北师大版专题复习之《一元二次方程》基础训练题

合集下载

北师大版九年级数学上专项训练:一元二次方程—专项复习含答案解析

北师大版九年级数学上专项训练:一元二次方程—专项复习含答案解析

初中数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.一元二次方程2230x x --=的二次项系数、一次项系数、常数项分别是( ) A. 1,2,3-- B. 1,-2,3 C. 1,2,3 D. 1,2,3-2.某市2011年平均房价为每平方米12000元.连续两年增长后,2013年平均房价达到每平方米15500元,设这两年平均房价年平均增长率为x ,根据题意,下面所列方程正确的是( )A .15500(1+x )2=12000B .15500(1﹣x )2=12000C .12000(1﹣x )2=15500D .12000(1+x )2=155003.用因式分解法解一元二次方程0)1(2)1(=---x x x ,正确的步骤是( ) A .0)2)(1(=++x x B .0)2)(1(=-+x x C .0)2)(1(=--x x D .0)2)(1(=+-x x4.已知1是关于x 的一元二次方程01)1(2=++-x x m 的一个根,则m 的值是( ) A .0 B .1 C .-1 D .无法确定 5.若关于的一元二次方程3x 2+k =0有实数根,则( )A .k >0B .k <0C .k ≥0D .k ≤06.已知一元二次方程2x x 1k 0-+=有两个不相等的实数根,则k 的范围是( )A .k >14 B .k <14 C .k ≤14且k ≠0 D .k <14且k ≠07.一元二次方程23x x 0-=的解是 ( )A .x 0=B .121x 0x 3==,C .12x 0x 3==,D .1x 3=8.用配方法解方程09102=++x x ,配方正确的是( )A .16)5(2=+xB .34)5(2=+xC .16)5(2=-xD .25)5(2=+x9.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为 ( ).A .48(1﹣x )2=36B .48(1+x )2=36C .36(1﹣x )2=48D .36(1+x )2=48 10.若关于x 的一元二次方程02=++q px x 的两根分别为21=x ,12=x ,则p 、q 的值分别是( )A .3、2B .3、2C .2、3D .2、311.关于x 的一元二次方程012=--ax x (其中a 为常数)的根的情况是( ) A .有两个不相等的实数根 B .可能有实数根,也可能没有实数根 C .有两个相等的实数根 D .没有实数根 12.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A .()24381x 389+=B .()23891x 438+= C .()238912x 438+= D .()243812x 389+=13.若一元二次方程x 2+x -2=0的解为x 1、x 2,则x 1•x 2的值是( ) A .1 B .—1 C .2 D .—2 14.用配方法解方程2x 2x 50--=时,原方程应变形为( )A .()2x 16-= B .()2x 16+= C .()2x 29+= D .()2x 29-=15.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( ) A. 5个 B. 6个 C. 7个 D. 8个16.用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的k 倍(0<k <1).已知一个钉子受击3次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,设铁钉的长度为1,那么符合这一事实的一个方程是( ) A .44k 177+= B .244k k 177+= C . 2444k k 1777++= D .48k 177+= 17.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为A .10080100x 80x 7644⨯--=B .()()2100x 80x x 7644--+=C .()()100x 80x 7644--=D .100x 80x 356+=18.一元二次方程()2x 616+=可转化为两个一元一次方程,其中一个一元一次方程是x 64+=,则另一个一元一次方程是【 】A .x 64-=-B .x 64-=C .x 64+=D .x 64+=-19.一元二次方程x 2+x ﹣2=0的根的情况是【 】A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根20.如果三角形的两边长分别是方程x 2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是A .5.5B .5C .4.5D .4二、填空题21.将一元二次方程2x(x 3)1-=化成一般形式为 .22.若12x x ,是一元二次方程2310x x --=的两个根,则21x x +的值是 ;21x x ⋅的值是 .23.已知x 1,x 2是关于x 的一元二次方程x 2-2x-4=0的两个实数根,则2111x x += . 24.若关于x 的方程220x x m -+=有一根为3,则m =___________.25.某种型号的电脑,原售价6000元/台,经连续两次降价后,现售价为4860元/台,设平均每次降价的百分率为x ,则根据题意可列出方程: . 26.方程24x x =的解是 ____ ____ .27.已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,则的值是________.28.若b 1a 40-+-=,且一元二次方程2kx ax b 0++=有实数根,则k 的取值范围是 .29.已知1O e 与2O e 的半径分别是方程2x 4x 30-+=的两根,且12O O t 2=+,若这两个圆相切..,则t = . 30.若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一.个.符合题意的一元二次方程 . 31.对于实数a ,b ,定义运算“﹡”:()()22a ab a b a b ab a a <b ⎧-≥⎪=⎨-⎪⎩﹡.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x 1,x 2是一元二次方程x 2﹣5x+6=0的两个根,则x 1﹡x 2= . 32.如图,在一块长为22m 、宽为17m 的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形一边平行),剩余部分种上草坪,使草坪面积为300m 2.若设道路宽为x m ,则根据题意可列方程为 __ .33.若关于x 的一元二次方程kx 2+4x+3=0有实根,则k 的非负整数值是 .34.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是 .35.(2013年四川自贡4分)已知关于x 的方程()2x a b x ab 10-++-=,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③222212x x <a b ++.则正确结论的序号是 .(填上你认为正确结论的所有序号) 三、计算题 36.( 本题满分8分)求证:不论k 为任何实数,关于x 的方程03)1(2=--+-k x k x 都有两个不相等的实数根。

北师大版一元二次方程单元测试(含标准答案)

北师大版一元二次方程单元测试(含标准答案)

北师大版一元二次方程单元测试(含答案)————————————————————————————————作者:————————————————————————————————日期:一元二次方程一、选择题1.下列四个说法中,正确的是( )A .一元二次方程22452x x ++=有实数根B .一元二次方程23452x x ++=有实数根 C .一元二次方程25453x x ++=有实数根;D .一元二次方程x2+4x+5=a(a ≥1)有实数根.2.关于x 的方程(a -5)x2-4x -1=0有实数根,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 3. 若a 为方程式(x -17)2=100的一根,b 为方程式(y -4)2=17的一根, 且a 、b 都是正数,则a -b 之值为( )A 5B 6C 83D 10-17 。

