数列求和的八种重要方法与例题
详解数列求和的六种方法八个典型例题

详解数列求和的六种⽅法⼋个典型例题数列求和是数列的重要内容之⼀,除了等差数列和等⽐数列有求和公式外,⼤部分数列的求和都需要⼀定的技巧。
第⼀类:公式法利⽤下列常⽤求和公式求和是数列求和的最基本最重要的⽅法。
1、等差数列的前n项和公式2、等⽐数列的前项和公式3、常⽤⼏个数列的求和公式第⼆类:乘公⽐错项相减(等差x等⽐)这种⽅法是在推导等⽐数列的前n项和公式时所⽤的⽅法,这种⽅法主要⽤于求数列{a ×b,}的前n项和,其中{a},{b}分别是等差数列和等⽐数列。
第三类:裂项相消法这是分解与组合思想在数列求和中的具体应⽤。
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去⼀些项,最终达到求和的⽬的通项分解(裂项)如:解析:要先观察通项类型,在裂项求和时候,尤其要注意:究竟是像例2-样剩下⾸尾两项,还是像例3-样剩下四项。
第四类:倒序相加法解析:此类型关键是抓住数列中与⾸末两端等距离的两项之和相等这--特点来进⾏倒序相加的。
此例题不仅利⽤了倒序相加法,还利⽤了裂项相消法。
在数列问题中,要学会灵活应⽤不同的⽅法加以求解。
第五类:分组求和法有⼀类数列,既不是等差数列,也不是等⽐数列,若将这类数列适当拆开,可分为⼏个等差、等⽐或常见的数列,然后分别求和,再将其合并即可。
这个题,除了注意分组求和外,还要注意分类讨论思想的应⽤。
第六类:拆项求和法在这类⽅法中,我们先研究通项,通项可以分解成⼏个等差或等⽐数列的和或差的形式,再代⼊公式求和。
解析:根据通项的特点,通项可以拆成两项或三项的常见数列,然后再分别求和。
这篇⽂章中,有6类重要⽅法,8个典型例题,⼤部分常见数列的前n项和都可以求出来了。
数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111nn a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21n k k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)nk k =-=∑2135(21)n n ++++-=.例1 已知3log 1log 23-=x ,求23n x x x x ++++的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 23n n S x x x x =++++=xx x n --1)1(=211)211(21--n =1-n 21例2 设123n S n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-n n 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
数列求和的八种方法及题型

数列求和的八种方法及题型1、抽象加法法:把等差数列的元素抽象为某一个相同的数值(称为项数,式子为S),通过加法求出所求等差数列的和。
例题:这样一个等差数列:2、4、6、8……100,求这一数列的和是多少?答案:抽象加法法:元素个数n = 99,公差d = 2,首项a = 2。
由公式S=n*(a+l)/2可得:S = 99*(2+100)/2 = 99*102/2 = 4950。
2、数值加法法:直接对元素逐一加法求和。
例题:计算这一等差数列的和:1、3、5、7……99?答案:数值加法法:元素个数n = 49,即:1+3+5+7+...+99=49*100/2=4900。
3、改编组合法:将数列改编为组合形式,将大式化简,从这个组合计算其和。
例题:求这一等差数列的和:2、5、8、11……99?答案:改编组合法:元素个数n = 48,公差d = 3,首项a = 2。
将其转换为组合:2+48d ,即2+(48*3)=150,由公式S=n*(a+l)/2可得:S = 48*(2+150)/2 = 48*152/2 = 7344。
4、数表法:把数列列成表,统计其和。
例题:求这一等差数列的和:3、5、7、9……99?答案:数表法:数列:3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99和:3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+ 45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83 +85+87+89+91+93+95+97+99=24505、立方法:一种特殊情形——这一数列两个元素的值等于这两个元素之间的位数的立方和。
数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。
下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。
一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。
三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
数列求和的八种重要方法与例题

练习10:
已知Sn=-1+3-5+7+…+(-1)n(2n-1),
1)求S20,S21 2)求Sn
=20 S20=-1+3+(-5)+7+……+(-37)+39
S21=-1+3+(-5)+7+(-9)+……+39+(-41)
=-21
总的方向: 1.转化为等差或等比数列的求和 2.转化为能消项的 思考方式:求和看通项(怎样的类型) 若无通项,则须先求出通项 方法及题型: 1.等差、等比数列用公式法 2.倒序相加法 3.错位相减法 4.裂项相消法
1 (1 3
2n )
5
n
12 3
1 (2n 5n 1) 3
热点题型3:递归数列与数学归纳法.
