偏微分方程的数值解
第十章 偏微分方程数值解法

第十章 偏微分方程数值解法偏微分方程问题,其求解十分困难。
除少数特殊情况外,绝大多数情况均难以求出精确解。
因此,近似解法就显得更为重要。
本章仅介绍求解各类典型偏微分方程定解问题的差分方法。
§1 差分方法的基本概念1.1 几类偏微分方程的定解问题椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程),(2222y x f yu x u u =∂∂+∂∂=∆ 特别地,当0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称为调和方程2222=∂∂+∂∂=∆yux u u Poisson 方程的第一边值问题为⎪⎩⎪⎨⎧Ω∂=Γ=Ω∈=∂∂+∂∂Γ∈),(),(),(),(),(2222y x y x u y x y x f y ux u y x ϕ 其中Ω为以Γ为边界的有界区域,Γ为分段光滑曲线,ΓΩ称为定解区域,),(y x f ,),(y x ϕ分别为Ω,Γ上的已知连续函数。
第二类和第三类边界条件可统一表示为),(),(y x u u y x ϕα=⎪⎪⎭⎫ ⎝⎛+∂∂Γ∈n 其中n 为边界Γ的外法线方向。
当0=α时为第二类边界条件, 0≠α时为第三类边界条件。
抛物型方程:其最简单的形式为一维热传导方程220(0)u ua a t x∂∂-=>∂∂ 方程可以有两种不同类型的定解问题:初值问题⎪⎩⎪⎨⎧+∞<<∞-=+∞<<-∞>=∂∂-∂∂x x x u x t x u a tu )()0,(,0022ϕ初边值问题221200,0(,0)()0(0,)(),(,)()0u ua t T x l t x u x x x lu t g t u l t g t t Tϕ⎧∂∂-=<<<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩其中)(x ϕ,)(1t g ,)(2t g 为已知函数,且满足连接条件)0()(),0()0(21g l g ==ϕϕ边界条件)(),(),(),0(21t g t l u t g t u ==称为第一类边界条件。
第十章 偏微分方程数值解法

第十章 偏微分方程数值解法偏微分方程问题,其求解十分困难。
除少数特殊情况外,绝大多数情况均难以求出精确解。
因此,近似解法就显得更为重要。
本章仅介绍求解各类典型偏微分方程定解问题的差分方法。
§1 差分方法的基本概念1.1 几类偏微分方程的定解问题椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程),(2222y x f yu x u u =∂∂+∂∂=∆ 特别地,当0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称为调和方程2222=∂∂+∂∂=∆yux u u Poisson 方程的第一边值问题为⎪⎩⎪⎨⎧Ω∂=Γ=Ω∈=∂∂+∂∂Γ∈),(),(),(),(),(2222y x y x u y x y x f y ux u y x ϕ 其中Ω为以Γ为边界的有界区域,Γ为分段光滑曲线,ΓΩ称为定解区域,),(y x f ,),(y x ϕ分别为Ω,Γ上的已知连续函数。
第二类和第三类边界条件可统一表示为),(),(y x u u y x ϕα=⎪⎪⎭⎫ ⎝⎛+∂∂Γ∈n 其中n 为边界Γ的外法线方向。
当0=α时为第二类边界条件, 0≠α时为第三类边界条件。
抛物型方程:其最简单的形式为一维热传导方程220(0)u ua a t x∂∂-=>∂∂ 方程可以有两种不同类型的定解问题:初值问题⎪⎩⎪⎨⎧+∞<<∞-=+∞<<-∞>=∂∂-∂∂x x x u x t x u a tu )()0,(,0022ϕ初边值问题221200,0(,0)()0(0,)(),(,)()0u ua t T x l t x u x x x lu t g t u l t g t t Tϕ⎧∂∂-=<<<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩其中)(x ϕ,)(1t g ,)(2t g 为已知函数,且满足连接条件)0()(),0()0(21g l g ==ϕϕ边界条件)(),(),(),0(21t g t l u t g t u ==称为第一类边界条件。
偏微分方程的数值方法