4.已知n m ,是方程0122=--x x 的两根,且8)763)(147(22=--+-n n a m m ,则a 的值等于 ( )A .-5 B.5 C.-9 D.9 5.已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( )A .abB .ab C .a b + D .a b -6. 一元二次方程x2+kx-3=0的一个根是x=1,则另一个根是( )A.3B.-1C.-3D.-27.关于x 的一元二次方程x2-6x +2k =0有两个不相等的实数根,则实数k 的取值范围是( ).A .k ≤92B .k <92C .k ≥92D .k >928.方程x(x -1)=2的解是A .x =-1B .x =-2C .x1=1,x2=-2D .x1=-1,x2=29.方程x2-3|x|-2=0的最小一根的负倒数是( )(A )-1 (B ))173(41-- (C )21(3-17) (D )2110.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1 B .12 C .13 D .2511.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( ) A .14B .12C .12或14D .以上都不对12.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的年增长率相同,则年增长率为( ) A .9% B .10% C .11% D .12%13. 如图5,在ABCD Y 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD Y 的周长为( )A .422+B .1262+C .222+D .221262++或14. 设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .200915.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m+n 的值为A.1B.2C.-1D.-216.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( )A .8B .7-C .6D .517.对于任意的实数x ,代数式x2-5x +10的值是一个( )(A )非负数 (B )正数 (C )整数 (D )不能确定的数18.若一元二次方程ax2+bx +c = 0 (a ≠0) 的两根之比为2:3,那么a 、b 、c 间的关系应当是 ( )(A )3b2=8ac (B )a cab 2325922= (C )6b2=25ac (D )不能确定 19.已知方程3x2+2x -6 = 0 ,以它的两根的负倒数为根的新方程应是( )(A )6x2-2x +1=0 (B )6x2+2x +3=0 (C )6x2+2x +1=0 (D )6x2+2x -3=0 二、填空题1. 已知关于x 的一元二次方程01)12=++-x x m (有实数根,则m 的取值范围是 .2.若一元二次方程x2-(a+2)x+2a=0的两个实数根分别是3、b ,则a+b= .A D CEB图3.方程4x2+(k +1)x +1=0的一个根是2,那么k = ,另一根是 ; 4.设x1、x2 是一元二次方程x2+4x -3=0的两个根,2x1(x22+5x2-3)+a =2,则a= . 5.方程 x + 6 = x 的根是6.已知x = 1是一元二次方程02=++n mx x 的一个根,则 222n mn m ++的值为 .7.设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为 8.若实数m 满足m 2-10m + 1 = 0,则 m 4+ m -4= .9.已知一元二次方程()231310x x -++-=的两根为1x 、2x ,则1211x x += . 10.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.11.设215+=x ,则431x x x ++=__________. 12.如果 x 2-2(m +1)x +m 2+5 是一个完全平方式,则m = ;13.若方程 x 2+mx -15 = 0 的两根之差的绝对值是8,则m = ;14.若方程 x 2-x +p = 0 的两根之比为3,则 p = . 三、解答题1.解方程:()221120x x x x----=. ;().3422022+-=--x x x x2.某旅行社有100张床位,每床每晚收费10元,床位可全部租出,在每床的收费提高幅度不超过5元的情况下,若每床的收费提高2元,则减少10张床位租出,若收费再提高2元,则再减少10张床位租出,以每次提高2元的这种方式变化下去,为了获得1120元的收入,每床的收费每晚应提高多少元?3.已知关于x 的一元二次方程)0(012≠=++a bx ax 有两个相等的实数根,求4)2(222-+-b a ab 的值。

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案

北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案知识点总结:①配方法和十字叉乘法求解一元二次方程{二次项系数为±1二次项系数不是±1配方法:(a±b)2=a2+b2±2ab十字叉乘法:化简成(x±a)(x±b)=0的形式,解得x=∓a或∓b②公式法求解一元二次方程公式法:x=−b±√b2−4ac2a③因式分解法求解一元二次方程因式分解法:{(a±b)2=a2+b2±2ab a2−b2=(a−b)(a+b)④一元二次方程的根与系数的关系关系:x1+x2=−ba ;x1∙x2=ca⑤应用一元一次方程应用题第二章一元二次方程测试1(拔高题)1、下列方程为一元二次方程,求a的取值范围或者具体值:①2ax2−2bx+a=4x2②(a−1)x|a|+1−2x−7=0③ax2+6x+1=0没有实数根2、已知一元二次方程x2+k+3=0有一个根为1,则k的值为.3、已知一元二次方程为5x2+x=0,其中二次项系数为,一次项系数为,常数项为,x1x2=,x1+x2=.x2+3x−2=0 的两根,则(x1−x2)2的值为.4、设x1与x2为一元二次方程−125、关于x的一元二次方程x2−(k−3)x−k+1=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.实数根的个数由k的值确定6、已知关于x的一元二次方程x2+2mx+m2−m=0的两实数根为x1,x2,且满足x1x2=2,则x1+x2的值为()A.4B.−4C.4或−2D.−4或27、配方法解方程x2+6x+9=23x2−2=5x8、公式法解方程(x−2)(3x−5)=19x2+6x+1=49、直接开平方法解方程2(x−1)2 −18=010、因式分解法解方程3x(x−1)=3(x+2)(1−x)3(4−x)2=x2−16(1−2x)(x−8)=8x−411、如图,在矩形ABCD 中,AB =10 cm ,AD =8 cm ,点P 从点A 出发沿AB 以2cm /s 的速度向点B 运动,同时点Q 从点B 出发沿BC 以1cm /s 的速度向点C 运动,点P 到达终点后,P ,Q 两点同时停止运动。

一元二次方程(八大题型综合归纳)(原卷版)-九年级数学(北师大版)

一元二次方程(八大题型综合归纳)(原卷版)-九年级数学(北师大版)

