数列求和常见的7种方法
数列求和的九种方法

数列求和的九种方法数列求和是数学中的一项基本技巧,在解题过程中经常会遇到。
为了求和一个数列,我们需要确定数列的通项公式,即根据数列中的规律找到一个表示该数列的函数。
在数列求和的过程中,有许多不同的方法可以使用。
下面将介绍九种常见的数列求和方法:逐项相加法、换元法、望眼法、边缘和法、归纳法、递推法、辅助行法、减法求和法和计算机辅助法。
1.逐项相加法逐项相加法是最基本的数列求和方法,即将数列中的每一项相加得到总和。
这种方法适用于数列的项数较少且没有明显的规律的情况。
2.换元法换元法是将数列中的每一项用一个新的变量表示,从而简化数列求和。
通过代入和逆代(将通项公式反解为原始项)两种方法,将数列求和转化为变量求和,从而计算出数列的总和。
3.望眼法望眼法是通过观察数列中的规律,寻找数列中的重复子列来简化求和。
通过找到重复子列后可以将数列分解为几个相同的子列求和,从而简化计算。
4.边缘和法边缘和法是将数列中的每一项的和用前面项的和表示,从而将数列求和转化为前缀和的计算。
该方法适用于数列中的每一项与前面的项之间有明显的关系的情况。
5.归纳法归纳法是通过数学归纳法的思想,利用数列的递推关系来计算数列的总和。
通过假设前n-1项的和为Sn-1,并推导得到前n项的和Sn的表达式,从而计算数列的总和。
6.递推法递推法是通过数列的递推关系来计算数列的总和。
通过将数列中的每一项与前面的项之间的关系列出,从而将数列的求和转化为递推关系的计算。
7.辅助行法辅助行法是将数列构造成一个表格的形式,通过辅助行的计算来求解数列的总和。
通过辅助行的计算,可以将原本复杂的数列求和转化为简单的表格求和。
8.减法求和法减法求和法是通过将数列求和转化为数列的差的求和来计算数列的总和。
通过将数列中相邻项之间的差进行求和,从而求解数列的总和。
9.计算机辅助法计算机辅助法是利用计算机的计算能力来求解复杂的数列求和问题。
通过编写计算机程序来实现数列求和,从而计算出数列的总和。
数列求和7种方法(方法全_例子多)(学生版)

数列求和的基本方法和技巧[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n Sn f 的最大值.二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和.三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8] 求数列{n(n+1)(2n+1)}的前n 项和.五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6) n n n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.[例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2==n a c n n n ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足nn n a a a -=++122 *N n ∈ ⑴求数列{}n a 的通项公式; ⑵设||||||21n n a a a S +++= ,求n S ;。
数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。
下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。
一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。
三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
数列求和的七种基本方法

数列求和的七种根本方法甘志国局部容(已发表于 数理天地(高中),2014(11):14-15)数列求和是数列问题中的基此题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过例题(这些例题涵盖了2014年高考卷中的数列求和大题)简单介绍数列求和的七种根本方法.1 运用公式法很多数列的前n 项和n S 的求法,就是套等差、等比数列n S 的公式,因此以下常用公式应当熟记:还要记住一些正整数的幂和公式:例1 数列}{n a 的前n 项和232n n S n -=,求数列}{n a 的前n 项和n T . 解 由232n n S n -=,可得n a n 233-=,160≤⇔>n a n ,所以: (1)当16≤n 时,n T =232n n S n -=. (2)当17≥n 时,所以 2232(1,2,,16)32512(17,)n n nn T n n n n *⎧-=⎪=⎨-+≥∈⎪⎩N 且例2 求1)2(3)1(21⋅++-⋅+-⋅+⋅=n n n n S n .解 设2)1()1(k n k k n k a k -+=-+=,此题即求数列}{k a 的前n 项和.高考题1 (2014年高考卷文科第19题(局部))求数列{}21n -的前n 项和n S . 答案:2n S n =.高考题2 (2014年高考卷理科第19题(局部))求数列{}24n -的前n 项和n S . 答案:23n S n n =-.高考题3 (2014年高考卷文科第17题)在等比数列{}n a 中,253,81a a ==.(1)求n a ; (2)设3log nn b a =,求数列{}n b 的前n 项和n S .答案:(1)13n na -=;(2)22n n nS -=.高考题4 (2014年高考卷文科第16题){}n a 是首项为1,公差为2的等差数列,n S 表示{}n a 的前n 项和.(1)求n a 及n S ;(2)设{}n b 是首项为2的等比数列,公比q 满足244(1)0q a q S -++=,求{}n b 的通项公式及其前n 项和n T .