八年级下册数学竞赛试题
初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
初二下学期数学竞赛试题

初二下学期数学竞赛试题一、选择题(每题2分,共10分)1. 若a,b,c为正整数,且满足a^2 + b^2 = c^2,那么a,b,c称为勾股数。
下列哪组数不是勾股数?A. 3, 4, 5B. 5, 12, 13C. 7, 24, 25D. 9, 12, 152. 已知x^2 - 5x + 6 = 0,求x的值。
A. x = 2B. x = 3C. x = 1 或 x = 6D. 无解3. 一个圆的半径为r,其面积的公式为S = πr^2。
若半径增加1,则新的面积与原面积的比值是多少?A. πB. 1 + πC. 1 + 2πD. 1 + 2πr4. 一个长方体的长、宽、高分别为a、b、c,其体积为V = abc。
若长增加1,宽和高不变,新的体积与原体积的比值是多少?A. 1 + 1/aB. 1 + 1/bC. 1 + 1/cD. 1 + a/b + a/c5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
这个数列的第五项是多少?A. 4B. 5C. 6D. 7二、填空题(每题3分,共15分)6. 一个分数的分子与分母之和为21,分子比分母小8,该分数是________。
7. 若一个等差数列的首项为a,公差为d,且前n项和为S_n,已知S_5 = 25,S_10 = 100,求a的值。
8. 一个正六边形的内角为120°,边长为1,求其外接圆的半径。
9. 一个函数f(x) = 2x - 3,求f(2)的值。
10. 一个直角三角形的两直角边分别为3和4,求斜边的长度。
三、解答题(每题10分,共30分)11. 证明:若a,b,c为正整数,且a^3 + b^3 = c^3,则a + b = c。
12. 解不等式:2x + 5 > 3x - 2。
13. 一个班级有30名学生,其中15名男生和15名女生。
如果从班级中随机选择3名学生,求至少有1名女生的概率。
四、综合题(每题15分,共30分)14. 在平面直角坐标系中,点A(2,3),点B(-1,-2),求直线AB的方程,并求出与x轴平行且经过点A的直线方程。
初二下期数学竞赛试题

初二下期数学竞赛试题一、选择题(每题3分,共30分)1. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定2. 下列哪个数是无理数?A. 3.14B. πC. 0.33333…(3无限循环)D. √23. 已知一个数列的前三项为1, 2, 4,若此数列是等比数列,那么第5项是:A. 8B. 16C. 32D. 644. 一个圆的半径为r,圆心到圆上任意一点的距离是:A. rB. 2rC. 3rD. 无法确定5. 一个长方体的长、宽、高分别是a、b、c,其体积是:A. abcB. a + b + cC. a/b + b/c + c/aD. a^2 + b^2 + c^26. 一个多项式f(x) = ax^3 + bx^2 + cx + d,若f(1) = 8,f(-1) = -8,那么a + d的值是:A. 0B. 2C. 4D. 87. 一个正整数n,如果它既是3的倍数,又是5的倍数,那么它一定是:A. 15的倍数B. 15或30的倍数C. 15的倍数或30的倍数D. 15的倍数且30的倍数8. 一个等腰三角形的底边长为10,若腰长为x,根据三角形不等式,x的最小值是:A. 5B. 10C. 15D. 209. 若一个二次方程ax^2 + bx + c = 0(a ≠ 0)有实数根,那么判别式Δ = b^2 - 4ac必须:A. 大于0B. 等于0C. 大于等于0D. 小于等于010. 一个函数f(x) = kx + b,若f(0) = 3,且f(1) = 5,那么k的值是:A. 2B. 3C. 4D. 5二、填空题(每题4分,共20分)11. 若一个数的平方根是2,那么这个数是_________。
12. 一个数的相反数是-4,那么这个数是_________。
13. 一个数的绝对值是5,那么这个数可以是_________或_________。
八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
下学期八年级数学竞赛试题

八年级数学竞赛试题一.精心选一选(本题共10小题,每题3分,共30分.请把你认为正确结论的代号填入下面表格中)1.16的算术平方根是 ( )A . 2B . ±2C .4D . ±42.在实数23-,0,34,π,9中,无理数有 ( )A .1个B .2个C .3个D .4个3.下列图形中,是轴对称图形并且对称轴条数最多的是( )4.如图,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的度数为 ( )A .30oB .50oC .90oD .100o5.如果实数y 、x 满足y=111+-+-x x ,那么3y x +的值是( )A .0B .1C .2D .-2 6.与三角形三个顶点的距离相等的点是 ( ) A .三条角平分线的交点 B .三边中线的点C .三边上高所在直线的交点D .三边的垂直平分线的交点7.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ;②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使 △AB C ≌△AED 的条件有 ( ) A .1个 B .2个 C .3个 D .4个8.