偏微分方程的数值方法偏微分方程是描述自然界许多现象的一种数学模型,它包含多个独立变量,并且方程中的未知函数同时取决于这些变量。
偏微分方程的数值方法是一种求解这类方程的途径,它通过将连续的方程转化为离散的方程,从而使得问题成为一个适用于计算机求解的形式。
本文将介绍几种常用的偏微分方程数值方法。
1. 有限差分法 (Finite Difference Method)有限差分法是最常用的偏微分方程数值方法之一、它将连续的偏微分方程转化为离散的差分方程,通过计算差分方程的近似解来获得原方程的数值解。
在有限差分法中,首先将空间域离散化成网格,再将时间域离散化成步长。
通过近似替代偏微分方程中的导数,将方程转化为差分方程。
通过求解差分方程的解,可以得到偏微分方程的数值解。
2. 有限元法 (Finite Element Method)有限元法是另一种常用的偏微分方程数值方法。
它将连续的偏微分方程转化为离散的代数方程,通过求解代数方程来获得原方程的数值解。
在有限元法中,首先将空间域离散化成有限个小区域,称为有限元。
然后通过选取适当的试探函数和权重函数在每个有限元内部进行插值。
通过将插值函数带入原方程,使用变分原理和加权残差法推导出离散的代数方程。
再通过求解代数方程组的解来得到偏微分方程的数值解。
3. 边界元法 (Boundary Element Method)边界元法也是一种常用的偏微分方程数值方法。
它将连续的偏微分方程转化为边界上的积分方程,通过求解积分方程来获得原方程的数值解。
在边界元法中,将问题的物理域分为两个区域:内域和外域。
通过在内域内求解偏微分方程,得到内域的数值解。
然后通过边界条件将内域的解扩展到整个物理域的边界上。
最后将边界上的积分方程转化为代数方程组,并求解之得到最终的数值解。
4. 谱方法 (Spectral Method)谱方法是一种高精度的偏微分方程数值方法,它同时利用了空间域和频率域的特性。
偏微分方程数值解法

偏微分方程数值解法
偏微分方程数值解法是一种利用计算机技术获取偏微分方程数值解的方法,它主要目标是解决微分方程的精确、快速、可靠的数值解。
偏微分方程数值解法交叉应用于分析数学、力学、电磁学等不同领域的各种模型,能够大大提高解决微分方程的效率。
偏微分方程数值解法大致分为两个方面:一是求解偏微分方程的离散数值解法;二是精确解对分解数值解法,如多阶谱方法、牛顿法和共轭梯度法等。
其中,离散数值解法是把偏微分方程抽象成一系列数值求解问题,并进行递推叠加求解,而精确解对分解数值解法则是通过优化问题方式求解微分方程精确解,以达到精确求解的目的。
偏微分方程数值解法的有效解决的方法,给科学与技术研究带来了很大的帮助。
它不但克服了无法精确解决某些复杂偏微分方程的困难,而且有更快的求解效率,也可以很好地满足实际科技应用的需要。
偏微分方程数值解法的应用已经普遍发挥出重要的作用,不仅可以解决物理科学问题,还可以解决经济学、商业投资、财务分析等复杂的数学模型。
因此,偏微分方程数值解法的应用已在各个领域得到了广泛的应用,为科学与技术研究提供了很大的帮助,在微分方程求解方面产生了重要的影响。
《偏微分方程数值解》课件

未来发展方向
展望偏微分方程数值解领域的未来发展,如高性能 计算、机器学习等的应用。
结束语
感谢各位的聆听!偏微分方程数值解是一个充满挑战和发展机遇的领域。如果有任何问题,请随时提问交流。
将二维泊松方程转化为离散的网格形式,
通过迭代计算得到数值解。
3
对流-扩散方程的数值解
结合对流和扩散项,通过数值方法求解 对流-扩散方程。
有限元法
一维泊松方程的数值解
将一维泊松方程离散化为一系列局部子区域,并通过插值方法来求解。
二维泊松方程的数值解
将二维泊松方程转化为离散的网格形式,利用变分法求解。
对流-扩散方程的数值解
通过离散化和插值方法,求解对流-扩散方程的数值解。
ቤተ መጻሕፍቲ ባይዱ
迭代法
1
雅可比迭代法的实现
利用矩阵分块对称的性质,通过迭代更
高斯-赛德尔迭代法的实现
2
新猜测值来求解偏微分方程。
进一步改进雅可比迭代法,通过利用最 新的更新结果来加速迭代收敛。
总结与展望
各种数值方法的比较
总结离散化方法、迭代法在不同情况下的优缺点, 帮助选择合适的数值方法。
《偏微分方程数值解》 PPT课件
本课程将介绍偏微分方程数值解的基本概念和常见的数值解方法,包括离散 化方法、迭代法等,以及这些方法在泊松方程和对流-扩散方程中的应用。欢 迎加入我们的学习旅程!