已知数列{an}的各项都是正数,且满足:a01,an1
(nN)
1 2
an (4
an ).
(1)证明an<an+1<2(nN) (2)求数列{an}的通项公式an
用数学归纳法证明:
类型a1+an=a2+an-1=a3+an-2=……
典例. 已知 lg(xy) 2 2.倒序相加法
S =lgxn +lg(xn-·1 y)+ ...+lg(x·1 yn-1)+lgyn,
(x > 0,y > 0) 求S .
S =lgxn +lg(xn-·1 y)+ ...+lgyn
S =lgyn +lg(yn-·1 x)+ ...+lgxn 2S =lg(xy)n +lg(xy)n + ...+lg(xy)n
专题08 数列求和-倒序相加、绝对值、奇偶性求和(解析版)

数列求和-倒序相加、绝对值、奇偶性求和◆倒序相加法求和等差数列的求和公式()12n n n a a S +=,其过程正是利用倒序相加的原理.这类题之所以能够利用倒序相加来求和,是因为其自身具备明显的特征,那就是首项与末项相加为定值.一般题中出现12x x k +=(k 为常数),()()12f x f x m +=(m 为常数)时,可以采用倒序相加的方法进行求和.【经典例题1】已知函数()f x 对任意的x ∈R ,都有()()11f x f x +-=,数列{}n a 满足()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()11n f f n -⎛⎫+ ⎪⎝⎭.求数列{}n a 的通项公式. 【答案】12n n a += 【解析】因为()()11f x f x +-=,∴111n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭. 故()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()11n f f n -⎛⎫++ ⎪⎝⎭.① ∴()121n n n a f f f n n --⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()01f n f ⎛⎫++ ⎪⎝⎭.② ∴①+②,得21n a n =+,∴12n n a +=. 所以数列{}n a 的通项公式为12n n a +=.【练习1】已知正数数列{}n a 是公比不等于1的等比数列,且120191a a =,试用推导等差数列前n 项和的方法探求:若24()1f x x=+,则()()()122019f a f a f a +++=( )A .2018B .4036C .2019D .4038【答案】D 【解析】120191a a ⋅=,∵函数24()1f x x =+ ∵222214444()41111+⎛⎫+=+== ⎪++⎝⎭+x f x f x x x x, 令122019()()()T f a f a f a =++⋅⋅⋅+,则201920181()()()T f a f a f a =++⋅⋅⋅+, ∵()()()()()()120192201820191242019T f a f a f a f a f a f a =++++⋅⋅⋅++=⨯, ∵4038T =. 故选:D.【练习2】已知函数1()1f x x =+,数列{}n a 是正项等比数列,且101a =,则()()()()()1231819f a f a f a f a f a +++⋅⋅⋅++=__________.【答案】192【解析】函数1()1f x x =+,当0x >时,1111()()111111xf x f x x x xx+=+=+=++++, 因数列{}n a 是正项等比数列,且101a =,则2119218317101a a a a a a a =====,119111()()()()1f a f a f a f a +=+=,同理2183171010()()()()()()1f a f a f a f a f a f a +=+==+=,令()()()()()1231819S f a f a f a f a f a =+++++, 又()()()()()19181721S f a f a f a f a f a =+++++,则有219S =,192S =, 所以()()()()()1231819192f a f a f a f a f a +++⋅⋅⋅++=. 故答案为:192【练习3】已知()442xx f x =+,求122010201120112011f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【答案】1005. 【解析】因为()442x x f x =+,所以()1144214242442x x x x f x ---===++⨯+,所以()()11f x f x +-=.令12200920102011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,倒写得20102009212011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.两式相加得22010S =,故1005S =.【练习4】函数()f x 对任意x ∈R ,都有1()(1)2f x f x +-=. (I)求12f ⎛⎫ ⎪⎝⎭的值;(II)若数列{}n a 满足11(0)(1)n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,数列{}n a 是等差数列吗?【解析】(I)令 12x =,得1124f ⎛⎫= ⎪⎝⎭. (II)已知函数()f x 对任意x ∈R ,都有1()(1)2f x f x +-=,可得 11(0)(1)11(1)(0)n n n a f f f f n n n a f f f f n n ⎧-⎛⎫⎛⎫=++++ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨-⎛⎫⎛⎫⎪=++++ ⎪ ⎪⎪⎝⎭⎝⎭⎩由两式相加可得11(1)112(2)244n n n n n a a a n -++==⇒-=故数列{}n a 是等差数列.◆数列绝对值求和(1)对于首项小于0而公差大于0的等差数列{}n a 加绝对值后得到的数列{}n a 求和,设{}n a 的前n 项和为 {},n n S a 的前n 项和为n T ,数列{}n a 的第k 项小于0而从第1k +项开始大于或等于0,于是有 ,;2,n n nk S n k T S S n k -⎧=⎨->⎩(2)对于首项大于0而公差小于0的等差数列{}n a 加绝对值后得到的数列{}n a 求和,设{}n a 的前n 项和为 {},n n S a 的前n 项和为n T ,数列{}n a 的第k 项大于0而从第1k +项开始小于或等于0,于是有 ,2,n n kn S n k T S S n k ⎧=⎨->⎩ 。