以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )题号1 2 3 4 5 6 7 8 9 10答案A . B. C. D.A CA ′B ′′ (第4题) 50o30ol 第7题图12C AE DA .211 B .1.4 C .3 D .29.如图,在直角坐标系xoy 中,△ABC 关于直线y =1成轴对称,已知点A 坐标是(4,4),则点B 的坐标是 ( )A .(4,-4)B .(4,-2)C .(-2,4)D .(-4,2)10.一个正方体的体积是99,估计它的棱长的大小在 ( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间二.耐心填一填(每题3分,共18分,直接写出结果) 11.计算︱2-3︱+22的结果是 .12.若25x 2=36,则x = ;若23-=y ,则y = .13.点P 关于x 轴对称的点是(3,–4),则点P 关于y 轴对称的点的坐标是 .14.如图,BAC ABD ∠=∠,请你添加一个条件:,使OC OD =(只添一个即可). 15.等腰三角形的一个外角等于110︒,则这个三角形的顶角应该为 .16.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:n =(用含三.计算题(计算要认真仔细,善于思考!本大题有3个小题,共24分) 17.(8分)计算 ()32281442⨯+--)(第16题DO CBA第14题图18.(8分)如图,实数a 、b 在数轴上的位置,化简222)(b a b a -+-19.(8分)如图, AD ∥BC ,BD 平分∠ABC ,∠A=120°,∠C=60°,AB=CD=4cm ,求四边形ABCD 的周长.四.解答题(本大题有3个小题,共26分) 20.(8分)某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由等腰三角形和正方形组成(个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案。
数学初二竞赛试题及答案

数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的立方等于它本身,那么这个数可以是:A. 0B. 1C. -1D. 以上都是3. 一个等腰三角形的两边长分别为3cm和4cm,那么它的周长可能是:A. 10cmB. 11cmC. 12cmD. 13cm4. 下列哪个选项是完全平方数?A. 12B. 13C. 14D. 155. 一个数的相反数是它本身,这个数是:A. 0C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 非负数7. 如果一个角是直角的一半,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°8. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和,那么第五项是:A. 4B. 5C. 6D. 79. 一个圆的直径是10cm,那么它的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π c m²10. 一个等差数列的前三项是2, 5, 8,那么它的公差是:A. 1C. 3D. 4二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是________。
2. 如果一个三角形的三个内角分别是30°,60°,90°,那么这个三角形是________三角形。
3. 一个数的立方根是2,那么这个数是________。
4. 一个数的倒数是1/2,那么这个数是________。
5. 一个圆的半径是5cm,那么它的直径是________cm。
三、解答题(每题10分,共50分)1. 已知等差数列的前三项是3, 6, 9,求这个数列的第10项。
2. 一个直角三角形的两个直角边长分别是6cm和8cm,求这个三角形的斜边长。
初二下数学竞赛题

A BC D 初二数学竞赛题一.选择题(每题3分,共36分)1.函数y=kx -1与y=-xk (k ≠0)在同一坐标系中的大致图象可能是 ( ) 2.一个圆柱的轴截面是正方形,则它的侧面积与表面积之比是 ( )A .2:3B .1:2C .3:2πD .2:3π3.若⊙O 的半径为1,弦AC=1,AD=2,则∠DAC 的度数是 ( )A .30°B .15°C .45°或75°D .15°或105°4.如图,E 、F 、G 、H 分别是正方形ABCD 各边中点,设正方形ABCD的面积为S ,则图中阴影部分的面积是 ( )A .41SB .51SC .61SD .71S 5.若f (x )为一次函数,当x=a 时它的函数值为f (a ),且f (2)>f (-2),则f (2004)与f (2005)的大小关系是( )A .f (2004)>f (2005)B .f (2004)=f (2005)C .f (2004)<f (2005)D .无法确定6.如图,AB 是直径,M 、N 在AB 上,且AM=MN=NB ,四边形MNPQ 是矩形,P 、Q 在圆上,则QMPQ 是 ( ) A .21 B .22 C .33 D .52 7.