奥氏体转变的温度,各种钢各自的具体温度不一样。

Q245R钢:Ac1是735、Ac3是855、Ar1是680、Ar3是855.
Q345R钢:Ac1是735、Ac3是863、Ar1是685、Ar3是840.
45钢为: Ac1是740、Ac3是850、Ar1是735、Ar3是785.
在完整的Fe-C和Fe-Fe3C的合金相图中,有三套曲线,以平衡状态下的相图为基点,相同材料在加热和冷却两个不同的过程中,相同相变点发生的温度是不同的,有一个滞后的作用,这是由于相变的过程都需要足够的驱动力。

(比如,钢液
冷却时,发生相变需要过冷度;)因此,实际产生相变的温度都不在平衡点,所以才有了Ac1、Ac3、Ar1等之说.
(热处理手册第四册)
几种常见热处理概念
1( 正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。

2( 退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺
3( 固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺
4( 时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。

5( 固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型
6( 时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度
7( 淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺
8( 回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺 9( 钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程。

习惯上碳氮共渗又称为氰化,目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较为广泛。

中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度。

低温气体碳氮
共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。

10( 调质处理quenching and tempering:一般习惯将淬火加高温回火相结合的热处理称为调质处理。

调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。

调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织为优。

它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。

11. 稳定化处理含Ti,Nb等稳定化元素的奥氏体不锈钢,为了提高其晶间腐蚀性能.(其原理在于将晶间碳化物充分的固溶,以减少贫Cr区的存在),一般温度为850-950?保温2小时后水淬即可\焊接标准\GBT 16923-2008 钢件的正火与退火.pdf。

相关文档
最新文档