第14讲一元二次方程(八大题型综合归纳)目录:题型1:一元二次方程的相关概念;题型2:一元二次方程的解法题型3:一元二次方程根的判别式;题型4:一元二次方程根与系数的关系题型5:配方法的应用;题型6:一元二次方程的实际应用题型7:一元二次方程的几何应用;题型8:材料信息题题型1:一元二次方程的相关概念1.下列方程,是一元二次方程(其中x ,y 是未知数)的个数是()①210x +=,②2231-=-x xy ,③214x x-=,④220ax x -+=A .1个B .2个C .3个D .4个2.写出一个以1-和5为两根且二次项系数为1的一元二次方程:___________.3.一元二次方程245x x -=的二次项系数、一次项系数和常数项分别是()A .1,4,5B .0,4-,5-C .1,4-,5D .1,4-,5-4.当m =______时,关于x 的方程()32690m m x x +++-=是一元二次方程.5.若关于x 的一元二次方程()230x k x k +++=的一个根是2-,则另一个根是()A .1B .1-C .3-D .26.若3x =是关x 的方程26ax bx -=的解,则202362a b -+的值为___________.7.若实数a ,b 分别满足2430a a -+=,2430b b -+=,且a b ¹,则()()11a b ++的值为______.8.设α,β是方程2202330x x --=的两个根,则()()222023120232a αββ--+-=_______.9.解方程:(1)2416x =.(2)22310x x -+=.(3)()220x x x -+-=.(4)22610x x -+=.10.用适当方法解下列方程:(1)2(21)9x -=;(2)212455250x x --=;(3)22(31)(1)0x x --+=;(4)2(2)(2)0x x x -+-=;(5)2152102x x -+=;题型3:一元二次方程根的判别式15.若关于x 的一元二次方程2242mx x x +=+有实数根,则m 的值有可能是()A .3-B .2-C .1D .1-16.关于x 的一元二次方程2630mx x +-=有两个不相等的实数根,则m 的取值范围是()A .3m ≥-且0m ≠B .3m <且0m ≠C .3m >-且0m ≠D .3m >-17.关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,则c =________(写出一个满足条件的值).18.已知,关于x 的一元二次方程()2222341480x m x m m --+-+=,(1)若0m >,求证:方程有两个不相等的实数根;(2)若1240m <<,m 为整数,且方程有两个整数根,求m 的值.19.关于x 的一元二次方程()222150x m x m -+++=有两个实数根.(1)求m 的取值范围;(2)若Rt ABC △的两条直角边AC BC 、的长恰好是此方程的两个实数根,斜边6AB =,求ABC 的周长.题型4:一元二次方程根与系数的关系题型5:配方法的应用题型6:一元二次方程的实际应用30.某县2020年人均可支预收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x ,则下面所列方程正确的是()A .()22.71 2.36x +=B .()22.361 2.7x +=C .()22.71 2.36x -=D .()22.361 2.7x -=31.有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了()个人.A .8B .9C .10D .1132.空地上有一段长为a 米的旧墙AB ,工人师傅欲利用旧墙和木棚栏围成一个封闭的长方形菜园(如图),已知木栅栏总长为40米,所围成的长方形菜园面积为S 平方米.若18a =,194S =,则()A .有一种围法B .有两种围法C .不能围成菜园D .无法确定有几种围法33.如图,在宽为20m ,长为30m 的矩形地面上修建两条同样宽且互相垂直的道路,其余部分作为耕地为2551m .则道路的宽为是______.34.某商店销售某种商品,平均每天可售出20件,每件盈利40元.经调查发现,商品销售单价每降1元,平均每天可多售出2件.在每件盈利不少于25元的前提下,要获利1200元利润,每件商品应降价()A .10元B .20元C .10元或20元D .13元35.《田亩比类乘除捷法》是我国南宋数学家杨辉的著作,其中记载了一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步,”意思是:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?如果设矩形的长为x 步,由题意,可列方程为______.36.一个两位数是一个一位数的平方,把这个一位数放在这个两位数的左边所成的三位数,比把这个一位数放在这个两位数的右边所成的三位数大252,求这个两位数.37.2021年7月1日是建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为48,求这个最小数(请用方程知识解答).38.全球疫情爆发时,口罩极度匮乏,中国许多企业都积极地生产口罩以应对疫情,经调查发现:1条口罩生产线最大产能是78000个/天,每增加1条生产线,每条生产线减少1625个/天,工厂的产线共x 条(1)该工厂最大产能是_____个/天(用含x 的代数式表示).(2)若该工厂引进的生产线每天恰好能生产口702000个,该工厂引进了多少条生产线?题型7:一元二次方程的几何应用39.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE BCF CDG DAH ,,, 全等,AEH BEF CFG DGH ,,, 也全等,中间小正方形EFGH 的面积与ABE 面积相等,且ABE 是以AB 为底的等腰三角形,则AEH △的面积为()A .2B .322540.如图,矩形ABCD 中,AB =点Q 从点B 开始沿BC 边向点C 以时,(1)PBQ 的面积等于8平方厘米?(2)五边形APQCD 的面积最小?最小值是多少?41.如图1,在平面直⻆坐标系中,点AOB 的面积为32.(1)求OA 的长;(2)如图2,点D 是第一象限内一点,连接OD ,AD ,BD ,OD OA =,求ADB ∠度数;(3)如图3,在(2)的条件下,点E 是第四象限内一点,连接DE ,DE BD ⊥且DE BD =,点长线上,2∠EFB=∠ODE+∠DOE ,OF=OE+OA ,求点D 的坐标.42.已知正方形ABCD ,M 为AD 上动点,AD nAM =,AE BM ⊥于E ,延长DE 交AB 于点题型8:材料信息题【材料2】已知实数m ,n 满足210m m --=,210n n --=,且m n ≠,显然m ,n 是方程210x x --=的两个不相等的实数根,由韦达定理可知1m n +=,1mn =-.根据上述材料,解决以下问题:(1)直接应用:方程42560x x -+=的解为;(2)间接应用:已知实数a ,b 满足:422710a a -+=,422710b b -+=且a b ¹,求44a b +的值.。