已知直线y=21x +2与x 轴交于点A ,如果点P 在此直线上,且满足△AOP 是等腰三角形的点P 的个数共有 ( )A .1B .2C .3D .48.如图,等腰直角三角形ABC 中,∠C=90°,以A 为圆心的弧分别交AB 、BC 及AC 的延长线于D 、E 、F ,若阴影部分DBE 的面积等于阴影部分ECF 的面积,则AB AD 等于 ( )(第6题)A .54B .ππ2C .π2D .以上都不对9.如图,函数y=kx (k>0)与函数y=x1的图象相交于A 、C 两点,AB 、CD 都垂直于x 轴,垂足分别为B 、D ,则四边形ABCD 的面积S 为 ( )A .1B .kC .2D .2k10.梯形ABCD 中,AD ∥BC ,AD +是 ( )A .32B .223C .332D .233 11.我市出租车起步价为8元(起步价行驶里程是4km ),以后每1km 的价为1元(不足1km 按1km 计费),则乘坐出租车的费用y (元)与行驶里程x(km)之间的函数图象大致为( )12.如图,AB 是⊙O 的直径,BD 平分∠ABC 交AC 于E 交⊙O 于D ,若AC=8,BC=6,则CD 的长是( )A .4B .25C .32D .23二.填空题(第13~19题每题4分,第20题6分,共34分)13.已知圆台的轴截面的对角线与腰垂直,一个底角等于60°,上底长为2,则圆台的侧面积是 。
(word完整版)八年级数学竞赛题及答案解析

八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。
C.3错误!未找到引用源。
-错误!未找到引用源。
=3(a ≥0) D.错误!未找到引用源。
·错误!未找到引用源。
=错误!未找到引用源。
(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
C
A
D
O
1
F E
D
C
B
A (-1,1)
1
y (2,2)
2y
x
y O
A
C
B
路园中学2018年八年级数学竞赛试卷
一、选择题(本题共10小题,满分共30分) 1.二次根式
2
1、12 、30 、x+2 、240x 、2
2y x +中,最简二次根式有( )个。
A 、1 个 B 、2 个 C 、3 个 D 、4个
2.若式子23
x x --有意义,则x 的取值范围为 ( )
A 、x≥2
B 、x≠3
C 、x≥2或x≠3
D 、x≥2且x≠3
3.若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是 ( )
A .x ≥12
B .x ≤12
C .x =12
D .x ≠12
4.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是 ( )
A .7,24,25
B .1113,4,5222
C .3,4, 5
D .
114,7,8
22 5.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是 ( )
(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC
6.如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE
交
AE 于点F ,则∠1=( )
A .40°
B .50°
C .60°
D .80°
7.下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有 ( ) A .4个 B .3个 C .2个 D .1个
8.表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是 ( )
9.如图所示,函数x y =1和3
4
312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范
围是( )
A .x <-1
B .—1<x <2
C .x >2
D . x <-1或x >2
10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为 ( )
A .
54
B .
5
2
C .53
D .65
二、填空题(本题共8小题,满分共24分)
11.48-1
33-⎛⎫ ⎪ ⎪
⎝⎭
+)13(3--30
-23-=
12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为
13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,
则CD = cm 。
14.在直角三角形ABC 中,∠C=90°,CD 是AB 边上的中线,∠A=30°,AC=5 3,则△ADC 的周长为 。
15、如图,平行四边形ABCD 的两条对角线AC 、BD 相交于点O ,AB= 5 ,AC=6,DB=8 则四边形ABCD 是的周长为 。
16.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= . 17. 某一次函数的图象经过点(1-,3),且函数y 随x 的增大而减小, 请你写出一个符合条件的函数解析式____________________ __.
