666集成运放的非线性应用(电压比较器、波形产生与变换)概述解读

666集成运放的非线性应用(电压比较器、波形产生与变换)概述解读
666集成运放的非线性应用(电压比较器、波形产生与变换)概述解读

集成运放的非线性应用(电压比较器、波形产生与变换)一选择题:

1、欲将方波电压转换为三角波电压,应选用(A )电路。

A.积分运算B、乘方运算C.同相比例运算 D.反相比例运算电路

2、在RC桥式正弦波振荡电路中,当满足相位起振条件时,则其中电压放大电路的放大倍数必须满足( D )才能起振。

A A u= 1

B A u= 3

C A u<3

D A u>3

3、振荡电路的幅度特性和反馈特性如图1所示,通常振荡幅度应稳定在( C )。

A.O 点

B. A 点

C. B 点

D. C 点

4、迟滞比较器有2个门限电压,因此在输入电压从足够低逐渐增大到足够高的

过程中,其输出状态将发生( A )次跃变。

A. 1

B. 2

C. 3

D. 0

5、某LC振荡电路的振荡频率为o f=100 kHz,如将LC选频网络中的电容C增大一倍,则振荡频率约为 ( C )

A.200kHz B.140kHz

C. 70kHz

D.50kHz

6、若想制作一频率非常稳定的测试用信号源,应选用( D )。

A. RC桥式正弦波振荡电路

B. 电感三点式正弦波振荡电路

C. 电容三点式正弦波振荡电路

D. 石英晶体正弦波振荡电路

7、电路如图3所示,欲使该电路能起振,则应该采取的措施是( C )。

A.改用电流放大系数β较小的晶体管

B.减少反馈线圈L1的匝数

C.适当增大L值或减小C值

D.减少L2的匝数

L

8、正弦波振荡器的振荡频率由( C )而定。

A.基本放大器

B.反馈网络

C.选频网络

D.稳幅电路 9、RC 桥式正弦波振荡电路由两部分电路组成,即RC 串并联选频网络和( D )。 A. 基本共射放大电路 B.基本共集放大电路

C. 反相比例运算电路

D.同相比例运算电路

10、迟滞比较器有2个门限电压,因此在输入电压从足够低逐渐增大到足够高的过程中,其输出状态将发生( A )次跃变。

A. 1

B. 2

C. 3

D. 0

11、一个正弦波振荡器的反馈系数F =∠?

15180,若该振 荡器能够维持稳定振荡,

则开环电压放大倍数A u 必须等于( C )。

A.15

360∠? B.150∠? C.5180

∠-?

D.°05∠ 12、工作在电压比较器中的运放与工作在运算电路中的运放的主要区别是,前者的运放通常工作在(A )。

A.开环或正反馈状态

B.深度负反馈状态

C.放大状态

D.线性工作状态

13、某LC 振荡电路的振荡频率为Z kH f 1000=,如果将LC 选频网络中的电容C 增大一倍,则振荡频率约为( C )。

A.Z kH f 2000=

B.Z kH f 1400=

C.Z kH f 700=

D.Z kH f 500= 14、产生低频正弦波一般可用( C )振荡电路。

A.英晶体

B.LC

C.RC

D. 以上都不可以

15、已知某电路输入电压和输出电压的波形如图所示,该电路可能是(A )。

A.积分运算电路

B.微分运算电路

C.过零比较器

D.滞回比较器

二、填空题:

1、正弦波振荡电路当稳幅振荡时,其幅值平衡条件是 ,相位平衡条件是 &A+&F=2Kr ,当电路起振时,其幅值条件是 。

u I

u o

2、正弦波振荡电路当稳幅振荡时,其幅值平衡条件是,相位平衡条件是,当电路起振时,其幅值条件是。

3、在信号处理电路中,当有用信号频率低于10 Hz时,可选用低通滤波器;有用信号频率高于10 kHz时,可选用高通滤波器;希望抑制50 Hz 的交流电源干扰时,可选用带阻滤波器;有用信号频率为某一固定频率,可选用带通滤波器。

4、单限电压比较器只有 1 个门限电压值,而迟滞比较器则有2

5、自激振荡电路主要由放大器和反馈电路两部分组成,前者要求有足够

的放大倍数,后者要求反馈信号与输入信号同相。

极间的回路元件是电感;