数列求和常用方法(含答案)

数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。
数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。
下面将介绍数列求和的8种常用方法。
1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。
例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。
例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。
首项与末项之和等于和的平均数乘以项数。
例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。
等差数列的和等于首项乘以项数,再加上项数与公差之积的和。
例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。
5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。
平均数等于数列中的第一项与最后一项的平均值。
例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。
首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。
例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。
可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。
例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
n-1
n
n
n-1
n
2S =lg(xy) +lg(xy) + ...+lg(xy)
n
= 2n(n +1) S = n(n +1)
2.错位相减 当{an}是等差数列,{bn}是等比数列,求 数列{anbn}的前n项和适用错位相减
典例3:
通项
1+2×3+3×32+4×33+…+n×3n-1=?
5.拆项分组求和法
6.并项求和法
深化数列中的数学思想方法:
热点题型1:递归数列与极限. 1
an 2 1 设数列{an}的首项a1=a≠ ,且 an 1 4 a 1 n 4 1 记 bn a2 n 1 ,n=l,2,3,…· . 4
n为偶数
,
n为奇数
1
a1 1, 故b1
1 1 1 2
2;
3 1 13 20 a3 , 故b3 4; a4 , 故b4 . 3 1 4 20 3 4 2
7 1 8 a2 , 故b2 7 1 3 8 8 2
热点题型2:递归数列与转化的思想方法.
数列{an}满足a11且8an116an12an50 (n1)。记 bn 1 (n1)。 an 2 (1)求b1、b2、b3、b4的值; (2)求数列{bn}的通项公式及数列{anbn}的前n项和Sn。 1 1 1 bn 得an , 代入递推关系8an1an 16an1 2an 5 0, 1 bn 2 an 1 a b bn 1 2 n n
{an+bn+cn}
等差
等比
错位相减 或裂项相消
并项求和
典型6:
2 2 2 2 2 1-2 +3 -4 +…+(2n-1) -(2n) =?
局部重组转化为常见数列
交错数列,并项求和
n 既{(-1) bn}型
练习10:
已知Sn
2)求Sn
n =-1+3-5+7+…+(-1) (2n-1),
1)求S20,S21
类型a1+an=a2+an-1=a3+an-2=……
典例. 已知
n
Байду номын сангаас
lg(xy) 2 2.倒序相加法
n-1 1 n-1 n
S =lgx +lg(x ·y)+ ...+lg(x·y )+lgy , (x > 0,y > 0) 求S .
S =lgx +lg(x ·y)+...+lgy
S =lgy +lg( y ·x)+ ...+lgx
S20=-1+3+(-5)+7+……+(-37)+39
=20
S21=-1+3+(-5)+7+(-9)+……+39+(-41)
=-21
总的方向:
1.转化为等差或等比数列的求和
2.转化为能消项的 思考方式:求和看通项(怎样的类型)
若无通项,则须先求出通项
方法及题型: 1.等差、等比数列用公式法 2.倒序相加法 3.错位相减法 4.裂项相消法
令bn an 2, 1 2 则bn bn 1 2 1 1 2 bn 2 2 2 1 1 22 bn 1 2 2
2 2
1 2
又b0=-1
1 2 2n1
n b02
数列求和
几种重要的求和思想方法:
1.倒序相加法.
2.错位相减法.
3 拆项 . 法: . 4.裂项相消法:
倒序相加法:
如果一个数列{an},与首末两项等 距的两项之和等于首末两项之和(都 相等,为定值),可采用把正着写和 与倒着写和的两个和式相加,就得到 一个常数列的和,这一求和的方法称 为倒序相加法.
(I)求a2,a3; (II)判断数列{bn}是否为等比数列,并证明你的结论; b1 b2 b3 bn ) . (III)求 lim( n
热点题型2:递归数列与转化的思想方法.