18.如图所示,E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 是CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是 三.解答题:
21. (7分)在△ABC 中,∠C=30°,AC=4cm,AB=3cm ,求BC 的长.
M P
F
E C
B
A
30
50
1950
3000 80 x/mi
y/m O
(第24题)
23. (9分) 如图,在直角梯形ABCD 中,AD∥BC,∠B=90°,AG∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG .
(1)求证:四边形DEGF 是平行四边形;
(2)当点G 是BC 的中点时,求证:四边形DEGF 是菱形.
24. (10分) 小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m/min .设小亮出发x min 后行走的路程为y m .图中的折线表示小亮在整个行走过程中y 与x 的函数关系.
⑴小亮行走的总路程是____________㎝,他途中休息了________min . ⑵①当50≤x≤80时,求y 与x 的函数关系式;
②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少
.
25、(10分)如图,直线6y kx =+与x 轴分别交于E 、F .点E 坐标为(-8,0),点A 的坐标为(-6,0).
(1)求k 的值;
(2)若点P (x ,y )是第二象限内的直线上的一个动点,当点P 运动过程中,试写出三角形OPA
的面积s 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当P 运动到什么位置时,三角形OPA 的面积为27
8
,并说明理
26 (10分)如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN∥BC.设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F .
(1)求证:OE=OF ;
(2)若CE=12,CF=5,求OC 的长;
(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形并说明理由.
y
F
E A O x
参考答案
一、选择题 二、填空题
11. 33 , 12. 17, 13. 4 , 14. 3510+, 15. 20 , 16. 5, 17. 答案不唯一18. 29,19.
乙, 20. .)3(1
-n
三、解答题(本题共8小题,满分共60分)
21.解:由题意得⎩⎨
⎧>-≥-0609x x ,⎩⎨⎧>≤6
9
x x ,∴96≤<x
∵x 为偶数,∴8=x .
)
1)(1(1
1
)1(11)
1()1)(1()1()1(112)1(2
2
2-+=+-+=+-+=-+-+=-+-+x x x x x x x x x x x x x x x x 原式=∴当8=x 时,原式=7379=⨯
=325+
23. 证明:(1)∵AG∥DC,AD∥BC,
∴四边形AGCD 是平行四边形, ∴AG=DC,
∵E、F 分别为AG 、DC 的中点, ∴GE=AG ,DF=DC ,
即GE=DF ,GE∥DF,
∴四边形DEGF 是平行四边形;
(2)连接DG ,
∵四边形AGCD 是平行四边形, ∴AD=CG,
∵G 为BC 中点, ∴BG=CG=AD, ∵AD∥BG,
∴四边形ABGD 是平行四边形, ∴AB∥DG, ∵∠B=90°,
∴∠DGC=∠B=90°, ∵F 为CD 中点, ∴GF=DF=CF, 即GF=DF ,
∵四边形DEGF 是平行四边形, ∴四边形DEGF 是菱形. 24. 解:⑴3600,20.
⑵①当5080x ≤≤时,设y 与x 的函数关系式为y kx b =+. 根据题意,当50x =时,1950y =;当80x =,3600y =.
所以,y 与x 的函数关系式为55800y x =-.
②缆车到山顶的路线长为3600÷2=1800(m ), 缆车到达终点所需时间为1800÷180=10(min ).
小颖到达缆车终点时,小亮行走的时间为10+50=60(min ). 把60x =代入55800y x =-,得y=55×60—800=2500.
所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m ) 25.(1)34k =
;(2)9184
s x =+(-8<x <0);(3)P (139,28-) 26.
27.解答: (1)证明:∵MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F , ∴∠2=∠5,4=∠6,
∵MN∥BC,
∴∠1=∠5,3=∠6, ∴∠1=∠2,∠3=∠4, ∴EO=CO,FO=CO , ∴OE=OF;
(2)解:∵∠2=∠5,∠4=∠6, ∴∠2+∠4=∠5+∠6=90°, ∵CE=12,CF=5,
∴EF=
=13,
∴OC=EF=;
(3)答:当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形. 证明:当O 为AC 的中点时,AO=CO , ∵EO=FO,
∴四边形AECF 是平行四边形, ∵∠ECF=90°,
∴平行四边形AECF 是矩形.。