北师大版九年级数学上册--第二单元2.1 认识一元二次方程 练习题(含答案)

北师大版九年级数学上册--第二单元2.1 认识一元二次方程 练习题(含答案)

2.1 认识一元二次方程一、判断题(下列方程中是一元二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)( )1. 5x 2+1=0 ( )2. 3x 2+x1+1=0( )3. 4x 2=ax(其中a 为常数) ( )4. 2x 2+3x=0( )5. 5132+x =2x ( )6. 22)(x x + =2x( )7. |x 2+2x |=4二、填空题1. 一元二次方程的一般形式是____________________。

2. 将方程-5x 2+1=6x 化为一般形式为____________________。

3. 将方程(x+1)2=2x 化成一般形式为____________________。

4. 方程2x 2=-8化成一般形式后,一次项系数为__________,常数项为__________。

5. 方程5(x 2-2x+1)=-32x+2的一般形式是____________________,其二次项是__________,一次项是__________,常数项是__________。

6. 若ab ≠0,则a 1x 2+b 1x=0的常数项是__________。

7. 如果方程ax 2+5=(x+2)(x -1)是关于x 的一元二次方程,则a 的取值范围是_______。

8. 关于x 的方程(m -4)x 2+(m+4)x+2m+3=0,当m_____时,是一元二次方程,当m_____时,是一元一次方程。

9、若方程2231kx x x +=+是一元二次方程,则k 的取值范围是。

10、方程214y y --=-化为一般形式后,二次项系数是 ,一次项系数是,常数项是。

11、 若2950ax x -+=是一元二次方程,则不等式360a +>的解集是。

三、选择题1. 下列方程中,不是一元二次方程的是( )A. 2x 2+7=0B. 2x 2+23x+1=0C. 5x 2+x1+4=0 D. 3x 2+(1+x) 2+1=0 2. 方程x 2-2(3x -2)+(x+1)=0的一般形式是( )A. x 2-5x+5=0B. x 2+5x+5=0C. x 2+5x -5=0D. x 2+5=0 3. 一元二次方程7x 2-2x=0的二次项、一次项、常数项依次是( )A. 7x 2,2x,0B. 7x 2,-2x ,无常数项C. 7x 2,0,2xD. 7x 2,-2x,0 4. 方程x 2-3=(1-2)x 化为一般形式,它的各项系数之和可能是( )A.2B.-2C.32-D.3221-+5. 若关于x 的方程a(x -1)2=2x 2-2是一元二次方程,则a 的值是( )A. 2B. -2C. 0D. 不等于2 6. 关于x 2=-2的说法,正确的是( )A.由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程B.x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程C.x 2=-2是一个一元二次方程D.x 2=-2是一个一元二次方程,但不能解 7、下列方程中,不是整式方程的是( )A .21523x x +=B 3720x +-=C .2213x x+=D .1725x -=8、下列各方程中一定是关于x 的一元二次方程的是( ) A .234x x m =+B .280ax -=C .20x y +=D .560xy x -+=9、若方程2(1)1m x -+=是关于x 的一元二次方程,则m 的取值范围是()A .1m ≠B .m ≥0C .0m ≥且1m ≠D .m 为任意实数 10、下列各方程中属于一元二次方程的是( )(1)214yy -= (2)22t = (3)213x =(40= (5)325x x -= (6)22(1)20x x ++-=A .(1)(2)(3)B .(2)(3)(4)C .(1)(2)(6)D .(1)(2)11、关于x 的一元二次方程22(32)0x m x n n ---=中,二次项系数、一次项系数、常数项分别是( ) A.1,3mn ,22mn n - B.1,3m -,22mn n - C.1,m -,2n - D.1,3m ,22mn n -四、填表2.1 认识一元二次方程参考答案一、1.√ 2.× 3.√ 4.√ 5.√ 6.√ 7.√二、1. ax 2+bx+c=0(a ≠0) 2. 5x 2+6x -1=0 3. x 2+1=0 4. 0 85. 5x 2-22x+3=0;5x 2;-22x ;36. 07. ≠18. ≠4 =49.3k ≠ 10.1,4-,1 11.答案:2a >-且0a ≠三、1.C 2.A 3.D 4.C 5.D 6.D 7. C 8.A 9.C 10.D 11.B。

2023年北师大版九年级上册数学第二章一元二次方程基础提升专练 一元二次方程应用的常考类型

2023年北师大版九年级上册数学第二章一元二次方程基础提升专练 一元二次方程应用的常考类型
积的49,则0<x<3. 由题意得BP=(6-2x)cm,CQ=x cm,
则有12(x+6-2x)×2=2×6×49, 解得x=23. ∴经过23 s,四边形PBCQ的面积是矩形ABCD面积的49.
-17-
【基础提升专练】 一元二次方程应用的常考类型
(2)存在. 设两个动点运动t s时,点P与点Q之间的距离为
-2-
【基础提升专练】 一元二次方程应用的常考类型
2.根据统计局发布的数据,某市2022年一季度规 模以上工业增加值与2021年一季度同期相比下降了 9.75%,2023年一季度规模以上工业增加值与2022 年一季度同期相比增长了44%,则这两年年平均增 长率是( C ) A.8% B.12% C.14% D.21%
-14-
【基础提升专练】 一元二次方程应用的常考类型
13.如图,在矩形ABCD中,AB=6 cm,AD=2 cm,点P以2 cm/s的速度从点A出发沿折线A-B- C向点C运动,同时点Q以1 cm/s的速度从点C出发 向点D运动,当其中一个动点到达终点时,另一个 动点也停止运动.
-15-
【基础提升专练】 一元二次方程应用的常考类型
-3-
【基础提升专练】 一元二次方程应用的常考类型
3.某市发出生活垃圾分类的号召后,实现生活垃 圾分类的社区由第一季度的1250个,迅速增加到第 三季度的1800个,照此速度,今年第四季度实现生 活垃圾分类的社区可以达到 2160 个.
-4-
【基础提升专练】 一元二次方程应用的常考类型
类型2 循环(或传播)问题 4.九(1)班同学在临近毕业时,每一个同学都将自己的 照片向全班其他同学各送一张以表示纪念,全班共送了 1640张照片.若设全班有x名学生,则根据题意,可列方 程为( B ) A.x(x+1)=1640 B.x(x-1)=1640 C.2x(x+1)=1640 D.x(x-1)=2×1640