数列{an}满足a11且8an116an12an50 (n1)。记 bn 1 (n1)。 an 2 (1)求b1、b2、b3、b4的值; (2)求数列{bn}的通项公式及数列{anbn}的前n项和Sn。
1
2 4 6 3 4 0,即bn 1 2bn , bn 1bn bn 1 bn 3 Sn 1 (b1 b2 bn ) n
1 (1 2n ) 5 3 n 4 2 1 2 3 {bn }是首项为 , 公比q 2的等比数列 3 3 1 n 4 1 n 1 n 4 (2 5n 1) bn 2 , 即bn 2 (n 1). 3 3 3 3 3
(I)求a2,a3;(II)判断数列{bn}是否为等比数列, 并证明你的结论;
b1 b2 b3 bn ) (III)求 lim( . n
( I ) a2 = a 1 +
1 1 1 1 1 = a+ ,a3= a2= a+ 4 8 4 2 2
热点题型1:递归数列与极限. 1 an n为偶数 2 1 a 设数列{an}的首项a1=a≠ ,且 n 1 a 1 n为奇数 4 n
2n 变式2:通项改为 2 4n - 1
1 1 1 1 = + ( ) 2 4 2n -1 2n + 1
2
分裂通项法: 把数列的通项拆成两项之差,即数 列的每一项都可按此法拆成两项之差, 在求和时一些正负项相互抵消,于是前 n 项的和变成首尾若干少数项之和,这 一求和方法称为分裂通项法. (见到分式型的要往这种方法联想)
4 4 4 2 bn 1 2(bn ), b1 0, 3 3 3 3
2
热点题型3:递归数列与数学归纳法.
1 an 1 an (4 an ). 已知数列{an}的各项都是正数,且满足:a01, 2 (nN)
(1)证明an<an+1<2(nN) (2)求数列{an}的通项公式an 用数学归纳法证明: 1 3 a 0 1, a1 a 0 (4 a0 ) , 1°当n=1时, 2 2 ∴ 0 a0 a1 2 ; 1 a a 2 k 2°假设n=k时 k 1 有成立, 令 f ( x) 2 x(4 x)
拆项分组求和: 典例5:
数列{an}的通项an=2n+2n-1,
求该数列的前n项和.
同类性质的数列归于一组,目的 是为便于运用常见数列的求和公式.
分组求和法: 把数列的每一项分成两项,或把数 列的项“集”在一块重新组合,或把整 个数列分成两部分,使其转化为等差或 等比数列,这一求和方法称为分组求和 法.
1 bn 2
2n 1
,
2n 1
1 即an 2 bn 2 2
1 an 1 an (4 an ). 已知数列{an}的各项都是正数,且满足:a01, 2 (nN)(2)求数列{an}的通项公式an 1 1 an 1 an (4 an ) [(an 2) 2 4], 2 2
热点题型3:递归数列与数学归纳法.
2(an1 2) (an 2)2
1 记 bn a2 n 1 4
4
,
,n=l,2,3,…· .
(I)求a2,a3; (II)判断数列{bn}是否为等比数列,并证明你的结论; b1 b2 b3 bn ) . (III)求 lim( n
1 1 1 1 1 因为bn+1=a2n+1- = a2n- = (a2n-1- ) 4 2 4 2 4 1 = bn, (n∈N*) 2 1 1 所以{bn}是首项为a- , 公比为 的等比数列 4 2
f(x)在[0,2]上单调递增 f (ak 1 ) f (ak ) f (2),
1 1 1 ak 1 (4 ak 1 ) ak (4 ak ) 2 (4 2), 2 2 2
也即当n=k+1时
ak ak 1 2 成立, 所以对一切 n N , 有ak ak 1 2
热点题型1:递归数列与极限. 1 an n为偶数 2 1 设数列{an}的首项a1=a≠ ,且 an 1 a 1 n为奇数 4 n
1 记 bn a2 n 1 4
4
,
,n=l,2,3,…· .
1 b1 (1 n ) b1 1 2 lim(b1 b2 bn ) lim 2(a ) n n 1 1 4 1 1 2 2
错位相减法: 如果一个数列的各项是由一 个等差数列与一个等比数列对 应项乘积组成,此时求和可采 用错位相减法.
既{anbn}型
等差 等比
典例4: 4、裂项相消 1 1 1 1+ + + …+ =? 1×2 2×3 n(n + 1) 1 变式1:通项改为 n( n + 2) 1 1 1
= 2 n ( n+2 )