答案:(1)221,n n a n S n =-=;(2)2122,(41)3n n n n b T -==-.2 倒序相加法事实上,等差数列的前n 项和n S 的公式推导方法就是倒序相加法. 例3 求正整数m 与()n m n <之间的分母为3的所有既约分数的和S . 解 显然,这些既约分数为:有 )31()32()34()34()32()31(-+-+-++++++=n n n m m m S 也有 )31()32()34()34()32()31(++++++-+-+-=m m m n n n S所以 2222),(2)(2)(2m n S m n m n n m S -=-=-⋅+=例4 设4()42xx f x =+,求和12320012002200220022002f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.解 可先证得()(1)1f x f x +-=,由此结论用倒序相加法可求得答案为20012. 3 裂项相消法例5 假设}{n a 是各项均不为的等差数列,求证:1113221111++=+++n n n a a n a a a a a a . 证明 设等差数列}{n a 的公差为d :假设0d =,要证结论显然成立;假设0≠d ,得例8 证明222211112(123n n*++++<∈N 且2)n ≥. 证明 22221312111n++++高考题5 (2014年高考全国大纲卷理科第18题)等差数列{}n a 的前n 项和为n S ,110a =,2a 为整数,且4n S S ≤.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 答案:(1)133n a n =-;(2)10(103)n nS n =-.高考题6 (2014年高考卷文科第19题)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有31)1(1)1(1)1(12211<++++++n n a a a a a a .答案:(1)12a =;(2)2n a n =;(3)当1n =时,可得欲证成立.当2n ≥时,111111(1)2(21)(21)(21)22121n n a a n n n n n n ⎛⎫=<=- ⎪++-+-+⎝⎭,再用裂项相消法可得欲证.高考题7 (2014年高考卷理科第19题)等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.(1)求数列}{n a 的通项公式;(2)令n b =,4)1(11+--n n n a a n求数列}{n b 的前n 项和n T . 答案:(1)21n a n =-,2221221n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数.4 分组求和法例9 求11111111111224242n nS -⎛⎫⎛⎫⎛⎫=+++++++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解 设11111242n n a -=++++,得1122n n a -=-.所以此题即求数列1122n -⎧⎫-⎨⎬⎩⎭的前n 项和: 例10 设数列}{n a 的前n 项和n S 满足221⎪⎭⎫⎝⎛+=n n a S ,又n n n S b )1(-=,求数列}{n b 的前n 项和n T .解 在221⎪⎭⎫⎝⎛+=n n a S 中,令1n =可求得11=a .还可得相减,得所以}{n a 是首项为1公差为2的等差数列,得所以 222)1(,21n b n a S n n n n ⋅-==⎪⎭⎫⎝⎛+=当n 为偶数时, 当n 为奇数时, 总之,2)1()1(+⋅-=n n T nn . 高考题8 (2014年高考卷文科第15题){}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.答案:(1)1=3,=32n n n a n b n -+;(2)3(1)212n n n ++-. 高考题9 (2014年高考卷文科第19题)在等差数列{}n a 中,公差2d =,2a 是1a 与4a 的等比中项.(1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)nn n T b b b b b =-+-+-+-…,求n T .答案:(1)2n a n =,2(1)2(1)2n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数为偶数.高考题10 (2014年高考卷理科第19题(局部))求数列12(1)n n n ⎧⎫-⎨⎬+⎩⎭的前n 项和n S .答案:1221n nn +--+. 5 错位相减法高考题11 (2014年高考卷理科第17题)首项都是1的两个数列{}{}∈≠n b b a n n n ,0(,N *)满足02111=+-+++n n n n n n b b b a b a .(1)令nnn b a c =,求数列{}n c 的通项公式; (2)假设13-=n n b ,求数列{}n a 的前n 项和n S .解 (1)12-=n c n .(2)得13)12(-⋅-==n n n n n c b a .先写出n S 的表达式:13213)12(37353311-⋅-++⋅+⋅+⋅+⋅=n n n S ①把此式两边都乘以公比3,得n n n n n S 3)12(3)32(35333131321⋅-+⋅-++⋅+⋅+⋅=- ②①-②,得n n n n S 3)12(32323232121321⋅--⋅++⋅+⋅+⋅+=-- ③13)12()3232323232(213210-⋅--⋅++⋅+⋅+⋅+⋅=--n n n n S ④由等比数列的前n 项和公式,得23)22(13)12(132+⋅-=+⋅-++-=n n n n n n S ⑤因为此解答确实步骤多,且有三步容易出错:(1)等式③右边前n 项的符号都是"+〞,但最后一项为哪一项"—〞;(2)当等式③右边的前n 项不组成等比数列时,须把第一项作微调,变成等比数列(即等式④),这增加了难度;(3)等式⑤中最后一步的变形(即合并)有难度.