八年级(下)数学竞赛训练题(一)及答案
2018年八年级(下)数学竞赛试题(含答案)

2018年八年级(下)数学竞赛试题时间:100分钟 满分:150分 命题人:陈建卫 一、选择题(每小题4分,共40分) 1、北京等5个城市的国际标准时间可在数轴上表示(如右图): 如果将两地国际标准时间的差简称为时差,那么----------------------------------------------( B ) A .汉城与纽约的时差为13小时 B .汉城与多伦多的时差为13小时 C .北京与纽约的时差为14小时 D .北京与多伦多的时差为14小时2、如图1,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围,在数轴上 可表示为3、学校篮球场的长是28米,宽是---------------------------------------------------------------------( B )A .5米B .15米 C.28米 D .34米4、小明家装修房屋,用同样的正多边形瓷砖铺地,顶点连着顶点,为铺满地面而不重叠,瓷砖的形状可能有------------------------------------------------------------------------------------------( A ) A .正三角形、正方形、正六边形 B .正三角形、正方形、正五边形C .正方形、正五边形D .正三角形、正方形、正五边形、正六边形5、将一正方形纸片按图2中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是下面图案中的---------------------------------------( B )A.B .C .D .6、小丽制作了一个对面图案均相同的正方体礼品盒(如图3所示),则这个正方体礼品盒的平面 展开图可能是------------------------------------------------------------------------------------------( A )A .B .C .D .7、法国的“小九九”从“一一得一” 到 “五五二十五”和我国的“小九九”是 一样的,后面的就改用手势了。
2020-2021学年浙江省八年级下学期数学竞赛卷1(解析版)

2020-2021学年浙江省八年级下学期数学竞赛卷1 一.选择题(共8小题)1.设a=﹣2,则代数式a3+4a2﹣a+6的值为()A.6B.4C.2+2D.2﹣2【解答】解:∵a=﹣2,∴(a+2)2=()2,即a2+4a=1,∴a3+4a2﹣a+6=a(a2+4a)﹣a+6=a×1﹣a+6=6.故选:A.2.关于x的方程x2﹣bx+4=0有两个相等的正实数根,则b的值为()A.4B.﹣4C.﹣4或4D.0【解答】解:∵关于x的方程x2+bx+4=0有两个相等的正实数根,∴△=b2﹣4×1×4=b2﹣16=0,解得:b=4.故选:A.3.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.450°C.540°D.720°【解答】解:如图,在四边形ACEH中,∠A+∠C+∠E+∠1=360°,在四边形BDFP中,∠B+∠D+∠F+∠2=360°,∵180°﹣∠1+180°﹣∠2+∠G=180°,∴∠A+∠C+∠E+∠1+∠B+∠D+∠F+∠2+180°﹣∠1+180°﹣∠2+∠G=360°+360°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=360°+180°=540°.故选:C.4.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4,那么BC的长等于()A.3B.5C.2D.【解答】解:如图,作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,3).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴AB=BE,∠ABE=90°,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,∴∠BAC=∠EBQ,在△ABC和△BEQ中,∴△ACB≌△BQE(AAS),∴AC=BQ=3,BC=EQ,设BC=EQ=x,∴O为AE中点,∴OM为梯形ACQE的中位线,∴OM=,又∵CM=CQ=,∴O点坐标为(,),根据题意得:OC=4=,解得x=5,则BC=5.故选:B.5.如图正方形ABCD的顶点A在第二象限y=图象上,点B、点C分别在x轴、y轴负半轴上,点D在第一象限直线y=x的图象上,若S阴影=,则k的值为()A.﹣1B.C.D.﹣2【解答】解:如图,过点A作AG⊥x轴,过点D作DE⊥x轴,作DF⊥AG交y轴于H,∴四边形DHOE是矩形∵∠ADC=∠HDE=90°∴∠ADC﹣∠FDC=∠HDE﹣∠FDC∴∠ADF=∠CDE,∵点D在第一象限直线y=x的图象上,∴DH=DE,且∠ADF=∠CDE,∠DHM=∠DEN∴△DHM≌△DEN(ASA)∴S△DHM=S△DNE,∴=S四边形DHOE=DH×DE∴DH=DE=同理可证:△AFD≌△BGA≌△COB≌△DHC∴AF=HD=BG=OC,AG=DF=BO=HC∴OC=HD==AF=BG∴CH=∴AG==BO∴GO=∴点A坐标(﹣,)∴k=﹣×=﹣故选:B.6.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°【解答】解:过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°﹣108°=72°.故选:D.7.若m是关于x的方程x2﹣2020x+1=0的根,则(m2﹣2020m+4)•(m2﹣2020m﹣5)的值为()A.18B.