数列求和的八种重要方法与例题 PPT

合集下载

数列求和的几种方法PPT课件

数列求和的几种方法PPT课件
第2页/共11页
练习:(2003s)设f x 1 ,利用课本中
2x 2 推导等差数列前n项和的公式的方法,可求得
f 5 f 4 f 0 f 5 f 6
的值为 3 2 。
第3页/共11页
2、错位相减法
例2:求: 1 2
2 22
3 23
n 2n
1 an n 2n
问题:什么时候用错位相减的方法求数列和?
通过拆项,能将数列转化成两个或若干个等差或等比数 列的和或差的形式来求和。
第6页/共11页
4、拆项抵消
例4:求: 1 1
2
1 2
3
1
nn
1
1 11
an nn 1 n n 1
问题:什么时候用拆项抵消的方法求数列和?
将数列的每一项(实际就是通项)拆分成两项, 在求和时除前、后若干项外,中间各项能够相互抵消。
n
1 2
5 4
9 8
......
4n 2n
3.
5 求:S
n
1
3 2
5 4
7 8
......
(1)n1
2n 1 2n1
.
第10页/共11页
感谢观看!
第11页/共11页
1 2
1
1 3
1 ...... 2 2 3
1 n 1
. n
第9页/共11页
练习:
(1)求数列 :1 1,2 1,3 1 3 9 27
,, n
1 3n

和S

n
(2)求数列 :1 ,11,111,,111(n个1) 的和Sn.
(3)求:S
n
1 1
3
1

数列求和PPT课件

数列求和PPT课件

1 2n-1
-
1 2n+1
)]
=
3n 2n+1
.
11.已知 {an} 是 首 项 为 a1, 公 比 为 q 的 等 比 数 列. (1)求和: a1C20-a2C12+a3C22, a1C03-a2C13+a3C23-a4C33 ; (2)由(1)的结果归纳概 括出关于正整数 n 的一个结论, 并加以证明; (3)设q≠1, Sn是{an} 的前 n 项和, 求 S1Cn0-S2C1n+S3C2n-S4C3n+ … +(-1)nSn+1Cnn.
n+1 项
∵lgx+lgy=a, ∴lg(xy)=a.
∴Sn=
n(n+1) 2
lg(xy)=
n(n2+1)a.
注: 本题亦可用对数的运算性质求解:
∵Sn=lg[xn+(n-1)+…+3+2+1y1+2+3+…+(n-1)+n],
∴Sn=
n(n+1) 2
lg(xy)=
n(n2+1)a.
7.求证: Cn0+3Cn1+5Cn2+…+(2n+1)Cnn=(n+1)2n.
-nn2+,1 2
,
n 为偶数时, n 为奇数时.
将数列的每一项拆(裂开)成两项之差, 使得正负项能相互
抵消, 剩下首尾若干项.

求和
Sn=
1×1 2+
1 2×3
+…+
1 n(n+1)
.
n n+1

数列求和各种方法总结归纳课件PPT

数列求和各种方法总结归纳课件PPT

[冲关锦囊]
用错位相减法求和时,应注意 (1)要善于识别题目类型,特别是等比数列公比为负数
的情形; (2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“
错项对齐”以便下一步准确写出“Sn-qSn”的表达式.
[精析考题] [例3] (2011·全国新课标卷)等比数列{an}的各项均为正数,且2a1+ 3a2=1,a32=9a2a6. (1)求数列{an}的通项公式; (2)设bn=log3a1+log3a2+…+log3an,求数列{b1n}的前n项和.
(1)an=kn+b,利用等差数列前n项和公式直接求解;
所以,当n>1时,①-②得 用错位相减法求和时,应注意
①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.
①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.
数列求和各种方法总结归纳
二、非等差、等比数列求和的常用方法 1.倒序相加法
如果一个数列{an},首末两端等“距离”的两项的和相等 或等于同一常数,那么求这个数列的前n项和即可用倒 序相加法,如等差数列的前n项和即是用此法推导的.
2.分组求和法 若一个数列的通项公式是由若干个等差数列或等比数列 或可求和的数列组成,则求和时可用分组转化法,分别 求和而后相加减.
∴bn+1+1=2bn+2=2(bn+1).
∴((11b))要a1n=善=0于k,n识b+1别b+,题1利=目用1类≠等0型.差n1,数-特列别n前是+n1等项比1和数公列=式公直-比接为求n负解2+数n;1.
所以数列{b1n}的前n项和为-n2+n1.
[巧练模拟]—————(课堂突破保分题,分分必保!)