课件大纲
1 简介
介绍偏微分方程及数值解的重要性和应用领 域。
2 常见的数值解方法
探索离散化方法和迭代法,并介绍有限差分 法、有限元法、雅可比迭代法和高斯-赛德尔 迭代法。
常见的数值解方法
离散化方法
通过将连续的偏微分方程转化为离散形式,如有限 差分法和有限元法,从而进行数值计算和求解。
偏微分方程数值解_图文_图文

估计误差
这种误差称为“局部截断误差”,如图。
局部截断误差是以点 的精确解 而产生的误差。
为出发值,用数值方法推进到下一个点
2.整体截断误差—收敛性
整体截断误差是以点 的初始值 为出发值,用数值方法推进i+1步到点
,所得的近似值 与精确值
的偏差:
称为整体截断误差。
特例,若不计初始误差,即 则
即 3.舍入误差—稳定性
五、线性多步(Linear Multistep Method)法
1. 预备知识:插值多项式
插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况, 估算出函数在其他点处的近似值。
从几何上理解:对一维而言,已知平面上n+1个不同点,要寻找一条n次多项式 曲线通过这些点。插值多项式一般常见的是拉格朗日插值多项式。
把
代入 中,有
经比较得到
取 为自由参数: 从而得到不同的但都是二阶的R-K方法,对应的有中点法、Heun(亨)法 以及改进的Euler法。
基于相同的过程,通过比较五次Taylor多项式,得到更加复杂的结果,给出了包含 13个未知数的11个方程。得到多组系数,其中常用的是以下四阶R-K法:
改进的Euler法、R-K法以及解析解的比较:
是待定的系数。
Euler法就是
的R-K法。
其系数的确定如下:将 展开成 的幂级数,并与微分方程的精确解
在点 的Taylor展开式相比较,使两者的前
项相同,这样确定的R-K法,
其局部截断误差为
,根据所得关于待定系数的方程组,求出它们的值后
代入公式,就成为一个 阶R-K方法。
例题 以二阶R-K法为例说明上述过程
2. Curtis F.Gerald and Patrick O., Applied Numerical Analysis, Person Education, Inc., 2004.
高等数学中的偏微分方程数值解法
偏微分方程是数学中的一大重要分支,广泛应用于物理、工程、金融等领域。
其求解方法可以分为解析解法和数值解法。
解析解法要求方程具有可积性,适用于一些简单的方程,但是对于复杂的方程往往无法得到解析解。
而数值解法通过将方程离散化,利用数值计算方法得到数值解,是一种弥补解析解法不足的重要手段。
在高等数学中,偏微分方程数值解法主要包括差分法、有限元法和有限差分法。
其中,差分法是最早应用于求解偏微分方程的数值方法之一。
差分法通过将偏微分方程中的导数用差商的形式来近似表示,将连续的问题转化为离散的问题,再通过计算机程序来进行求解。
差分法的优点是简单易懂、计算速度快,适用于一些较为简单的偏微分方程。
但是差分法的精度受到离散化步长的影响,不适用于一些对精度要求较高的问题。
有限元法是一种更为广泛应用的偏微分方程数值解法。
有限元法通过将求解区域分割成有限多个小区域,用简单形状的基函数来逼近真实解,再通过求解线性方程组得到数值解。
有限元法的优点在于适用于复杂的几何形状、能够处理不规则的边界条件,并且精度较高。
有限元法还具有较好的可扩展性,可以处理大规模的求解问题。
因此,有限元法在工程领域的应用非常广泛。
有限差分法是一种通过计算导数来逼近微分方程的数值解法。
有限差分法基于泰勒展开公式,将微分算子在某点处的展开为有限多个导数的差商的线性组合。
通过将微分算子离散化,可以将偏微分方程转化为代数方程组,再通过求解方程组来得到数值解。
有限差分法的优点在于简单易懂,计算速度较快。
但是由于差商的导数逼近误差,有限差分法的精度受到离散化步长的影响,需要选择合适的步长来保证精度。
总的来说,高等数学中的偏微分方程数值解法是研究偏微分方程数值计算的一大热点和难点。
不同的数值方法适用于不同的问题,需要根据具体情况来选择适合的数值方法。
在求解偏微分方程时,还需要注意数值误差对结果的影响,并通过适当选择离散化步长和网格数量等参数来提高数值解的精度。