的回路元件是电阻;c-b极间的回路元件是电容。

7、一个实际的正弦波振荡电路绝大多数属于正反馈电路,它主要由

放大电路,反馈网络,选频网络组成。为了

保证振荡幅值稳定且波形较好,常常还需要稳幅环节。

8、正弦波振荡器产生持续稳定的振荡必须满足幅值平衡条件和(相位)平衡条件。

器。图(a)为带阻,图(b)为低通,图(c)为带通,图(d)为高通。

10、要获得低频信号,可选用RC 振荡器;要获得高频信号可选用LC 振荡器。

11、一个实际正弦振荡电路主要由放大器、正反馈网络、选频网络组成。

12、要获得低频信号,可选用RC 振荡器;要获得高频信号可选用LC 振荡器。

5、只要电路引入了正反馈,就一定会产生正弦波振荡。(X )

5、正弦波振荡器主要由放大电路、选频网

络、正反馈网络和限幅电路组成。

三、判断题:

1、振荡电路中只要引入了负反馈,就不会产生振荡信号。(X )

2、单限比较器比滞回比较器抗干扰能力强,而滞回比较器比单限比较器灵敏度高。(V )

3、只要电路引入了正反馈,就一定会产生正弦波振荡。(X )

4、迟滞比较器的回差电压越大,其抗干扰的能力越强。(V )

5、电容滤波电路适用于小负载电流,而电感滤波电路适用于大负载电流。(V )

6、迟滞比较器的回差电压越大,其抗干扰的能力越强。(V )

7、迟滞比较器只有1个门限电压值。(X )2个

8、由LC元件组成的串并联谐振回路谐振时的阻抗呈纯电阻性,且为最小值

(V )。

9、滞回比较器有两个阈值电压。( V)

10、凡是能产生自激振荡的电路一定具有正反馈。(V )

11、由LC元件组成的串并联谐振回路谐振时的阻抗呈纯电阻性,且为最小值

(V )。

四、问答题:

1、设集成运放为理想元件,下列几种情况下,它们应分别属于哪种类型的滤波电路?

(1)、直流电压增益就是它的通带电压增益;

(2)、在理想情况下,当f→∞时的电压增益就是它的通带电压增益;

f=和f→∞时,电压增益都等于零。

(3)、在0

2、设运放为理想元件,下列几种情况下,它们应分别属于哪种类型的

滤波电路?

(1)、有用信号频率低于400HZ

(2)、希望抑制50HZ交流电源的干扰

(3)、希望抑制500 HZ以下的信号.

五、分析计算题:

1、试确定输出电压大小,并画出图中所示电路的电压传输特性曲线。已知

R1=10KΩ。

2、写出正弦波振荡电路产生自激振荡的条件。分析如图所示电路,标出变压器的同名端,使之满足正弦波振荡的相位平衡条件。

1

=

?

?

F

A

......

2,1,0

2=

=

+k

k

F

A

π

?

?

3、下图所示为恒流源电路,已知稳压管工作在稳压状态,试求负载电阻中的电流。

4、由深度负反馈放大器构成的正弦振荡器如图所示。试证明:

(1)R

t

≥1kΩ;

(2)振荡频率电路,f

o

≈212Hz。

5、电路如图7所示,试求解:

(1)R W 的下限值;

(2)振荡频率的调节范围。

Hz 145≈)( π21

kHz

6.1≈ π21

21min

01max 0C

R R f C

R f +==

6、电路如图所示。

(1)为使电路产生正弦波振荡,标出集成运放的“+”和“-”;并说明电

路是哪种正弦波振荡电路。

(2)若R 1短路,则电路将产生什么现象? (3)若R 1断路,则电路将产生什么现象?

(4)若R F 短路,则电路将产生什么现象?

(5)若R F 断路,则电路将产生什么现象?

7、 电路如图所示

(1)试从相位平衡条件分析下图电路能否产生正弦波振荡?

(2)若能振荡,f

R 和1e R 有何关系?振荡频率是多少?

(3)为了稳幅,电路中哪个电阻可采用热敏电阻,其温度系数如何?

图(3)

d

R 1T 2

T 2

e R CC

V +R

1

e R 2C R C

C

R

R f

R

0.04F

μ68k Ω

8、计算。设电路如图所示,R=10K Ω,C=0.1μF ,

(1) 求振荡器的振荡频率。 (2) 为保证电路起振,对f

1

R R 的比值有何要求? (3) 试提出稳幅措施。

9、如图所示电路,已知稳压管工作在稳压状态,试求负载电阻中的电流。

10、已知图(a )所示方框图,各点的波形如图(b )所示,填写各电路的名称。

电路1为 , 电路2为 ,电路3为 ,电路4为 。并画出电路2和电路3。

R f

C

R

u 0

R

C

R 1

电压比较器实验

实验报告 课程名称:___模拟电子技术实验____________指导老师:_ ___ _成绩:__________________ 实验名称:________实验类型:_EDA___________同组学生姓名:__ __ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一. 实验目的 1.了解电压比较器与运算放大器的性能区别; 2.掌握电压比较器的结构及特点; 3.掌握电压比较器电压传输特性的测试方法; 4.学习比较器在电路设计中的应用。 二. 实验内容 1 .过零电压比较器 2 .单门限电压比较器 3 .滞回电压比较器 4 .窗口电压比较器 5 .三态电压比较器 三.实验原理 比较器的输出结构 集电极开路输出比较器 集电极/发射极开路输出比较器