数列求和方法总结PPT课件

数列求和方法总结PPT课件

有一类数列,既不是等差数列,也不是等比 数列,若将这类数列适当拆开,可分为几个等差、 等比或常见的数列,然后分别求和,再将其合并 即可.
-
6
例2:求数列的前n项和:1 1, 1 4, 1 7, , 1 3n 2,…
a a2
a n1
-
7
练习 : 求数列1 1 2
,3 1 4
,5
1 8
-
1
本节概要 数列求和的常用方法
-
2
等差数列前 n 项和公式:
Sn
n(a1 2
an )
na1
n(n 1) 2
d

等比数列前 n
项和公式:
Sn
na1(q a1(1
1) qn)
1 q
a1 anq 1 q
(q
1)

自然数方幂和公式:1 2 3 n 1 n(n 1) 2
12 22 32 n2 1 n(n 1)(2n 1) 6
2n 2n
…………………………………①
1 2
Sn
2 22
4 23
6 24
2n 2 n1
………………………………②
(设制错位)
①-②得(1
1 2
)S
n
2 2
2 22
2 23
2 24
2 2n
2n 2 n 1
2 1 2n 2n1 2n1

Sn
4
n2 2 n 1
-
17
这是推导等差数列的前n项和公式时所用的 方法,就是将一个数列倒过来排列,再把它与原 数列相加。
-
18

5.设
f
(x)
4 x , 则f 4x 2

第讲数列的求和精选课件

第讲数列的求和精选课件
若一个数列是由等比数列或是等差数列组成,以 考查公式为主,可先分别求和,再将各部分合并,这就是我们说 的分组求和.
【互动探究】 1.(2019 年陕西)已知{an}是公差不为零的等差数列,a1=1,
且 a1,a3,a9 成等比数列. (1)求数列{an}的通项公式; (2)求数列{2 a n}的前 n 项和 Sn.
4.数列 112,214,318,…,n+21n,…的前 n 项和 Sn=______ __12_n_(n_+__1_)_+__1_-__21_n___.
5.数列{an}的通项公式 an=
1 n+
n+1,若前
n
项的和为
10,
则项数 n=___1_2_0___.
考点1 利用公式或分组法求和
例1:(2011 年重庆)设{an}是公比为正数的等比数列,a1=2, a3=a2+4.
数列求和常用的方法
1.公式法 (1)等差数列{an}的前
n
项和公式:Sn=nnaa1+ 12+nann2-,1d.
(2)等比数列{an}的前n项和Sn:①当q=1时,Sn=__n_a_1_;
a11-qn
a1-anq
②当 q≠1 时,Sn=____1_-__q___=____1_-__q__.
2.分组求和法 把一个数列分成几个可以直接求和的数列. 3.错位相减法 适用于一个等差数列和等比数列对应项相乘构成的数列求 和. 4.裂项相消法 有时把一个数列的通项公式分成两项差的形式,相加过程消 去中间项,只剩有限项再求和.
解析:(1)P1(-1,0),an=n-2,bn=2n-2. (2)f(n)=n2- n-2, 2,n为 n为奇偶数数,. 假设存在符合条件. ①若 k 为偶数,则 k+5 为奇数. 有 f(k+5)=k+3,f(k)=2k-2. 如果 f(k+5)=2f(k)-2,则 k+3=4k-6⇒k=3 与 k 为偶数矛 盾.故不符(舍去). ②若 k 为奇数,则 k+5 为偶数, 有 f(k+5)=2k+8,f(k)=k-2. ∴2k+8=2(k-2)-2 这样的 k 也不存在. 综上所述:不存在符合条件的 k.

数列求和的常用方法总结归纳PPT

数列求和的常用方法总结归纳PPT
等比数列)的数列,可采用错位相减的方法进行求和.
例6:(1)已知数列{an}的首项a1 2,an 3an1 (2 n 2),
bn log3(an 1),cn anbn n. ①证明:{an 1}是等比数列; ②求数列{cn }的前n项和S n .
Sn
3 4
(1 2
n
1 )3n1 4
(2)已知{an}是递增的等差数列,a2,a4是方程x2 5x 6 0的根.
(2)求和Sn
1
(1
1) 2
(1
1 2
1) 4
(1
1 2
1 4
1 2n1 ).
Sn
1 2n1
2n 2
三、并项求和法: 若数列的通项公式中含有形如(1)n,或通项公式
需分奇偶讨论的数列,可采用并项的方法进行求和.
例3:(1)设Sn是数列{an}的前n项和,已知 a1 1,S n 2 2an1. ①求数列{an}的通项公式;
4x 4x
2
, 令bn
g
(
an ), 2021
求数列{bn
}的前2020项和T2020
.
T2020 1010
五 、 裂 项 相 消 法 : 若通项项公式为分式,可 待定系数法 对定系数法
对分式进行裂项 .
例5:(1)设数列{an}满足a1 3a2 (2n 1)an 2n.
2
①求数列{an}的通项公式;
D.10200
四 、 倒 序 相 加 法 :若数列首末两端等“距离”的两项和相等(通项公式常与
函数有关),可采用倒序相加的方法进行求和.
例4:(1)已知函数 y f (x)满足f (x) f (1 x) 1,若数列{an}满足