但这种方法(即错位相减法)又是根本方法且程序法,所以备受命题专家的青睐,在高考试卷中频频出现就缺乏为怪了.考生在复习备考中,应彻底弄清、完全掌握,争取拿到总分值.这里笔者再给出一个小技巧——检验:算得了n S 的表达式后,一定要抽出万忙的时间检验一下21,S S 是否正确,假设它们均正确,一般来说就可以确定算对了,否则就算错了,需要检查(重点是检查容易出错的三点)或重算.对于此题,已经算出了13)1(+⋅-=n n n S ,所以10,121==S S .而由通项公式可知1033,1111121=⋅+==⋅=S S S ,所以求出的答案正确.高考题12 (2014年高考课标全国卷I 文科第17题){}n a 是递增的等差数列,42,a a 是方程2560x x -+=的根.(1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 答案:(1)121+=n a n . (2)用错位相减法可求得答案为1242++-n n . 高考题13 (2014年高考卷文科第18题)数列{}n a 满足111,(1)(1),n n a na n a n n n +==+++∈N *.(1)证明:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)设3nn b =,求数列{}n b 的前n 项和n S . 答案:(1)略.(2)由(1)可求得2n a n =,所以3n n b n =⋅,再用错位相减法可求得433)12(1+⋅-=+n n n S .高考题14 (2014年高考卷文科第19题)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(n ∈N *). (1)证明:数列{}n b 为等比数列;(2)假设11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列2{}n n a b 的前n 项和n S .答案:(1)略.(2)可求得,2n n n a n b ==,所以24n n n a b n =⋅,再用错位相减法可求得944)13(1+⋅-=+n n n S .高考题15 (2014年高考卷理科第19题)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(n ∈N *).(1)假设12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)假设11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 答案:(1)2=3n S n n -.(2)可求得,2n n n a n b ==,所以2n n n a nb =,再用错位相减法可求得答案为nn n T 222+-=. 6 待定系数法例11 数列}3)12{(nn ⋅-的前n 项和=n S .解 设等差数列{}m a 的公差为d ,等比数列{}m b 的公比为(1)q q ≠,得 先用错位相减法求数列{}m m a b ⋅的前n 项和n S :所以有下面的结论成立:假设{},{}m m a b 分别是等差数列、等比数列(其公比1≠q ),且11,a b 均是与n 无关的常数,则数列{}m m a b ⋅的前n 项和b q b an S n n -+=)(,其中,a b 是与n 无关的常数.由此结论就可以用待定系数法快速求解此题: 可设()3n n S an b b =+⋅-(其中,a b 是常数).可得123,32730S S ==+=,所以3()39(2)30a b b a b b +-=⎧⎨+-=⎩,解得33a b =⎧⎨=-⎩,所以33)1(1+⋅-=+n n n S .例12 求和12212+22+32++(1)2+2n n n n S n n --=⋅⋅⋅-⋅⋅.解 得012111111+2+3++22222n n n S n -⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.用待定系数法可求出该等式的右边为1242n n -+-,所以2224n n S n +=--. 七、求导法、积分法例13 (1)求证:)1(111132≠--=++++++x x x x x x x n n; (2)求证:)1()1(1]1)1[(321212≠-+--=++++-x x x n x nx x x n n ;(3)求数列{}(21)3nn -⋅的前n 项和n S(此即例6).解 (1)当0=x 时,显然成立.当0≠x 时,由等比数列的前n 项和公式知,欲证结论也成立.(2)视(1)的结论为两个函数相等,两边求导后即得欲证成立.(3)1(21)3=6(3)3nn n n n --⋅⋅-.由(2)的结论中令3=x ,得数列{}13n n -⋅的前n 项和为413)12(+⋅-n n ;又数列{}3n的前n 项和为2331-+n .所以数列{}(21)3nn -⋅的前n 项和为高考题16 (2008年高考卷第23题)请先阅读:在等式∈-=x x x (1cos 22cos 2R )的两边对*求导,得)1cos 2()2(cos 2'-='x x .由求导法则,得)sin (cos 42)2sin (x x x -⋅=⋅-,化简后得等式x x x cos sin 22sin =.(1)利用上题的想法(或其他方法),试由等式∈++++=+x x C x C x C C x nn n n n n n ()1(2210 R ,整数)2≥n 证明:∑=--=-+nk k k n n x kC x n 211]1)1[(.(2)对于整数3≥n ,求证: (i))1(1=-∑=nk knkkC ; (ii))1(12=-∑=nk k n kC k ;(iii)1121110+-=++=∑n C kn nk kn .答案:(1)在等式两边对x 求导后移项可得欲证. (2) (i)在结论(1)中令1-=x 可证.(ii)由等式两边对x 求导后再求导,又令1-=x ,得0)1()1(22=--∑=-nk k k nCk k ,即0)()1(12=--∑=nk kn kC k k ,再由结论(i)得结论(ii)成立.(iii)在等式两边在[0,1]上对x 积分后可得欲证.。