2022年春北师大版九年级数学中考一轮复习《一元二次方程的应用》专题达标测试(附答案)

2022年春北师大版九年级数学中考一轮复习《一元二次方程的应用》专题达标测试(附答案)一.选择题(共8小题,满分40分)1.某地区计划举行校际篮球友谊赛,赛制为主客场形式(每两队之间在主客场各比赛一场),已知共比赛了30场次,则共有()支队伍参赛.A.4B.5C.6D.72.如图所示,A,B,C,D为矩形的四个顶点,AB=16cm,AD=8cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向B移动,一直到达B为止;点Q以2cm/s的速度向D移动.当P,Q两点从出发开始几秒时,点P和点Q的距离是10cm.()(若一点到达终点,另一点也随之停止运动)A.2s或s B.1s或s C.s D.2s或s3.某品牌足球2020年单价为200元,到2022年后,公司将该品牌足球的单价确定为162元,则2020年到2022年该品牌足球单价平均每年降低的百分率是()A.10%B.19%C.20%D.30%4.现要在一个长为40m,宽为26m的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为950m2,那么小道的宽度应是()A.1m B.1.5m C.2m D.2.5m5.某化肥厂生产的化肥产量经过两年增长21%,则每年比上一年平均增长的百分数为()A.10%B.10.5%C.11%D.12%6.一个正方形的边长增加3cm,它的面积就增加了39cm2,这个正方形的边长为()A.5cm B.6cm C.8cm D.10cm7.如图,学校建一长方形自行车棚,一边靠墙(墙长18米),另三边用总长50米的栏杆围成,留2米宽的门,若想建成面积为240平方米的自行车棚,则车棚垂直于墙的一边的长为()A.6米B.20米C.20米或6米D.不存在8.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到C点后停止,点P也随之停止运动,当四边形APQC的面积为9cm2时,则点P运动的时间是()A.3s B.3s或5s C.4s D.5s二.填空题(共8小题,满分40分)9.新冠肺炎全球蔓延,为防控疫情,做到有“礼”有“距”,“碰肘礼”逐渐流行起来.某次会议上,每两个参加会议的人都相互一次“碰肘礼”,经统计所有人共碰肘36次,则这次会议到会人数是人.10.如图,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,动点P从点C出发,沿CA方向运动,速度是2cm/s;同时,动点Q从点B出发,沿BC方向运动,速度是1cm/s,则经过s后,P,Q两点之间相距25cm.11.《九章算术》中有一题:“今有二人同立,甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步?”请问甲走的步数是.12.某药品经过两次降价,每瓶零售价由56元降为31.5元.已知两次降价的百分率相同,则每次降价的百分率为.13.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2,图象如图所示,则小球从抛出到落地共用时为s.14.某商店如果将进价为每件8元的商品按每件10元出售,那么每天可销售200件,现采用提高售价、减少进货量的方法增加利润,如果这种商品每件的售价每涨1元,那么每天的销售量就会减少20件,若要想每天获得640元的利润,则每件的售价定为最合适.15.小强用一根10m长的铁丝围成了一个面积为6m2的矩形,则这个矩形较大边的长是m.16.一个直角三角形的两条直角边的边长相差7cm,且三角形的面积为30cm2,则该三角形的斜边长为.三.解答题(共6小题,满分40分)17.某服装厂批发应季T恤衫,其单价y(元)与批发数量x(件)(x为正整数)之间的函数关系如图所示.(1)直接写出y与x的函数关系式;(2)若每件T恤衫的成本价是45元,当100<x≤500件(x为正整数)时,服装厂如果想获得8000元利润,求一次批发多少件时所获利润为8000元?18.新冠疫情全球爆发,口罩成了生活必需品,某药店销售一种口罩,每包进价为9元,日均销售量y(包)与每包售价x(元)成一次函数关系,且10≤x<16.当每包售价为11元时,日均销售量是48包,当每包售价为15元时,日均销售量是16包.(1)求y关于x的函数表达式;(2)要使日均利润达到128元,每包售价应定为多少元?19.“疫情”期间,某商场积压了一批商品,现欲尽快清仓.老板决定在抖音直播间降价促销,据调查发现,若每件商品盈利50元,可售出500件,商品单价每下降1元,则可多售出20件,设每件商品降价x元.(1)每件商品降价x元后,可售出商品件(用含x的代数式表示);(2)若要使销售该商品的总利润达到28000元,并能尽快清仓,则每件商品应降价多少元?20.近日,广西南宁苏爷爷自家果园的上千斤皇帝柑发生蓝变(即果皮白皮层变蓝),无法正常售卖,他决定将这些皇帝柑免费寄给科研人员.网友看到苏爷爷的故事,纷纷订购表示支持.已知苏爷爷自家果园的皇帝柑有两种类型在售,一种是实惠装中型果实(简称“中果”),一种是豪华装大型果实(简称“大果”).(1)网友小张买了2箱中果,1箱大果,花了116元;网友小李买了1箱中果,2箱大果,花了124元.求每箱中果和大果的售价分别是多少元?(2)在(1)的条件下,正常情况平均每周可销售30箱大果.但为了减少库存,苏爷爷决定对大果降价销售,经调查发现,一箱大果的售价每降低2元,大果的销量每周可增加5箱,如果大果每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%.求每箱大果的售价应该降低多少元?21.如图,点O为矩形ABCD内部一点,过点O作EF∥AD交AB于点E,交CD于点F,过点O作GH∥AB交AD于点G,交BC于点H,设CH=x,BH=8﹣2x,CF=x+2,DF=3x﹣3.(1)x的取值范围是:;(2)矩形BCFE的周长等于;(3)若矩形ABCD的面积为42,x的值为;(4)求矩形OFCH的面积S的取值范围.22.某公司自主研发一款健康的产品﹣﹣燕窝饮品,主要成分是水果和燕窝.经过一段时间的门店销售发现,当售价是40元/杯,每天可售出60杯.若每杯每降低1元,就会多售出3杯.已知每杯饮品的实际成本是20元,每天的其他费用是300元,物价局规定每件销售品的利润率不得高于成本的80%.若每天的毛利润可达到600元.(1)求该饮品的售价;(2)为支持今年的“洪灾”行动,该门店每卖一杯饮品,向某救助基金会捐款1元,求该店每月(按30天计算)的捐款金额.参考答案一.选择题(共8小题,满分40分)1.解:设邀请x个球队参加比赛,根据题意可列方程为:x(x﹣1)=30.解得:x1=6,x2=﹣5(不合题意舍去),答:共有6支队伍参赛.故选:C.2.