第四节 数列求和 课件(共48张PPT)

第四节 数列求和 课件(共48张PPT)


1 n+3
)=
1 2
56-n+1 2-n+1 3. 答案:1256-n+1 2-n+1 3
考点1 分组转化法求和 [例1] (2020·焦作模拟)已知{an}为等差数列,且 a2=3,{an}前4项的和为16,数列{bn}满足b1=4,b4= 88,且数列{bn-an}为等比数列. (1)求数列{an}和{bn-an}的通项公式; (2
an=n(n1+k)型
[例2] (2020·中山七校联考)已知数列{an}为公差 不为0的等差数列,满足a1=5,且a2,a9,a30成等比数列.
(1)求{an}的通项公式; (2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=
3,求数列b1n的前n项和Tn.
1.裂项时常用的三种变形.
(1)n(n1+1)=n1-n+1 1.
(2)n(n1+2)=12n1-n+1 2.
(3)(2n-1)1(2n+1)=122n1-1-2n1+1.
(4)
1 n+
n+1=
n+1-
n.
2.应用裂项相消法时,应注意消项的规律具有对称 性,即前面剩第几项则后面剩倒数第几项.
3.在应用错位相减法求和时,若等比数列的公比为 参数,应分公比等于1和不等于1两种情况求解.
) B. 2 020-1
C. 2 021-1 D. 2 021+1
解析:由f(4)=2,可得4α=2,解得α=12,
则f(x)= x.
所以an=
1 f(n+1)+f(n)

1 n+1+
= n
n+1 -
n,
所以S2 020=a1+a2+a3+…+a2 020=( 2 - 1 )+ ( 3- 2)+( 4- 3)+…+( 2 021- 2 020)=

数列求和的几种方法课件ppt

数列求和的几种方法课件ppt
2、设法消去中间项:
(2)乘公比,错位相减(对“A·G”型);
(3)裂通项,交替相消
1、转化成等差、等比数列求和
(公式法、分组求和法、错位相减法、 裂(并)项法求和)
练习: 指出下列求和的方法:
合并项求和
特殊的数列,在求数列的和时,可将一些项放在一起先求和,然后再求Sn.
[例] 在各项均为正数的等比数列中,若
的值.
求和: (1)Sn=1+(3+4)+(5+6+7)+…+(2n-1+2n+ …+3n-2); (2)Sn=12-22+32-42+…+(-1)n-1·n2.
(1)一般应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为适用特点的形式,从而求和.
数列求和的方法
(2)解决非等差、等比和,两种思路: ①转化的思想,即化为等差或等比数列. ②裂项相消法、错位相减法、倒序相加法等求和.
数列求和的常用方法:
(1) 拆项(对A±G型 如果拆项不明显,写出通项,如例2 )
na1+ d
n(n+1)(2n+1)
n2(n+1)2
倒序相加