﹣18C.20D.﹣20【解答】解:∵m是关于x的方程x2﹣2020x+1=0的根,∴m2﹣2020m+1=0,∴m2﹣2020m=﹣1,∴(m2﹣2020m+4)•(m2﹣2020m﹣5)=(﹣1+4)×(1﹣5)=﹣18.故选:B.8.如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y=(k >0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S△OCE=8,则OC的长为()A.8B.4C.D.【解答】解:过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图:∵四边形OABC为平行四边形,∴OC=AB,OC∥AB,∴∠EAF=∠AOC=60°,在Rt△COD中,∵∠DOC=60°,∴∠DOC=30°,设OD=t,则CD=t,OC=AB=2t,在Rt△EAF中,∵∠EAF=60°,AE=AB=t,∴AF=,EF=AF=t,∵点C与点E都在反比例函数y=的图象上,∴OD×CD=OF×EF,∴OF==2t,∴OA=2t﹣=t,∴S四边形OABC=2S△OCE,∴t×t=2×8,∴解得:t=(舍负),∴OC=.故选:D.二.填空题(共6小题)9.已知关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,则k 的取值范围﹣3≤k<4且k≠.【解答】解:∵关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,∴,解得:﹣3≤k<4且k≠.故答案为:﹣3≤k<4且k≠.10.若<0,化简﹣﹣3的结果为﹣2x.【解答】解:由题意得,或,解得,﹣2<x<,则原式=|5﹣3x|﹣|x﹣2|﹣3=5﹣3x﹣2+x﹣3=﹣2x,故答案为:﹣2x.11.如图,双曲线y=(x>0)的图象上.△OA1B1,△A1A2B2,…,△A n﹣1A n B n均为正三角形,过B1作B1C⊥x轴于C,过B2作B2D⊥x轴于D,则点A n的坐标为(,0).【解答】解:∵点B1,B2在双曲线y=(x>0)的图象上,∴OC•B1C=3,∵△OA1B1,△A1A2B2,…,△A n﹣1A n B n均为正三角形,∴B1C=OC,∴OC=,∴OA1=2,∴;连接OB2,则OD•B2D=3,∵OD=OA1+A1D=2+,,∴∴,∴,同理可得,,…由上可知,.故答案为:(,0).12.P是正方形ABCD内一点,AB=5,P A=,PC=5,则PB=或2.【解答】解:如图所示,∴PB==或PB==2,故答案为:或2.13.已知x1,x2,x3,x4,x5为正整数,任取四个数求和,只能得到44,45,46,47这样四个结果,则这5个数的众数是11.【解答】解:根据题意,设这个重复的和为z,可得:(x1+x2+x3+x4+x5)×4=44+45+46+47+z,可得:z=46,可得五个数据之和为57,所以五个数据为:10,11,12,13,11,故答案为:1114.如图,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC是等腰三角形,则k的值是或.【解答】解:∵点B是y=kx和y=的交点,y=kx=,∴点B坐标为(,2),同理可求出点A的坐标为(,),∵BD⊥x轴,∴点C横坐标为,纵坐标为,∴BA=,AC=,BC=,∴BA2﹣AC2=k>0,∴BA≠AC,若△ABC是等腰三角形,①当AB=BC时,则=,解得:k=±(舍去负值);②当AC=BC时,同理可得:k=;故答案为:或.三.解答题(共4小题)15.已知x﹣y=6,,求的值.【解答】解:∵x﹣y=6,∴,∴,∵+=•+•=(+)=9,∴,即,∴=(﹣)=×=4.16.已知实数a,b,c满足:a+b+c=2,abc=4.(1)求a,b,c中的最大者的最小值;(2)求|a|+|b|+|c|的最小值.【解答】解:(1)不妨设a是a,b,c中的最大者,即a≥b,a≥c,由题设知a>0,且b+c=2﹣a,.于是b,c是一元二次方程的两实根,≥0,a3﹣4a2+4a﹣16≥0,(a2+4)(a﹣4)≥0.所以a≥4.又当a=4,b=c=﹣1时,满足题意.故a,b,c中最大者的最小值为4.(2)因为abc>0,所以a,b,c为全大于0或一正二负.①若a,b,c均大于0,则由(1)知,a,b,c中的最大者不小于4,这与a+b+c=2矛盾.②若a,b,c为或一正二负,设a>0,b<0,c<0,则|a|+|b|+|c|=a﹣b﹣c=a﹣(2﹣a)=2a﹣2,由(1)知a≥4,故2a﹣2≥6,当a=4,b=c=﹣1时,满足题设条件且使得不等式等号成立.故|a|+|b|+|c|的最小值为6.17.如图,四边形ABCD是矩形,E是对角线BD上不同于B、D的任意一点,AF=BE,∠DAF=∠CBD.(1)求证:△ADF≌△BCE;(2)求证:四边形ABEF是平行四边形;(3)试确定当点E在什么位置时,四边形AEDF为菱形?并说明理由.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS);(2)证明:∵四边形ABCD是矩形,∴AD∥BC,∠BAD=90°,∴∠DBC=∠ADB,∵∠DAF=∠CBD,∴∠DAF=∠ADB,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形;(3)解:当E为BD的中点时,四边形AEDF变为菱形,理由如下:如图所示:∵E为BD的中点,∠BAD=90°,∴AE=BE=DE,∵AF=BE,AF∥BD,∴AF∥DE,AF=DE,AF=AE,∴四边形AEDF是平行四边形,∴四边形AEDF是菱形.18.请你利用直角坐标平面上任意两点(x1,y1),(x2,y2)间的距离公式d=解答下列问题:已知:反比例函数y=与正比例函数y=x的图象交于A,B两点(A在第一象限),点F1(﹣2,﹣2),F2(2,2)在直线y=x上.