解:设当P、Q两点从出发开始x秒时(x<),点P和点Q的距离是10cm,此时AP=3xcm,DQ=(16﹣2x)cm,根据题意得:(16﹣2x﹣3x)2+82=102,解得:x1=2,x2=.答:当P、Q两点从出发开始到2秒或秒时,点P和点Q的距离是10cm.故选:D.3.解:设2020年到2022年该品牌足球单价平均每年降低的百分率为x,依题意得:200(1﹣x)2=162,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故选:A.4.解:设小道的宽度为xm,依题意得:(40﹣2x)(26﹣x)=950,整理得:x2﹣46x+45=0,解得:x1=1,x2=45.又∵40﹣2x>0,∴x<20,∴x=1.故选:A.5.解:设每年比上一年平均增长的百分数为x,原生产化肥a吨,根据题意可得:a(1+x)2=a•(1+21%),解得:x1=10%,x2=﹣2.1(不合题意舍去),故选:A.6.解:设这个正方形原来的边长为x,则x2+39=(x+3)2解得x=5,故选:A.7.解:设垂直于墙的一边的长为x米,则平行于墙的一边的长为(50+2﹣2x)米,依题意得:x(50+2﹣2x)=240,整理得:x2﹣26x+120=0,解得:x1=6,x2=20.当x=6时,50+2﹣2x=50+2﹣2×6=40>18,不合题意,舍去;当x=20时,50+2﹣2x=50+2﹣2×20=12<18,符合题意.故选:B.8.解:设动点P,Q运动t秒后,能使四边形APQC的面积为9cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=(24﹣9),解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使四边形APQC的面积为9cm2.故选:A.二.填空题(共8小题,满分40分)9.解:设这次会议到会人数是x人,依题意得:x(x﹣1)=36,整理得:x2﹣x﹣72=0,解得:x1=9,x2=﹣8(不合题意,舍去).故答案为:9.10.解:设x秒后P、Q两点相距25cm,则CP=2xcm,CQ=(25﹣x)cm,由题意得,(2x)2+(25﹣x)2=252,解得,x1=10,x2=0(舍去),则10秒后P、Q两点相距25cm.故答案是:10.11.解:设甲、乙两人相遇的时间为t,则乙走了3t步,甲斜向北偏东方向走了(7t﹣10)步,依题意得:102+(3t)2=(7t﹣10)2,整理得:40t2﹣140t=0,解得:t1=,t2=0(不合题意,舍去),∴7t=7×=.故甲走的步数是.故答案为:.12.解:设每次降价的百分率为x,依题意得:56(1﹣x)2=31.5,解得:x1=0.25=25%,x2=1.75(不合题意,舍去).故答案为:25%.13.解:令h=0,则30t﹣5t2=0,解得:t=0或t=6,∴小球从抛出到落地共用时为6s,故答案为:6.14.解:设每件商品的售价定为x元,则每件商品的销售利润为(x﹣8)元,每天的进货量为200﹣20(x﹣10)=(400﹣20x)件,依题意得:(x﹣8)(400﹣20x)=640,整理得:x2﹣28x+192=0,解得:x1=12,x2=16.又∵现采用提高售价,减少进货量的方法增加利润,∴x=16.∴每件商品的售价定为16元最为合适.故答案为:16.15.解:设这个矩形较大边的长是xm,则较小的边是(5﹣x)m,根据题意,得x(5﹣x)=6.解得x1=2(舍去),x2=3.所以,这个矩形较大边的长是3m.故答案是:3.16.解:设较短直角边的长为xcm,则较长直角边的长为(x+7)cm,依题意得:x(x+7)=30,整理得:x2+7x﹣60=0,解得:x1=5,x2=﹣12(不合题意,舍去).∴该三角形的斜边长===13(cm).故答案为:13cm.三.解答题(共6小题,满分40分)17.解:(1)当0<x≤100且x为正整数时,y=80;当100<x≤500且x为正整数时,设y与x的函数关系式为y=kx+b(k≠0),将(100,80),(500,60)代入y=kx+b得:,解得:,∴此时y与x的函数关系式为y=﹣x+85;当x>500且x为正整数时,y=60.故y与x的函数关系式为y=.(2)当100<x≤500且x为正整数时,y=﹣x+85.依题意得:(y﹣45)x=8000,即(﹣x+85﹣45)x=8000,整理得:x2﹣800x+160000=0,解得:y1=y2=400.答:一次批发400件时所获利润为8000元.18.解:(1)设y关于x的函数表达式为y=kx+b(k≠0),将(11,48),(15,16)代入y=kx+b得:,解得:,∴y关于x的函数表达式为y=﹣8x+136(10≤x<16).(2)依题意得:(x﹣9)(﹣8x+136)=128,整理得:(x﹣13)2=0,解得:x1=x2=13,∴要使日均利润达到128元,每包售价应定为13元.19.解:(1)∵若每件商品盈利50元,可售出500件,商品单价每下降1元,则可多售出20件,∴当每件商品降价x元时,每件商品的销售利润为(50﹣x)元,可售出商品(500+20x)件.故答案为:(500+20x).(2)依题意得:(50﹣x)(500+20x)=28000,整理得:x2﹣25x+150=0,解得:x1=10,x2=15.又∵要尽快清仓,∴x=15.答:每件商品应降价15元.20.解:(1)设每箱中果的售价为x元,每箱大果的售价为y元,依题意得:,解得:.答:每箱中果的售价为36元,每箱大果的售价为44元.(2)设每箱大果的售价应该降低m元,则每箱大果的售价为(44﹣m)元,每周的销售量为(30+5×)箱,依题意得:(44﹣m)(30+5×)=1600,整理得:m2﹣32m+112=0,解得:m1=4,m2=28.44×70%=30.8(元).当m=4时,44﹣m=44﹣4=40>30.8,符合题意;当m=28时,44﹣m=44﹣28=16<30.8,不合题意,舍去.答:每箱大果的售价应该降低4元.21.解:(1)由题意知,解得1<x<4,故答案为:1<x<4;(2)由题知(8﹣2x+x+x+2)×2=20,故答案为:20;(3)由题知(8﹣2x+x)(3x﹣3+x+2)=42,解得x=2或x=(舍去),故答案为:2;(4)由题知S=x(x+2)=(x+1)2﹣1,∵1<x<4,∴22﹣1<S<52﹣1,即3<S<24.22.解:(1)设该饮品的售价为x元,则每杯的销售利润为(x﹣20)元,每天的销售量为60+3(40﹣x)=(180﹣3x)杯,依题意得:(x﹣20)(180﹣3x)﹣300=600,整理得:x2﹣80x+1500=0,解得:x1=30,x2=50.又∵每件销售品的利润率不得高于成本的80%,∴x=30.答:该饮品的售价为30元.(2)(180﹣3×30)×1×30=(180﹣90)×1×30=90×1×30=2700(元).答:该店每月(按30天计算)的捐款金额为2700元.。