例题1. 求和
(1)
[解Байду номын сангаас原式=
n(n+3)/2
(x≠1)
(x=1)
分析:原式=(1+2+3+…+n)+
我们把这种类型的数列称为“A+G”型。而求此类数列的和,一般是把数列的每一项分成两项,再分别利用等差和等比数列的求和公式求解。此方法称为分组求和法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(I)a2=a1+
1 4
= a+ 1
4
,a3=
1 2
a2=
1 a+
2
1 8
热点题型1:递归数列与极限.
设数列{an}的首项a1=a≠
1 ,且 4
a n 1
1
2
an
an 1
4
n为偶数 n为奇数
,
记 bn
a2 n 1
1 4
,n=l,2,3,…·.
(I)求a2,a3;
(II)判断数列{bn}是否为等比数列,并证明你的结论;
= 1( 1 - 1 ) n ( n + 2 )
2 n n+2
变 式 2: 通 项 改 为2n2 4n2 -1
=1+1( 1 - 1 ) 2 4 2n-1 2n+1
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
分裂通项法:
把数列的通项拆成两项之差,即数 列的每一项都可按此法拆成两项之差, 在求和时一些正负项相互抵消,于是前 n项的和变成首尾若干少数项之和,这 一求和方法称为分裂通项法. (见到分式型的要往这种方法联想)
S = l g y n + l g ( y n - · 1x ) + . . . + l g x n 2 S = l g ( x y ) n + l g ( x y ) n + . . . + l g ( x y ) n
=2n(n+1) S=n(n+1)
2.错位相减
当{an}是等差数列,{bn}是等比数列,求 数列{anbn}的前n项和适用错位相减
类型a1+an=a2+an-1=a3+an-2=……
典例. 已知 lg(xy) 2 2.倒序相加法
S=lgxn+lg(xn-· 1 y)+... +lg(x· 1 yn-1)+lgyn,
(x>0, y>0) 求S .
S = l g x n + l g ( x n - 1 · y ) + . . . + l g y n
拆项分组求和: 典例5:
数列{an}的通项an=2n+2n-1, 求该数列的前n项和.
同类性质的数列归于一组,目的 是为便于运用常见数列的求和公式.
分组求和法:
把数列的每一项分成两项,或把数
列的项“集”在一块重新组合,或把整
个数列分成两部分,使其转化为等差或
等比数列,这一求和方法称为分组求和
法.
S21=-1+3+(-5)+7+(-9)+……+39+(-41)
=-21
总的方向: 1.转化为等差或等比数列的求和 2.转化为能消项的 思考方式:求和看通项(怎样的类型) 若无通项,则须先求出通项 方法及题型: 1.等差、等比数列用公式法 2.倒序相加法 3.错位相减法 4.裂项相消法
5.拆项分组求和法 6.并项求和法
{an+bn+cn} 错位相减
等差
等比 或裂项相消
并项求和
典型6:
1-22+32-42+…+(2n-1)2-(2n)2=?
局部重组转化为常见数列
交错数列,并项求和 既{(-1)n bn}型
练习10:
已知Sn=-1+3-5+7+…+(-1)n(2n-1),
1)求S20,S21 2)求Sn
=20 S20=-1+3+(-5)+7+……+(-37)+39
2
2
热点题型2:递归数列与转化的思想方法.
1
数列{an}满足a11且8an116an12an50 (n1)。记b n
(n1)。 (1)求b1、b2、b3、b4的值;
an
1 2
(2)求数列{bn}的通项公式及数列{anbn}的前n项和Sn。
a1
1,故b1
1 1 1
2;
2
a2
78,故b2
7
1 1
8 3
2
an
an 1
4
n为偶数 n为奇数
,
1
记 bn a2n1 4 ,n=l,2,3,…·.
(I)求a2,a3;
(II)判断数列{bn}是否为等比数列,并证明你的结论;
(III)求 lni m (b1b2b3 bn) .
lni m (b1b2 bn)lni m b1(11 121n)1 b112(a1 4)
82
a33 4,故 b33 114;a41 23 0,故 b4230. 42
热点题型2:递归数列与转化的思想方法.
数列{an}满足a11且8an116an12an50 (n1)。记b n
(n1)。 (1)求b1、b2、b3、b4的值;
1 an
1 2
(2)求数列{bn}的通项公式及数列{anbn}的前n项和Sn。
{ b b n b n n1 4 3 } 4 3 是 4 3 首 1 3 项 2 2 (为 n b ,即 n2 3 b ,n 公 4 3 )比 ,1 3q b 2 1 n 2 的 4 3 3 4等 ( n 比 2 3 1 数 ).列 0 , 1313(11(2n22n )5n
典例3:
通项
1+2×3+3×32+4×33+…+n×3n-1=?
错位相减法: 如果一个数列的各项是由一
个等差数列与一个等比数列对 应项乘积组成,此时求和可采 用错位相减法.
既{anbn}型
等差
等比
典例4:4、裂项相消
1+ 1 + 1 +…+ 1 =?
1×2 2×3
n(n+1)
变式 1:通项改为
1
b b n n 4 1 bn a n 1 b 1 2 n 6 得 1 a n b 3 nb 1 n 0,1 2 即 ,代 bn 入 1递 推 2b 关 n系 8 4 3 a n , 1 a Sn n 1 a6 12na bn (n b1 1 122 bba n2n 15 0 b,n ) n
数列求和的八种重要方法与例题
几种重要的求和思想方法:
1.倒序相加法.
2.错位相减法.
3 拆. 项 法:
. 4.裂项相消法:
倒序相加法:
如果一个数列{an},与首末两项等 距的两项之和等于首末两项之和(都 相等,为定值),可采用把正着写和 与倒着写和的两个和式相加,就得到 一个常数列的和,这一求和的方法称 为倒序相加法.
深化数列中的数学思想方法:
热点题型1:递归数列与极限. 1
设 记数bn列{aan2}n的1 首 14项a1=,a≠n=14 l,,2且,3a,n1…·.a2n
an 1
4
n为偶数
,
n为奇数
(I)求a2,a3;(II)判断数列{bn}是否为等比数列, 并证明你的结论;
(III)求 lni m (b1b2b3.bn)
(III)求 lni m (b1b2b3 bn) .
11
11
1
因为bn+1=a2n+1-
1
4
=2
a2n- 4
=2
(a2n-1-4
)
=
2
b- 4 , 公比为 2 的等比数列
热点题型1:递归数列与极限.
设数列{an}的首项a1=a≠
1 ,且 4
a n 1
1
相关文档
最新文档