设点P(x0,y0)是反比例函数y=图象上的任意一点,记点P与F1,F2两点之间的距离之差d=|PF1﹣PF2|.(1)试比较线段AB的长度与d的大小,并由此归纳出双曲线的一个重要定义(用简练的语言表述).(2)现请你在反比例函数y=第一象限内的分支上找一点P,使点P到F2(2,2)和点C(6,4)的距离之和最小,求点P的坐标.【解答】:解由y=和y=x组成的方程组可得A、B两点的坐标分别为,(,)、(﹣,﹣),线段AB的长度=4.∵点P(x0,y0)是反比例函数y=图象上一点,∴y0=.∴PF1==||,PF2==||,∴d=|PF1﹣PF2|=|||﹣|||,当x0>0时,d=4;当x0<0时,d=4.因此,无论点P的位置如何,线段AB的长度与d一定相等.由此可知:到两个定点的距离之差(取正值)是定值的点的集合(轨迹)是双曲线.(2)由条件PF2=PF1﹣4,知PF2+PC=PF1+PC﹣4,由F1,﹣P,C三点共线时最小,此时可解得P(2,1).。
全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。
解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。
代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。
答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。
求△ABC的面积。
解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。
底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。
答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。
解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。
将所有项移到一边得:3x² - 12x + 11 = 0。
对方程进行因式分解得:(x - 1)(3x - 11) = 0。
由此可得x = 1 或 x = 11/3。
答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。
已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。
解:由题意可推出ABCD为平行四边形,而AE = CD。
根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。
答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。
解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。
初中数学竞赛数学奥林匹克初中训练题(1)(含解答)

数学奥林匹克初中训练题(1)第 一 试一、选择题:(每小题7分,共42分)1.已知33333a b c abca b c++-=++,则22()()()()a b b c a b b c -+-+--的值为( ) (A)1 (B)2 (C)3 (D)42.规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果对任意实数,a b 都有(,)a b Δ(,)(,),x y a b =则(,)x y 为( )(A)(0,1) (B)(1,0) (C)(1,0)- (D)(0,1)- 3.在ΔABC 中,211a b c=+,则∠A( ) (A)一定是锐角 (B)一定是直角 (C)一定是钝角 (D)非上述答案4.下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②2;a =③若点(,)P a b 在第三象限,则点1(,1)P a b --+在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等.其中正确的命题的个数是( )(A)2个 (B)3个 (C)4个 (D)5个5.设P 为等腰Rt ΔABC 斜边AB 上或其延长线上一点,22S AP BP =+,那么( )(A)22S CP < (B)22S CP = (C)22S CP > (D)不确定 6.满足方程222()x y x y xy +=++的所有正整数解有( )(A)一组 (B)二组 (C)三组 (D)四组 二、填空题:(每小题7分,共28分)1.一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问再过 分钟,货车追上了客车.2.若多项式2228171642070P a ab b a b =-+--+,那么P 的最小值是 .3.如图, ∠AOB=30O, ∠AOB 内有一定点P,且OP=10.在OA 上有一点Q,OB 上有一点R.若ΔPQR 周长最小,则最小周长是 .4.已知二次函数2(1)y ax a =≥的图象上两点A,B 的横坐标分别为1,2-,O 是坐标原点,如果ΔAOB 是直角三角形,则ΔAOB 的周长为 .B第 二 试一、(20分)已知实数,,a b c 满足不等式,a b c b c a ≥+≥+,c a b ≥+,求a b c ++的值.二、(25分)如图2,点D 在ΔABC 的边BC 上,且与B,C 不重合,过点D 作AC 的平行线DE 交AB 于E,作AB 的平行线DF 交AC 于点F.又知BC=5. (1) 设ΔABC 的面积为S.若四边形AEFD 的面积为25S .求BD 长. (2)若,AC =且DF 经过ΔABC 的重心G,求E,F 两点的距离.三、(25分)已知定理:”若三个大于3的质数,,a b c 满足关系式25a b c +=,则a b c ++是整数n 的倍数.”试问:上述定理中整数n 的最大可能值是多少?并证明你的结论.。