数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。
下面将介绍数列求和的8种常用方法。
1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。
例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。
例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。
首项与末项之和等于和的平均数乘以项数。
例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。
等差数列的和等于首项乘以项数,再加上项数与公差之积的和。
例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。
5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。
平均数等于数列中的第一项与最后一项的平均值。
例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。
首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。
例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。
可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。
例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。
高中数列求和的7种方法

破解数列求和的6种常见方法数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种方法进行系统探讨。
一、公式求和法通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式求和,或者利用前个正整数和的计算公式等直接求和。
因此有必要熟练掌握一些常见的数列的前项和公式.正整数和公式有:例1 已知数列的前项和为,且若,求数列的前项和分析:根据数列的项和前项和的关系入手求出再根据()求出数列的通项公式后,确定数列的特点,根据公式解决.【解析】当时,当时,适合上式,,,即,是首项为4、公比为2的等比数列.【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题.二、分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如:①,其中②例2 已知数列的通项公式为求数列的前项和.分析:该数列的通项是由一个等比数列与一个等差数列组成的,所以可将其转化为一个等比数列与一个等差数列进行分组求和.【解析】===【能力提升】在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别构成等差数列或等比数列,那么我们就可以用此方法求和.三、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可用此法来求和.例3 已知数列是首项为公比为的等比数列,设,数列满足求数列的前项和分析:根据等比数列的性质可以知道数列为等差数列,这样数列就是一个等差数列与一个等比数列对应项的乘积构成的数列,因而可考虑用错位相减法来解决.【解析】由题意知,,又,故,.,于是两式相减,得.【能力提升】错位相减法适用于数列,其中是等差数列,是等比数列.若等比数列中公比未知,则需要对公比分两种情况进行分类讨论.四、倒序相加法如果一个数列,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前项和即可用倒序相加法.例4 已知函数求分析:由所求的和式的特点,易想到探究:和为1的两个自变量函数值的和是否为常数.从而确定可否用倒序相加法求和.【解析】因为所以设, ①②①+ ②得:,所以【能力提升】倒序相加法来源于课本,是等差数列前项和公司推导时所运用的方法,它是一种重要的求和方法。
数列求和7种方法(方法全_例子多)之欧阳语创编
数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1] 已知21=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.解:由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32(利用常用公式)=xx x n--1)1(=211)211(21--n =1-n 21[例2] 设Sn =1+2+3+…+n,n∈N*,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得)1(21+=n n S n ,)2)(1(21++=n n S n (利用常用公式) ∴1)32()(++=n nS n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当nn 8=,即n =8时,501)(max =n f 二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n 项和,其中{ an }、{ bn }分别是等差数列和等比数列. [例3]求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②(设制错位)①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=--∴21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n nnS (错位相减)∴1224-+-=n nn S 练习题1 已知,求数列{an }的前n 项和Sn.