北师大版九年级数学一元二次方程练习题

(一元二次方程)欧阳学文一、选择题(共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列方程中不一定是一元二次方程的是( )A.(a3)x2=8 (a≠3)B.ax2+bx+c=0C.(x+3)(x2)=x+5D.2下列方程中,常数项为零的是( )A.x2+x=1B.2x2x12=12;C.2(x21)=3(x1)D.2(x2+1)=x+23.一元二次方程2x23x+1=0化为(x+a)2=b的形式,正确的是( )A. ;B.;C.;D.以上都不对4.关于的一元二次方程的一个根是0,则值为()A、 B、 C、或 D、5.已知三角形两边长分别为2和9,第三边的长为二次方程x214x+48=0的一根, 则这个三角形的周长为( ) A.11 B.17 C.17或19 D.196.已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是()A、 B、3 C、6 D、97.使分式的值等于零的x是( )A.6 B.1或6C.1D.68.若关于y的一元二次方程ky24y3=3y+4有实根,则k的取值范围是( )A.k>B.k≥且k≠0C.k≥D.k>且k≠09.已知方程,则下列说中,正确的是()(A)方程两根和是1 (B)方程两根积是2(C)方程两根和是(D)方程两根积比两根和大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题4分,共20分)11.用______法解方程3(x2)2=2x4比较简便.12.如果2x2+1与4x22x5互为相反数,则x的值为________.13.14.若一元二次方程ax2+bx+c=0(a≠0)有一个根为1,则a、b、c的关系是______.15.已知方程3ax2bx1=0和ax2+2bx5=0,有共同的根1, 则a= ______, b=______.16.一元二次方程x23x1=0与x2x+3=0的所有实数根的和等于____.17.已知3是方程x2+mx+7=0的一个根,则m=________,另一根为_______.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.19.已知是方程的两个根,则等于__________.20.关于的二次方程有两个相等实根,则符合条件的一组的实数值可以是,.三、用适当方法解方程:(每小题5分,共10分)21.22.四、列方程解应用题:(每小题7分,共21分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数. 24.如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

北师大版第二章一元二次方程测试题

北师大版九年级数学上第二章一元二次方程测试题一、选择题1、一元二次方程2210x x --=的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根D.没有实数根2、若关于z 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是( ) A .m<l B .m>-1 C .m>l D .m<-13、一元二次方程x 2+x +2=0的根的情况是( )A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根 4、用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=5、已知函数2y ax bx c =++的图象如图(7)所示,那么关于x 的方程220ax bx c +++=的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根6、关于x 的方程20x px q ++=的两根同为负数,则( ) A .0p >且q >0 B .0p >且q <0 C .0p <且q >0 D .0p <且q <07、若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )(A )-1或34 (B )-1 (C )34(D )不存在 8、下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )(A )x 2+4=0 (B )4x 2-4x +1=0 (C )x 2+x +3=0 (D )x 2+2x -1=0 9、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( ) A :200(1+a%)2=148 B :200(1-a%)2=148 C :200(1-2a%)=148 D :200(1-a 2%)=148 10、下列方程中有实数根的是( )图(7)(A )x 2+2x +3=0 (B )x 2+1=0 (C )x 2+3x +1=0 (D )111x x x =-- 11、已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围是( ) A . m >-1 B . m <-2 C .m ≥0 D .m <0 12、如果2是一元二次方程x 2=c 的一个根,那么常数c 是( )A 、2B 、-2C 、4D 、-4二、填空题1、已知一元二次方程01322=--x x 的两根为1x 、2x ,则=+21x x2、方程()412=-x 的解为 。