随着计算机技术的发展,偏微分方程数值解法将会越来越广泛地应用于实际问题的求解中。
第6章_偏微分方程数值解法
和 advect.m 程序运行结果 § 程 方程 形方 物形 抛物 2抛 .2 6. §6 1.线上法(Method of Lines, MOL) 所谓线上法,就是对偏微分方程中的部分变量进行差分 离散化, 而保留一个变量的微分, 这样, 采用 MOL 以后的 PDEs 变成了 ODEs。 例如:扩散方程:∂u / ∂t = a∂ u / ∂x 在对空间 x 离散化
∂u ∂u +a =0 ∂t ∂x
这里, a 为不为零的常数.下面给出对流方程数值求解的差分格式。 1. 迎风格式(up-wind scheme)
n n n ukn +1 − uk a ⎧ ⎪(uk − uk −1 ), a > 0 + =0 ⎨ n n Δt Δx ⎪ − < ( ), 0 u u a ⎩ k +1 k
for iStep=1:nStep %% MAIN LOOP %% if( method == 1 ) % FTCS method a(1:N) = a(1:N) + coeff*(a(ip)-a(im)); elseif( method == 2 ) % Lax method a(1:N)=.5*(a(ip)+a(im))+coeff*(a(ip)-a(im)); else % Lax-Wendroff method a(1:N) = a(1:N) + coeff*(a(ip)-a(im)) + ... coefflw*(a(ip)+a(im)-2*a(1:N)); end %* Periodically record a(t) for plotting. if( rem(iStep,plotStep) < 1 ) iplot = iplot+1; aplot(:,iplot) = a(:); tplot(iplot) = tau*iStep; hold off;plot(x,a); axis([-0.5 0.5 -0.5 0.8]);pause(0.2); end end % Plot the initial and final states. figure(1); clf; plot(x,aplot(:,1),'-',x,a,'--'); legend('Initial ','Final'); xlabel('x'); ylabel('a(x,t)'); pause(1); %Plot the wave amplitude versus position and time figure(2); clf; mesh(tplot,x,aplot); ylabel('Position'); xlabel('Time'); zlabel('Amplitude'); view([-70 50]);
偏微分方程的数值解法
偏微分⽅程的数值解法偏微分⽅程的数值解法
主要总结常见椭圆形、双曲型、抛物型偏微分⽅程的数值解法
椭圆偏微分⽅程
拉普拉斯⽅程是最简单的椭圆微分⽅程
∂2u ∂x2+∂2u
∂y2=0
确定偏微分⽅程的边界条件主要采⽤固定边界条件:u|Γ=U1(x,y) 即在边界Γ上给定u的值U1(x,y)五点差分格式
五点差分格式的形式为:
u i+1,j+u i−1,j+u i,j+1+u i,j−1=4u i,j
以u i,j为中⼼向其上下左右做差分,并⽤这些近似的代替u i,j
运⽤五点差分法可以求出下列边值问题
∂2u ∂x2+∂2u
∂x2=0
u(x1,y)=g1(x),u(x2,y)=g2(x)
u(x,y1)=f1(y),u(x,y2)=f2(y)
x1≤x≤x2,y1≤y≤y2
求解过程如下:
对求解区域进⾏分割:将x min≤x≤x max范围内的的x轴等分成NX段,同理将y轴等分成NY段
将边界条件离散到格点上
⽤五点差分格式建⽴求解⽅程,求出各个格点的函数值
程序设计:
实现函数格式为u = peEllip5(nx, minx, maxx, ny, miny, maxy)
变量名变量作⽤
nx x⽅向上的节点数
minx求解区间x的左端
maxx求解区间x的右端
ny y⽅向的节点数
miny求解区间y的左端
maxy求解区间y的右端
u求解区间上的数值解
建⽴边界条件函数