答案:练习题的前n 项和为____答案:三、逆序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n nn n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由m n n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得 nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加) ∴n nn S 2)1(⋅+=题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知, 两式相加得:所以.四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得Sn =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n+-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n-+=++=111(裂项)则11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+-=11-+n[例10] 在数列{an}中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{bn}的前n 项的和.解: ∵211211nn n n n a n=++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{bn}的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n = 18+n n (2009年广东文)20.(本小题满分14分)已知点(1,31)是函数,0()(>=a a x f x 且1≠a )的图象上一点,等比数列}{n a 的前n 项和为c n f -)(,数列}{n b )0(>n b 的首项为c ,且前n 项和n S 满足n S -1-n S =n S +1+n S (n ≥2). (1)求数列}{n a 和}{n b 的通项公式;(2)若数列{}11+n n b b 前n 项和为n T ,问n T >20091000的最小正整数n 是多少?0.【解析】(1)()113f a ==,()13xf x ⎛⎫∴= ⎪⎝⎭()1113a f c c =-=-,()()221a f c f c =---⎡⎤⎡⎤⎣⎦⎣⎦29=-, ()()323227a f c f c =---=-⎡⎤⎡⎤⎣⎦⎣⎦. 又数列{}n a 成等比数列,22134218123327a a c a ===-=-- ,所以1c =;又公比2113a q a ==,所以12112333n nn a -⎛⎫⎛⎫=-=- ⎪⎪⎝⎭⎝⎭*n N ∈ ;又0n b >,0n S >,11n n S S -∴-=; 数列{}nS 构成一个首相为1公差为1的等差数列,()111n S n n =+-⨯= , 2n S n =当2n ≥, ()221121n n n b S S n n n -=-=--=- ;21n b n ∴=-(*n N ∈);(2)12233411111n n n T b b b b b b b b +=++++()1111133557(21)21n n =++++⨯⨯⨯-⨯+1111111111112323525722121n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭11122121n n n ⎛⎫=-= ⎪++⎝⎭; 由1000212009n n T n =>+得10009n >,满足10002009n T >的最小正整数为112.练习题1..练习题2。
数列求和的几种常用方法
专题: 数列求和的几种常用方法知识点归纳1等差数列的前n 项和公式, 等比数列的前n 项和公式: S n =d n n na 2)1(1-+S n =2)(1n a a n + S n =d n n na n 2)1(--当d ≠0时,S n 是关于n 的二次式且常数项为0; 当d=0时(a 1≠0),S n =na 1是关于n 的正比例式 当q=1时,S n =n a 1 (是关于n 的正比例式); 当q≠1时,S n =qq a n--1)1(1 S n =qq a a n --112.