下学期八年级数学竞赛试题及答案

2016年下学期八年级数学竞赛试题时量:120分钟 满分:120分一.选择题(共10小题,每小题3分,满分30分)1.在式子1a ,2xy π,2334a b c ,56x ,78x y +,210xy -,2x x 中,分式的个数是( ) A .5 B .4 C .3D .2 2.已知()2111x x --=,则x 的值为( )A .±1B .﹣1和2C .1和2D .0和﹣13.如图,90MON ∠=︒,点A ,B 分别在射线OM ,ON 上运动,BE 平分∠NBA ,BE 的反向延长线与∠BAO 的平分线交于点C ,则∠C 的度数是( )A .30°B .45°C .55°D .60°第3题图 第4题图4.如图,在△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC =110°,则∠EAF 为( )A .35°B .40°C .45°D .50°5.正数x 的两个平方根分别为3﹣a 和2a +7,则44﹣x 的立方根为( )A .﹣5B .5C .13D .106x =,则x 的值有( )A .0个B .1个C .2个D .3个7.若关于x 的不等式mx ﹣n >0的解集是14x <,则关于x 的不等式(n ﹣m )x >(m +n )的解集是( )A .53x <-B .53x >-C .53x <D .53x > 8.某品牌电脑的成本为2400元,标价为2980元,如果商店要以利润不低于5%的售价打折销售,最低可打( )折出售.A .7折B .7.5折C .8折D .8.5折9.7- )A .2+B .2-C 2D 2+10.已知3a =+,3b =-的值是( )A .24B .±C .D .二.填空题(共8小题,每小题4分,满分32分)11.若2522356x A B x x x x +=+---+,则A =___________,B =___________.12.已知1ab =,则20061111a b ⎛⎫+ ⎪++⎝⎭=___________.13.如图,在△ABC 中,AD 平分∠BAC ,AB =AC ﹣BD ,则∠B ∶∠C 的值是___________.第13题图 第14题图 第18题图14.如图,△ABC 中,∠BAC =90°,AD ⊥BC ,∠ABC 的平分线BE 交AD 于点F ,AG 平分∠DAC ,给出下列结论:①∠BAD =∠C ;②∠AEF =∠AFE ;③∠EBC =∠C ;④AG ⊥EF ,⑤AN=NG ,⑥AE =FG .其中错误的结论是_____________.15.已知24221x y k x y k +=⎧⎨+=+⎩,且﹣1<x ﹣y <0,则k 的取值范围为___________. 16.若不等式组0122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是___________.17.若2y =,则y x =___________.18.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是_______________________.(结果保留根号)三.解答题(共6小题,满分58分)19.(9分)先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足x 2+x ﹣2=0.20.(9分)已知5+5-a 和b ,求(a +b )(a ﹣b )的值.21.(10分)如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .22、(10分)某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元.(1)A 、B 两种商品的单价分别是多少元?(2)已知该商店购买B 商品的件数比购买A 商品的件数的2倍少4件,如果需要购买A 、B 两种商品的总件数不少于32件,且该商店购买的A 、B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案?23.(10分)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?24.(10分)已知,Rt △ABC 中,∠ACB=90°,∠CAB=30°.分别以AB 、AC 为边,向三角形外作等边△ABD 和等边△ACE .(1)如图1,连接线段BE 、CD .求证:BE=CD ;(2)如图2,连接DE 交AB 于点F .求证:F 为DE 中点.2016年下学期八年级数学竞赛试题参考答案一.选择题(共10小题,每小题3分,满分30分)题号 1 2 3 4 5 6 7 8 9 10答案 B B B B A C B D B C 二.填空题(共8小题,每小题3分,满分24分)题号11 12 13 14 15 16 17 18 答案﹣12;17 1 2 ③a>﹣1 9 2﹣2 三.解答题(共6小题,满分58分)19.(9分)解:原式=?=?=x(x+1)=x2+x,∵x2+x﹣2=0,∴x2+x=2,则原式=2.20.(9分)解:∵2<<3,∴7<5+<8,2<5﹣<3,∴a=5+﹣7=﹣2,b=5﹣﹣2=3﹣∴原式=(﹣2+3﹣)(﹣2﹣3+)=1×(2﹣5)=2﹣5.21.(10分)证明:在AB上截取AF=AD,∵AE平分∠PAB,∴∠DAE=∠FAE,在△DAE和△FAE中,∵,∴△DAE≌△FAE(SAS),∴∠AFE=∠ADE,∵AD∥BC,∴∠ADE+∠C=180°,∵∠AFE+∠EFB=180°,∴∠EFB=∠C,∵BE平分∠ABC,∴∠EBF=∠EBC,在△BEF和△BEC中,∵,∴△BEF≌△BEC(AAS),∴BC=BF,∴AD+BC=AF+BF=AB.22.(10分)解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:解得答:A种商品的单价为16元、B种商品的单价为4元.