北师大版一元二次方程测试题

一元二次方程测试题 一、选择题:( 30 分)1.下列方程不是一元二次方程的是()A. y 2+2y + 1= 0B. x 2=1- xC. p 2- pD. x 3-x +1=x 22.用配方法解下列方程时,配方有错误的是( )A 、 x 22 x 990 化为 ( x 1)2 100B 、 x 28x 90化为 ( x 4)22572812 2 10 C 、 2t27t 40 化为 ( t)、 3 y24 y 2 0 化为( y3)9416D3.一元二次方程 x 2- 4= 0 的实数根为()A. x =3B. x =- 2C. x 1 =2,x 2=- 2D. x 1=0,x 2=24.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是 ()A 、 8cm 2B、9cm 2C、 64cm 2D、 68cm 25.下列方程中:① x 2-3x -4=0;② y 2 +9=6y ;③ 2x 2- 5x +9=0;④ x 2+2=2 x 有两个不相等的实数根的方程的个数是()A. 1 个B. 2 个C. 3个D. 4个6.已知关于 x 的方程 x 23x a0 的一个解为 2,那么另一个解是 ()A 、 -2B、-1C 、 1D 、 27. 满足两实数根的和等于4 的方程为()A. x 2+4x + 6= 0B. x 2 +4x -6=0C. x 2- 4x -6=0D. x 2 -4x +6=08.根据下列表格的对应值,判断ax 2bx c 0 ( a 0, a、b、 c 为常数)的一个解 x 的取值范围是:()x 3.23 3.24 3.25 3.26 ax2bx c-0.06-0.020.030.09A、 3﹤x﹤ 3.23B、 3.23 ﹤x﹤ 3.24C、 3.24﹤ x ﹤3.25D、 3.25 ﹤x﹤ 3.26x 2 5 x49.若分式x1的值为 0,则x的值为 ()A、-1 或-4B、-1C、 -4D、无法确定210.从正方形的铁皮上,截去2cm宽的一条长方形,余下的面积是48cm,则原来的正方形铁皮的面积是 ( )A、 8cm2B、9cm2C、64cm2D、68cm2二、填空题:( 30分)11.将方程 3x22x5x 2化为一元二次方程的一般形式为.12.方程 2x 213x 的二次项系数是,一次项系数是,常数项是13. 方程( 2x- 1) 2=2x-1 的根是.14. 请写出有一个根为3的一个一元二次方程:.15.等腰三角形的底和腰是方程x26x 8 0的两根,则该三角形的周长是16.当 x=时,代数式 7x2-x的值等于 8 .17.若方程 kx26x10有两个实数根,则 k 的取值范围是.18.原价为300 元的服装连续降价两次,现价是每件243 元,求平均每次降价的百分率为19.一长方形的周长为36cm,面积为 45cm2,则长方形的长和宽分别为.20. a是实数,且a4| a22a 8 |0 ,则 a 的值是三、解答题( 4×4′+6′ =22′)21、x212x4022、 3x22x 1 023、 x22x 5 024、3 2 x2x x225.解方程:已知 a 、b、 c均为实数且(a≠0)求方程ax2bx c0 的根.(6分)四.列方程解应用题26. ( 8′)我校团委准备举办学生绘画展览,为美化画面,在长30cm、宽为20cm 的矩形画面的四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等,求彩纸的宽度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版专题复习之《一元二次方程》基础训练题
一.选择题(共8小题)
1.下列关于x的方程一定是一元二次方程的是()
A.x2+2x=x2﹣1B.m2x2﹣7+x2=0
C.x2+﹣1=0D.ax2+bx+c=0
2.下列方程属于一元二次方程的是()
A.x3+x2+2=0B.y=5﹣x C.x+=5D.x2+2x=3
3.下列方程中,是关于x的一元二次方程的是()
A.x(x﹣2)=0B.x2﹣1﹣y=0C.x2+1=x2﹣2x D.ax2+c=0
4.方程2x2=6x﹣9的二次项系数、一次项系数、常数项分别为()A.6,2,9B.2,﹣6,9C.2,﹣6,﹣9D.2,6,﹣9
5.若一元二次方程(k﹣1)x2+3x+k2﹣1=0有一个解为x=0,则k为()A.±1B.1C.﹣1D.0
6.一元二次方程x2﹣4=0的根是()
A.x=2B.x=±2C.x=4D.x=±4
7.方程x2=4的根为()
A.x=2B.x=﹣2C.x=0D.x=±2
8.用配方法解方程x2﹣4x+2=0,配方正确的是()
A.(x+2)2=2B.(x﹣2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6二.填空题(共8小题)
9.关于x的方程(m﹣1)x|m|+1+3x﹣2=0是一元二次方程,则m的值为.
10.关于x的方程(k﹣1)x|k|+1﹣x+5=0是一元二次方程,则k=.
11.若方程(m﹣2)x|m|﹣x﹣2=0是一元二次方程,则m的值为.
12.一元二次方程中,a=,b=,c=.
13.设a为一元二次方程2x2+3x﹣2022=0的一个实数根,则2﹣6a﹣4a2=.14.对于实数p、q,我们用符号min{p,q}表示p、q两数中较小的数,如min{1,2}=1,若min{(x﹣1)2,x2}=1,则x=.
15.如果关于x的方程(x﹣1)2=m没有实数根,那么实数m的取值范围是.
16.把方程x2+2x﹣3=0化成(x+m)2=n的形式,则m+n的值是.
三.解答题(共4小题)
17.解关于x的方程:mx2+4=3(1﹣x2)(m≠﹣3).
18.已知关于x的方程(m+1)+(m﹣2)x﹣1=0,问:
(1)m取何值时,它是一元二次方程并猜测方程的解;
(2)m取何值时,它是一元一次方程?
19.试证明:不论m为何值,关于x的方程(m2+2m+2)x2﹣(4m﹣1)x﹣7=0总为一元二次方程.
20.阅读理解:
定义:如果关于x的方程(a1≠0,a1、b1、c1是常数)与
(a2≠0,a2、b2、c2是常数),其中方程中的二次项系数、一次项系数、常数项分别满足a1+a2=0,b1=b2,c1+c2=0,则这两个方程互为“对称方程”.比如:求方程2x2﹣3x+1=0的“对称方程”,这样思考:由方程2x2﹣3x+1=0可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个方程的“对称方程”.
请用以上方法解决下面问题:
(1)填空:写出方程x2﹣4x+3=0的“对称方程”是.
(2)若关于x的方程5x2+(m﹣1)x﹣n=0与﹣5x2﹣x=1互为“对称方程”,求(m+n)2的值.。

相关文档
最新文档