``
{
Processing math: 100%。
偏微分方程的数值解法和应用
偏微分方程的数值解法和应用偏微分方程(Partial Differential Equation,PDE)是数学中的一个重要研究领域,它是数学建模和物理学、工程学中的重要工具之一。
通常情况下,我们可以通过一些解析方法求得偏微分方程的解析解,但是这种方法并不适用于所有情况,因此,数值解法的研究具有重要意义。
一、偏微分方程的求解偏微分方程的求解可以分为两类:解析解和数值解。
解析解是指通过一些解析方法求得的该方程的精确解,而数值解是指通过一些数值计算方法求得的该方程的近似解。
1. 解析解对于简单的偏微分方程,我们可以通过分离变量、变换变量、特征线等方法求得其解析解。
例如,对于泊松方程:$$\nabla^2 u=f(x,y)$$我们可以通过分离变量的方法得到:$$u(x,y)=\sum_{n=1}^\infty\sum_{m=1}^\infty a_{nm} \sin\frac{n\pi x}{L} \sin\frac{m\pi y}{W}$$其中:$$a_{nm}=\frac{4}{nm\pi^2}\int_0^W\int_0^L f(x,y)\sin\frac{n\pi x}{L}\sin\frac{m\pi y}{W} dx dy$$这是一个完整的解析解,可以用于解决实际问题。
然而,大多数情况下,偏微分方程并没有解析解,因此我们需要寻求数值解法。
2. 数值解在实际工程问题中,偏微分方程往往具有复杂的形式,不可能通过解析方法求得其解析解。
这时,我们需要使用计算机数值方法求得其数值解。
数值解法中的常见方法包括:差分方法、有限元法、有限体积法、谱方法、边界元法等。
其中,有限元法和有限体积法是比较常用的数值解法。
有限元法(Finite Element Method,FEM)是一种将求解区域离散为许多小单元的方法,把偏微分方程转化为一个线性方程组。
在有限元法中,通常采用三角形或四边形做为单元。
具体的,有限元法的步骤如下:(1)离散化:将求解区域划分成若干个小单元,对单元内的未知函数用多项式进行逼近。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏微分方程是数学中非常重要的一类方程,它描述了物理、化学、工程等领域
中许多现象的演化规律。
在实际应用中,我们经常面临着无法解析求解偏微分
方程的困难,因此需要借助数值方法来获得其近似解。
本文将就偏微分方程的
数值解的求解方法进行阐述。
首先,单个偏微分方程求解的数值方法主要有有限差分法、有限元法和有限体
积法等。
其中,有限差分法是最为经典和常用的方法之一。
有限差分法将连续
的空间域离散化为一组有限的网格点,将连续的时间域离散化为一组有限的时
间步长。
通过在网格点上近似求解偏微分方程,我们可以得到方程在整个空间
和时间域上的数值解。
此外,有限元法和有限体积法是一种更加灵活和通用的
数值方法,它们能够适用于各种复杂的物理模型和几何形状。
这些方法利用了
分片连续函数的逼近性质,在每一个片段上构建逼近函数,并通过求解矩阵方
程来获得数值解。
其次,多个偏微分方程之间可能存在耦合性,即它们之间相互依赖或相互影响。
在求解这种情况下的偏微分方程组时,我们常常需要采用迭代求解的方法。
例如,将几个方程按照某种次序进行求解,并将已知的数值解作为新的边界条件
代入下一个方程的求解中。
通过多次迭代求解,我们可以得到偏微分方程组的
数值解。
最后,为了提高数值解的精度和稳定性,我们常常需要选择合适的数值格式和
数值算法。
在有限差分法中,常用的数值格式有前向、后向和中心差分格式等。
这些格式的选择要根据具体方程的性质和求解的目标来确定。
同时,我们还需
要关注数值格式的稳定性和精度。
稳定性保证了数值解的长时间稳定性,而精
度则决定了数值解的误差大小。
总的来说,偏微分方程的数值解既是一种求解复杂方程的有效方法,也是研究
数学模型的重要手段。
在实际应用中,我们常常需要根据具体问题的需求来选
择合适的数值方法,并进行适当的数值格式和算法的选择和调整。
通过不断改
进和优化数值方法,我们能够获得更加可靠和准确的数值解,从而为实际问题
的分析和处理提供有力支持。