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m-4)件,由题意得:解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:方案(1):m=12,2m-4=20?即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m-4=22?即购买A商品的件数为13件,则购买B商品的件数为22件.23.(10分)解:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,由题意得,×2=,解得:x=80,经检验;x=80是原分式方程的解,且符合题意,则第一次进货100件,第二次进货的单价为88元,第二次进货200件,总盈利为:(100﹣80)×100+(100﹣88)×(200﹣10)+10×(100×0.8﹣88)=4200(元).答:在这两笔生意中,商家共盈利4200元.24.(10分)证明:(1)∵△ABD和△ACE是等边三角形,∴AB=AD,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴DC=BE;(2)如图,作DG∥AE,交AB于点G,由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,∴∠DGF=∠FAE=90°,又∵∠ACB=90°,∠CAB=30°,∴∠ABC=60°,又∵△ABD为等边三角形,∠DBG=60°,DB=AB,∴∠DBG=∠ABC=60°,在△DGB和△ACB中,,∴△DGB≌△ACB(AAS),∴DG=AC,又∵△AEC为等边三角形,∴AE=AC,∴DG=AE,在△DGF和△EAF中,,∴△DGF≌△EAF(AAS),∴DF=EF,即F为DE中点.。
八年级数学竞赛试题(附答案)

八年级数学竞赛试题(本卷满分150分,时间120分钟)一、填空题(每小题5分,共50分)1.点P (3,-5)关于y 轴对称的点的坐标为( )A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 2.下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,6 3.已知△ABC 中,AB=AC ,高BD ,CE 交于点O ,连接AO ,则图中全等三角形的对数为( )A .3B .4C .5D .6 4.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是( )A .4B .5C .6D .7 5.设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为( )A.M <NB.M >NC.M=N D .不能确定 6.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面,已知正多边形的边数为x ,y ,z ,则zy x 111++的值为( ) A .1 B .32 C .21 D .317.如图,长方形ABCD 中,△ABP 的面积为a ,△CDQ 的面积为b ,则阴影四边形的面积等于( )A .b a +B . b a -C .2ba + D .无法确定 8.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是( )A .0x y z ++=B .20x y z +-=C . 20y z x +-=D . 20z x y +-=9.已知3030--+-+-=a x x a x y ,其中0<a <30,30≤≤x a ,那么y 的最小值为.( ) A .10 B .20C .30D .4010.如图,ABE ∆和ADC ∆是ABC ∆分别沿着AB ,AC 边翻折0180形成的,若∠1:∠2:∠3=28:5:3,则a ∠的度数为.( )A .60oB .70oC .80oD .90o二、填空题(每小题7分,共49分)11.如果2222(2)(2)45a b a b +++-=,则a 2+b 2的值为 .12.将五个分数:23 ,58 ,1523 ,1017 ,1219 ;由小到大或由大到小排列,排在中间位置的分数是13.x 表示a 与b 的和的平方,y 表示a 与b 的平方的和,则a=7,b=-5时,x -y 的值是14.计算:|11992 -11991 |+|11993 -11992 |-|11993 -11991 |=15.观察下列运算:12=1;22=1+3;32=1+3+5;42=1+3+5+7;52=1+3+5+7+9;则n 2= (n 为正整数)。
八年级数学竞赛题及答案解析
八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。
C.3错误!未找到引用源。
-错误!未找到引用源。
=3(a ≥0) D.错误!未找到引用源。
·错误!未找到引用源。
=错误!未找到引用源。
(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。
八年级数学(下)竞赛试题