基本公式法:○1等差、等比数列的前n项和公式、○2()()2221121216n n n n +++=++ 、○3()23333112314n n n ++++=+⎡⎤⎣⎦ 、○40122nnn n n n C C C C ++++=3拆项法求数列的和,如a n =2n+3n4错位相减法求和,如a n =(2n-1)2n(非常数列的等差数列与等比数列的积的形式) 5分裂项法求和,如a n =1/n(n+1)111n n =-+(分子为非零常数,分母为非常数列的等差数列的两项积的形式) 6反序相加法求和,如a n =nnC 1007求数列{a n }的最大、最小项的方法:①a n+1-a n =……⎪⎩⎪⎨⎧<=>000如a n = -2n 2+29n-3②⎪⎩⎪⎨⎧<=>=+1111 nn a a (a n >0) 如a n =nnn 10)1(9+ ③ a n =f(n) 研究函数f(n)的增减性 如a n =1562+n n题型讲解例7 (分情况讨论)求和:)(*122221N n b abba b ab a a S n n n n n nn ∈++++++=----解:①当a=0或b=0时,)(n n n a b S =②当a=b 时,n n a n S )1(+=; ③当a ≠b 时,ba baS n n n --=++11例8(分部求和法)已知等差数列{}n a 的首项为1,前10项的和为145,求解:首先由3145291010110=⇒=⨯⨯+=d da S则12(1)32322n nn a a n d n a =+-=-⇒=⋅- 22423(222)2n na a a n ∴+++=+++- 12(12)32322612nn n n +-=-=⋅---练习(分部求和法)求数列1,3+13,32+132, (3)+13n的各项的和解:其和为: (1+3+ (3))+(13132++……+13n)=3121321n n+--+-=12(3n +1-3-n )例9(裂项求和法))(,32114321132112111*N n n∈+++++++++++++++解:)1(2211+=+⋯++=k k k a k ,])1n (n 1321211[2S n ++⋯+⋅+⋅=∴1211121113121211[2+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+⋯+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=n n n n n 练习(裂项求和法)已知数列{}n a 为等差数列,且公差不为0,首项也不为0,求和:∑=+ni i i a a 111解:首先考虑=∑=+ni i i a a 111∑=+-ni i ia a d 11)11(1则∑=+ni i i a a 111=1111)11(1++=-n n a a na a d.242n a a a +++点评:已知数列{}na为等差数列,且公差不为0,首项也不为0,下列求和11n ni id===∑∑例10(错位相减法)1.设a为常数,求数列a,2a2,3a3,…,na n,…的前n项和解:①若a=0时,S n=0②若a=1,则S n=1+2+3+…+n=)1n(n21-③若a≠1,a≠0时,S n-aS n=a(1+a+…+a n-1-na n),S n=]naa)1n(1[)a1(a1nn2+++--练习(错位相减法)2.已知1,0≠>aa,数列{}n a是首项为a,公比也为a的等比数列,令)(lg Nnaabnnn∈⋅=,求数列{}n b的前n项和n S解:,lgn nn na ab n a a==⋅232341(23)lg(23)lgnnnnS a a a na aaS a a a na a+∴=++++=++++……①……②①-②得:anaaaaSa nnnlg)()1(12+-+++=-3.求和Sn=nnnn212232252321132-+-++++-解由原式乘以公比21得:21Sn=1322122322321+-+-+++nnnn原式与上式相减,由于错位后对应项的分母相同,可以合并,∴S n-21Sn=21+112212212121+---+++nnn即S n=32232++-nn一般地, 当等比数列{b n}的公比为q, 则错位相减的实质是作“S n- qS n”求和.点评:设数列{}n a的等比数列,数列{}n b是等差数列,则数列{}n n ba的前n项和nS求解,均可用错位相减法例11(递推法)已知数列{}n a的前n项和n S与n a满足:21,,-n n n S S a )2(≥n 成等比数列,且11=a ,求数列{}n a 的前n 项和n S解:由题意:21(),2n n n S a S =-1n n n a S S -=-∴211111()()()22n n n n n n n n S S S S S S S S ---=--⇒-=1111112(1)2211.21nn nn n n S S S S S n -∴-=⇒=+-=-∴=-点评:本题的常规方法是先求通项公式,然后求和,但逆向思维,直接求出数列{}n a 的前n 项和n S 的递推公式,是一种最佳解法例12 数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈ ⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ; ⑶设n b =)12(1n a n -)(),(*21*N n b b b T N n n n ∈+++=∈ ,是否存在最大的整数m ,使得对任意*N n ∈,均有>n T 32m 成立?若存在,求出m 的值;若不存在,请说明理由解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d ,由题意得2382-=⇒+=d d ,n n a n 210)1(28-=--=∴(2)若50210≤≥-n n 则,5,n ≤时12||||||n n S a a a =+++ 21281029,2n na a a n n n +-=+++=⨯=-6n ≥时,n n a a a a a a S ---+++= 765214092)(2555+-=-=--=n n S S S S S n n故229940n n n S n n ⎧-=⎨-+⎩ 65≥≤n n(3))111(21)1(21)12(1+-=+=-=n n n n a n b n n ∴n T )]111()111()4131()3121()211[(21+-+--++-+-+-=n nnn .)1(2+=n n若32m T n >对任意*N n ∈成立,即161mn n>+对任意*N n ∈成立,)(1*N n n n ∈+ 的最小值是21,,2116<∴m m ∴的最大整数值是7 