2010—2011学年度第二学期学科联赛八年级数学试卷【温馨的提示】时间:120分钟 全卷共_六 _大题 共_ 8 _页 满分:120分一、 精心选一选:(下面每小题均给出四个供选择答案,其中只有一个正确,把你认为正确的答案代号填放下表相应题号下空格内,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案1、如果关于x 的不等式(a+1)x>a+1的解集为x<1,则a 的取值范围是( ) A .a<0 B .a<-1 C .a>1 D .a>-12、下列多项式能因式分解的是( )A .y x -2B .12+xC .xy y x ++22D .442+-x x3、已知x 2+kxy+64y 2是一个完全式,则k 的值是( )A .8B .±8C .16D .±16 4、下列语句中不正确的是( ).(A)求两条线段的比值,必需采用相同的长度单位(B)求两条线段的比值,只需采用相同的长度单位,与选用何种长度单位无关 (C)两个相似三角形中,任意两组边对应成比例 (D)不相似的两个三角形中,也有可能两组边对应成比例5、某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 (A )18%)201(400160=++x x (B )18%)201(160400160=+-+x x (C )18%20160400160=-+x x (D )18%)201(160400400=+-+xx 6、下列命题中,正确的个数是( )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个题次 一 二 16 17 18 19 20 21 22 23 24 25 总分 得分得分 评卷人学 校考 号密封线内不要答题7、利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A .73cmB .74cmC .75cmD .76cm8、如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水。
八年级数学竞赛试题及参考答案
2010年苍南县八年级数学知识应用能力竞赛试题(本卷满分120分, 测试时间120分钟)题 号 1--6 7--11 12 13 14 15 总 分 得 分一、选择题(每小题5分,共30分;每小题有且只有一个正确答案)1、 下列说法中正确的个数是 …………………………………………………( )(1)若│a │=│b │, 则a │a │=b │b │;(2)直角坐标系中点P (a ,b )在第三象限,则点P '(a b ,a+b )在第四象限; (3)若直角三角形的两条边长为3和4,则第三边长是5; (4)两边及第三边上的中线对应相等的两个三角形全等.A. 1个B. 2个C. 3个D. 4个 2、 已知A 、B 、C 是不在同一直线上的三点, 小明同学站在A 点起跳,每次只能从其中一点跳到另一点. 若他跳4次还是在A 点,则不同的跳法共有几种 …………( ) A. 4 B. 5 C. 6 D. 83、 已知ΔABC 的三边a 、b 、c 均为整数,且a+ac+b+bc=24,当ΔABC 为等腰三角形时,它的面积有几种不同的答案 …………………………………………………( ) A. 1 B. 2 C. 3 D. 44、 古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸。
地支有12个:子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字分别循环排列成如下两行:甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸……子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,则当第2次甲和子在同一列时,该列的序号是 …………………………………………………( ) A. 31 B. 61 C. 91 D. 1215、 如图1,在Rt ΔABC 中,∠ABC=90°,AB=21AC , 在直线 AB 或直线BC 上取一点P ,使ΔPAC 为等腰三角形,则符合条件的P 点共有几个………………………( ) A. 5 B. 6 C. 7 D. 8 (图1)6、 在冬季篮球赛中,选手王霞在第六、第七、第八、第九场比赛中分别得了23分、14分、11分和20分,她的前九场的平均成绩高于前五场的平均成绩.如果她的前十场的平均成绩高于l8分,那么她的第十场的成绩至少为……………………………( ) A. 33分 B. 31分 C. 29分 D. 27分 二、填空题(每小题6分,共30分)7、 已知不等式3x - a ≤0的正整数解为1,2,3,则a 的取值范围是__________________.8、 如图2, 共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分, 现从其余的小正方形中任取一个涂上阴影, 则能构成这个正方体的表面展开图的概率是__________________.(图2) (图3) 9、 如图3,四边形ABDC 中,△EDC 是由△ABC 绕顶点C 旋转40°所得,顶点A 恰好转到AB 上一点E 的位置,则∠1+∠2=__________________度.10、已知2519990x x --=,则代数式721)1()2(23+-+---x x x 的值是________________.11、现有长为55cm 的铁丝,要截成n 小段(n>2),每段的长度不小于1 cm ,如果其中任意三小段都不能拼成三角形,则n 的最大值为__________________. 三、解答题(每题15分,共60分)12、一天晚上,一些同学聚在一起,议论下午图书馆开张时的盛况. 小明脑子一转,提出了这样一个问题:“图书馆原来坐着50a -40 位同学,后来因班级有事,90-20a 位同学离开了图书馆,这时馆内还留有一些同学,问图书馆内原来有多少位同学?(其中a 为整数)”,请你解决这个问题.13、如图4,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD、QAE和RAB,则P、Q、R是等边三角形的三个顶点,请说明理由.(图4)14、你知道吗?任意两个正方形都可以剪拼成一个大的正方形. 现在请你画出示意图表示已知的两个正方形剪拼成一个大的正方形的过程(作必要说明),并说明你的方法是正确的.15、一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用. 已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2a、a次;若甲、丙两车合运相同次数,运完这批货物,甲车共运了180吨;若乙、丙两车合运相同次数,运完这批货物,乙车共运了270吨. 现甲、乙、丙三辆车合运相同次数把这批货物运完,请你算一算,货主应付给车主运费各多少元(按每吨运费20元计算)?参考答案及评分标准一、选择题1、 B2、 C3、 C4、 B5、 B6、 C二、填空题7、 9≤a<12 8、 4/7 9、 110 10、 2010 11、 8三、解答题 (遇不同解法对照给分) 12、解:据题意,可知50a-40>0,90-20a>050a-40>90-20a (6分)解得29713<<a (4分) 又a 为整数,可得a=2,3,4 (3分) 故图书馆内原来有60或110或160位同学. (2分) 13、解:理由如下:连结BP 在ADC ∆和CPB ∆中,AC=BC,DC=PC, .ACD PCB ∠=∠,ADC BPC ∴∆≅∆∴AD=BP (8分)606060180,RAB BAC QAE∠+∠+∠=︒+︒+︒=︒∴R 、A 、Q 三点共线.60,606060180CBP CAD RBA ABC CBP ∠=∠=︒∴∠+∠+∠=︒+︒+︒=︒∴ R 、B 、P 三点共线. (2分) 而AQ=AE=AD=BP ,∴RQ=RA+AQ=RB+BP=RP 60.R ∠=︒PQR ∴∆是等边三角形. (5分)14、解:将已知的两个正方形ABCD 和CEFG 如图放置,设其边长分别为a 和b. ①剪拼说明:如图所示,连结DE ,显然DE =22b a +.以DE 为一边,作正方形DHIE. 将图1剪拼到图形①处,图形2剪拼到图形②处,图形3剪拼到图形③处.这样就可以将原来已知的两个正方形ABCD 和CEFG 剪拼成一个大的正方形DHIE. (9分) ②理由(略) (6分) 15、解:①显然乙车的载重量为甲车的2倍.设这批货物的总重量为M 吨,甲、丙合运b 次运完,乙、丙合运C 次运完,丙与甲及乙合运时载重量不变.cM b M 270180-=-∴(4分) 又c b 2702180=⨯ 可得34=c b (3分)∴M=540 (3分)②乙、丙合运时,乙共运270t ,故丙也运270t ,即乙、丙载重量相等,从而甲、乙、丙载重量之比为1:2:2 (3分)于是3车合运相同次数把这批货物运完,各运108吨,216吨,216吨,3个车主应得运费分别为2160元,4320元,4320元.(2分) 答略.①③ 2②132③①。
八年级下册数学竞赛测试题
八年级下册数学竞赛测试题一、选择题(每题3分,共30分)1. 下列哪个选项不是有理数?A. πB. -2C. 0.5D. √22. 一个数的立方等于它本身,这个数可能是:A. 1B. -1C. 0D. 所有选项3. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定4. 将一个正数n分解成两个因数的积,其中一个因数是9,那么另一个因数是:A. n/9B. 9nC. n*9D. 不能确定5. 一个圆的半径增加1倍,那么它的面积增加:A. 1倍B. 2倍C. 3倍D. 4倍6. 一个数列的前5项为1, 1, 2, 3, 5,这个数列是:A. 等差数列B. 等比数列C. 斐波那契数列D. 几何数列7. 如果一个二次方程ax^2 + bx + c = 0的判别式Δ = 0,那么这个方程:A. 有一个实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定8. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是:A. abcB. a + b + cC. a/b + cD. a * b * c9. 一个函数f(x) = kx + b,其中k和b是常数,这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 指数函数10. 一个正多边形的内角和为S,边数为n,那么S和n的关系是:A. S = (n-2) * 180°B. S = n * 180°C. S = 180°D. S = 360°二、填空题(每题2分,共20分)11. 若一个数的相反数是-5,则这个数是________。
12. 一个三角形的内角和为________度。
13. 一个圆的周长为2πr,其中r是圆的________。
14. 一个数的绝对值是它本身或它的相反数,这个数是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
八年级下数学竞赛训练(一)及答案
一、选择题:(以下每题的4个结论中,仅有一个是正确的。)
1.已知x1,x2, x3的平均数为5,yl,y2,y3的平均数为7,则2xl+3yl,2xz+3y2,2x3+3y3
的平均数为 ( )
(A) 31 (B) 331 (C) 593 (D) 17
2.如图,三个天平的托盘中形状相同的物体质量相等.图(1)、图(2)所示的两个天平处于平
衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置 ( )
(A) 3个球 (B) 4个球 (C) 5个球 (D) 6个球
3.当x分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,
计算代数式2211xx的值,将所得的结果相加,其和等于 ( )
(A)-1. (B)1. (C)0. (D)2007.
4、当5个整数从小到大排列后,其中位数为4,如果这组数据的惟一众数是6,那么这5
个数最大的和可能是( )
A、21 B、22 C、23 D、24
5.已知一列数al,a2,a3,…,an,…中,a1=0,a2=2al+1,a3=2a2+1,···,an+l=2an+l,···.