即存在最大整数,7=m 使对任意*N n ∈,均有.32m T n >说明:本例复习数列通项,数列求和以及有关数列与不等式的综合问题 例13(倒数法)已知函数13)(+=x x x f ,数列{a n }满足a 1 = 1,a n+1 = f(a n ) (n ∈N *)(Ⅰ) 求数列{a n }的通项公式;(Ⅱ) 记S n = a 1a 2 +a 2a 3+…+a n a n+1 , 求S n 解: (Ⅰ) 由131+=+n n n a a a 得 3a n a n+1 +a n+1 = a n ,从而 1113+=+n na a ,即 3111=-+nn a a ,数列}1{na 是以111=a 为首项3为公差的等差数列∴233)1(11-=⋅-+=n n a n, ∴231-=n a n(Ⅱ) 设b n = a n a n+1 ,则 )131231(31)13)(23(1+--=+-=n n n n b n ,∴ )1312311017171414111(3121+--++-+-+-=+++=n n b b b S n n ∴ 13)1311(31+=+-=n nn S n ,1等价转换思想是解决数列问题的基本思想方法,复杂的数列转化为等差、等比数列 2 由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想,数学归纳法是这一思想的理论基础练习1(倒数法)已知数列{a n }中,a 1=53,a n +1=12+n n a a ,求{a n }的通项公式.解:211211+=+=+nnn n a a a a∴⎭⎬⎫⎩⎨⎧n a 1是以35为首项,公差为2的等差数列,即351=na +2(n -1)=316-n ∴a n =163-n练习2(倒数法)已知数列{a n }中,a 1=1,S n =1211+--n n S S ,求{a n }的通项公式.解:21121111+=+=---n n n nS S S S∴⎭⎬⎫⎩⎨⎧n S 1是以1为首项,公差为2的等差数列. ∴nS 1=1+2(n -1)=2n -1,即S n =121-n .∴a n =S n -S n -1=321121---n n =)32)(12(2---n n∴a n =⎪⎩⎪⎨⎧---3211211n n )2()1(≥=n n例14(叠加法)已知数列{a n }的前n 项和S n 满足S n -S n -2=3×(-21)n -1(n ≥3),且S 1=1,S 2=-23,求{a n }的通项公式.解:先考虑偶数项有:S 2n -S 2n -2=-3·1221-⎪⎭⎫⎝⎛nS 2n -2-S 2n -4=-3·3221-⎪⎭⎫⎝⎛n……S 4-S 2=-3·321⎪⎭⎫⎝⎛将以上各式叠加得S 2n -S 2=-3×4114112113-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-n ,所以S 2n =-2+)1(2112≥⎪⎭⎫⎝⎛-n n .再考虑奇数项有:S 2n +1-S 2n -1=3·n221⎪⎭⎫⎝⎛S 2n -1-S 2n -3=3·2221-⎪⎭⎫⎝⎛n……S 3-S 1=3·221⎪⎭⎫⎝⎛将以上各式叠加得S 2n +1=2-)1(212≥⎪⎭⎫⎝⎛n n.所以a 2n +1=S 2n +1-S 2n =4-3×n221⎪⎭⎫⎝⎛,a 2n =S 2n -S 2n -1=-4+3×1221-⎪⎭⎫⎝⎛n .综上所述a n =⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛⨯+-⎪⎭⎫⎝⎛⨯---为偶数,为奇数n n n n 112134,2134,即a n =(-1)n -1·⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯--12134n . 例15(a n +1=pa n +r 类型数列)在数列{a n }中,a n +1=2a n -3,a 1=5,求{a n }的通项公式.解:∵a n +1-3=2(a n -3)∴{a n -3}是以2为首项,公比为2的等比数列. ∴a n -3=2n ∴a n =2n +3.练习.在数列{a n }中,a 1=2,且a n +1=212+n a ,求{a n }的通项公式.解:a n +12=21a n 2+21∴a n +12-1=21(a n 2-1)∴{a n +12-1}是以3为首项,公比为21的等差数列.∴a n +12-1=3×121-⎪⎭⎫⎝⎛n ,即a n =1231-+n例16(a n +1=pa n +f (n )类型)已知数列{a n }中,a 1=1,且a n =a n -1+3n -1,求{a n }的通项公式.解:(待定系数法)设a n +p ·3n =a n -1+p ·3n -1则a n =a n -1-2p ·3n -1,与a n =a n -1+3n -1比较可知p =-21.所以⎭⎬⎫⎩⎨⎧-23nn a 是常数列,且a 1-23=-21. 所以23nn a -=-21,即a n =213-n.。
数列求和7种方法(方法全_例子多)
一、总论:数列求和7种方法:
利用等差、等比数列求和公式
错位相减法求和
反序相加法求和
分组相加法求和
裂项消去法求和
二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减 法,
三、逆序相加法、错位相减法是数列求和的二个基本方法。
一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法 门⑻a.)n(n-1)」
Snna1d
一2
2、
等比数列求和公式:
na1
Sn(1-qn)
[1-q
(q=1)
a1 "anq
1-q
(q= 1)
3、
1
n(n 1)
2
4、Sn
n
八k1 2
k d
1
n(n1)(2n1)
6
5、
n
Sn八k3
k=1
12jn(n 1)]
[例1]已知X二
n项和.
解:由等比数列求和公式得S来自= XX2X亠 亠xn
(利用常用公式)
求数列前N项和的七种方法(含例题和答案)
2
2
2
解:设 ak k (k 1)(2k 1) 2k 3 3k 2 k
∴ Sn
n
n
3
2
k (k 1)( 2k 1) = (2k 3k k)
k1
k1
将其每一项拆开再重新组合得
Sn
=
(分组)
= 2(13 23
n3 ) 3(12 22
n
2 k3
k1
n
3 k2
k1
n
k
k1
n2 ) (1 2
n)
= (分组求和)
n2( n 1)2 n( n 1)( 2n 1) n( n 1)
求数列前 N项和的七种方法
点拨 :
核心提示: 求数列的前 n 项和要借助于通项公式,即先有通项公式,再在分析数列通项公 式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注 意观察数列的特点和规律,找到适合的方法解题。
1. 公式法
等差数列前 n 项和:
Sn
n(a1 an ) 2
2xn 1 ( 2n 1)x n
(错位相减 )
再利用等比数列的求和公式得:
(1 x)Sn
1 xn 1 1 2x
(2n 1) xn
1x
(2n 1) xn 1 (2n 1)xn (1 x)
∴
Sn
(1 x) 2
24 6 [例 4] 求数列 2 , 2 2 , 2 3 ,
2n , 2n ,
前 n 项的和 .
na1
n(n 1) d 2
特别的, 当前 n 项的个数为奇数时, S2k 1 (2k 1) ak 1 ,即前 n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。 等比数列前 n 项和:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和常见的7种方法
数列求和是数学中比较常见的问题之一,它在各个领域中都有广泛的
应用。
在数学中,我们常常使用不同的方法来求解数列求和问题,以下将
介绍一些常见的数列求和方法。
一、公式法:
公式法是求解数列求和中最常用的方法之一、对于一些特定的数列,
我们可以通过找到它们的通项公式,从而直接计算出数列的和。
例如,对于等差数列an = a1 + (n-1)d,其前n项和Sn =
[n(a1+an)]/2,其中a1为首项,an为末项,d为公差。
同样地,对于等比数列an = a1 * r^(n-1),其前n项和Sn = a1 *
(1 - r^n)/(1 - r),其中a1为首项,r为公比。
二、递推法:
递推法是另一种求解数列求和问题的常用方法。
通过推导出数列的递
推关系式,我们可以通过逐项求和的方式来求解数列求和问题。
例如,对于斐波那契数列Fn=Fn-1+Fn-2(其中n>2),我们可以通过
递推的方式来求得前n项和。
三、画图法:
画图法是一种直观的方法,通过画图可以更清楚地理解数列求和问题,并帮助我们找到解题思路。
例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +
(a1+nd),我们可以将其表示为一个由等差数列首项、末项组成的矩形,然后通过计算矩形的面积来求解数列的和。
四、换元法:
换元法是将数列中的变量进行换元,从而将原始数列转化为另一种形式,从而更容易求出数列的和。
例如,对于等差数列Sn = a1 + (a1+d) + (a1+2d) + ... +
(a1+nd),我们可以将其表示为Sn = (n+1)a1 + d(1+2+3+...+n),然后再利用等差数列的求和公式来求解。
五、差分法:
差分法是一种将数列进行相邻项之间的差分操作,从而得到一个新的数列,通过对新数列进行求和的方式来求解原始数列的和。
例如,对于等差数列an = a1 + (n-1)d,我们可以计算得到数列bn = a2 - a1,然后求出bn的和,再通过一些变换得到原始数列的和。
六、变换法:
变换法是一种通过对数列进行变换,将原始数列转化为另一种更容易求解的数列,从而求出原始数列的和。
例如,对于等差数列an = a1 + (n-1)d,我们可以将其转化为等差数列bn = a1 + (n-1)d/2,然后通过等差数列的求和公式来求解。
七、数学归纳法:
数学归纳法是一种通过证明数学命题在一些基础上成立,然后证明在下一个基础上也成立,通过逐步推广的方式来求解数列求和问题。
数学归纳法常常用于证明一些数列求和规律的正确性,从而得到数列的和的公式。
总结:
以上是关于数列求和的七种常见方法,它们是我们在解决数列求和问题时常用的方法。
不同的方法适用于不同类型的数列,我们在解题时可以根据具体情况选择合适的方法。
相信掌握了这些方法,我们在数列求和问题上将更加游刃有余。