则a2004-a2003的个位数字是 ( )
(A) 2 (B) 4 (C) 6 (D) 8
6.如图是3~3正方形方格,将其中两个方格涂黑有若干种涂法.约定
沿正方形ABCD的对称轴翻折能重合的图案或绕正方形ABCD中
心旋转能重合的图案都视为同一种图案,例如就视为同一种图案,
则不同的涂法有( )
(A)4种 (B)6种
(C)8种 (D)12种。
- 2 -
二、填空题:
7.一个多边形的对角线的条数等于边数的5倍,则这个多边形是_____边形.
8.a,b,c为△ABC的三边3a3+6a2b-3a2c-6abc=O,
则△ABC的形状为_______.
9.如图,四边形ABCD为正方形,AB为边向正方形外
作等边三角形ABE.CE与DB相交于点F,
则∠AFD=________度.
10.若有理数x、y(y≠0)的积、商、差相等,即xy=yx=x-y,则x=_____,y=________.
11.有3堆硬币,每枚硬币的面值相同。小李从第1堆取出和第2堆一样多的硬币放入第2
堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存
的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币___枚,
第2堆有硬币____枚,第3堆有硬币_____枚.
12.甲、乙、丙三人进行智力抢答活动,规定:第一个问题由乙提出,由甲、丙抢答.以后
在抢答过程中若甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对1
题就可提4个问题,供另两人抢答.抢答结束后,总共有16个问题没有任何人答对,则
甲、乙、丙答对的题数分别是________.
三、解答题:
13、已知a,b,c为实数,且a+b+│c-1 -1│=4a-2 +2b+1 -4,求:a+2b-3c的值。
- 3 -
14.如图,横向或纵向的两个相邻格点的距离都是1.若六边形(可以是凸的或凹的)的顶点
都在格点上,且面积为6,画出三个形状不同的这样的六边形.
15、如图,四边形ABCD中,∠A=∠C=90°,AB=AD,BC+CD=10,
(1)求四边形ABCD的面积
(2)若∠ADC=60°,求四边形ABCD的周长
C
A
B
D
- 4 -
16、如图,△ABC中,AD⊥BC于D,∠B=2∠C
(1) 求证:DC=BD+AB
(2) 若设CD=a,BD=b,AB=c,试说明方程x2-ax+bc=0有两个不相等的实数根
(3)若方程x2-ax+bc=0的一根是另一根的2倍,试判断△ABC的形状。
D C
B
A
- 5 -
参考答案
一、选择题: 1、A 2、C 3、C 4、A 5、B 6、C
二、填空题:
7.十三 8.等腰三角形 9.60 10.一21,一l
11.22,14,12 12.(1,1,2)或(0,3,1) 注:填对1个只给2分.
三、解答题:
13.把a+b+│c-1 -1│=4a-2 +2b+1 -4变形得:
[(a-2)-4a-2 +4]+[(b+1)-2b+1 +1]+ │c-1 -1│=0
即(a-2 -2)2+(b+1 -1)2+│c-1 -1│=0
∴a-2 -2=0,b+1 -1=0,c-1 -1=0 ∴a=6,b=0,c=2 ∴a+2b-3c=0
14.注:符合条件的六边形有许多.
15.连BD
(1)四边形ABCD的面积=S
△ABD+S△BCD
=12 AB·AD+12 BC·CD=12 AB2+12 BC·CD
=14 BD2+12 BC·CD=14 ( BD2+2BC·CD) =14 ( BC2+CD2+2BC·CD)= 14 (BC+CD)2=14 ×102=25
(2)延长AB和DC交于点E. 设AB=AD=x,∵∠ADC=60°,∴DE=2x,AE= 3 x
∴BE=(3 -1)x 在Rt△BCE中,∵∠E=30° ∴BC=3-12 x,
EC=3 BC=3-32 x ∴CD=DE-EC=2x-3-32 x=3+12 x
∵BC+CD=10, ∴3-12 x+3+12 x=10,即3 x=10 ∴x=103 3
∴四边形ABCD的周长=2x+10=203 3 +10
16、(1)证明:在BC上取点E,使BD=DE,
∵AD⊥BC,∴AB=AE,∴∠AEB=∠ABC=2∠C ∴∠C=∠EAC
∴EC=EA=AB, ∴CD=DE+EC=BD+AB
(2)由(1)得:∵a2-4bc=(b+c)2-4bc=(b-c)2
又c>b,即c≠b,∴(b-c)2>0,∴方程x2-ax+bc=0有两个不相等的实数根
(3)设方程的两根为k,2k,代入得k2-ak+bc=0①及4k2-2ak+bc=0②,由②-4×①得k=3bc2a ,
D C
B
A
E
C
A
B
D
E
- 6 -
代入①得(3bc2a )2-a·3bc2a +bc=0,化简得9bc=2a2,又∵a2=(b+c)
2
代入得2b2-5bc+2c2=0,(2b-c)(b-2c)=0∵b