漏极开路输出比较器 推挽式输出比较器 ● 过零电压比较器电路 : 过零电压比较器是电压比较电路的基本结构,它可将交流信号转化为同频率的双极性矩形波。常用于测量正弦波的频率相位等。当输入电压 时,输出 ;反之,当输入电压 时,输出 。 ● 基本单门限比较器电路 单门限比较器的输入信号V in 接比较器的同相输入端,反相输入端接参考电压V ref (门限电平) 。当输入电压V in >V ref 时,输出为高电平V OH ;当输入电压V in

常见电压比较器分析比较

常见电压比较器分析比较 电压比较器通常由集成运放构成,与普通运放电路不同的是,比较器中的集成运放大多处于开环或正反馈的状态。只要在两个输入端加一个很小的信号,运放就会进入非线性区,属于集成运放的非线性应用范围。在分析比较器时,虚断路原则仍成立,虚短及虚地等概念仅在判断临界情况时才适应。 一、零电平比较器(过零比较器) 电压比较器是将一个模拟输入信号ui与一个固定的参考电压UR进行比较和鉴别的电路。 参考电压为零的比较器称为零电平比较器。按输入方式的不同可分为反相输入和同相输入两种零电位比较器,如图1(a)、(b)所示 图1 过零比较器 (a)反相输入;(b)同相输入 通常用阈值电压和传输特性来描述比较器的工作特性。 阈值电压(又称门槛电平)是使比较器输出电压发生跳变时的输入电压值,简称为阈值,用符号UTH表示。

估算阈值主要应抓住输入信号使输出电压发生跳变时的临界条件。这个临界条件是集成运放两个输入端的电位相等(两个输入端的电流也视为零),即U+=U–。对于图1(a)电路,U–=Ui, U+=0, UTH=0。 传输特性是比较器的输出电压uo与输入电压ui在平面直角坐标上的关系。 画传输特性的一般步骤是:先求阈值,再根据电压比较器的具体电路,分析在输入电压由最低变到最高(正向过程)和输入电压由最高到最低(负向过程)两种情况下,输出电压的变化规律,然后画出传输特性。 二、任意电平比较器(俘零比较器) 将零电平比较器中的接地端改接为一个参考电压UR(设为直流电压),由于UR的大小和极性均可调整,电路成为任意电平比较器或称俘零比较器。

图2 任意电平比较器及传输特性 (a)任意电平比较器;(b)传输特性 图3 电平检测比较器信传输特性 (a)电平检测比较器;(b)传输特性 电平电压比较器结构简单,灵敏度高,但它的抗干扰能力差。也就是说,如果输入信号因干扰在阈值附近变化时,输出电压将在高、低两个电平之间反复地跳变,可能使输出状态产生误动作。为了提高电压比较器的抗干扰能力,下面介绍有两个不同阈值的滞回电压比较器。 三、滞回电压比较器 滞回比较器又称施密特触发器,迟滞比较器。这种比较器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。 滞回比较器也有反相输入和同相输入两种方式。

滞回比较器

第一部分 模拟电子课程设计

目录 1 课程设计的目的与作用 (1) 1.1设计目的、主要任务及设计思想 (1) 1.2设计作用 (1) 1.2.1滞回比较器 (1) 1.2.2双限比较器 (1) 2 设计任务及所用multisim软件环境介绍 (1) 2.1设计任务 (1) 2.2 Multisim软件环境介绍: (2) 3 电路模型的建立 (2) 3 .1滞回比较器 (2) 3 .2双限比较器 (2) 4 理论分析及计算 (3) 4 .1滞回比较器理论分析及计算 (3) 4 .2双限比较器 (4) 5 仿真结果分析 (5) 5 .1滞回比较器 (5) 5 .2双限比较器 (5) 6 设计总结和体会 (6) 7 参考文献 (6)

1 课程设计的目的与作用 1.1设计目的、主要任务及设计思想 根据设计要求完成对滞回比较器和双限比较器的设计,进一步加强对模拟电子技术的理解。了解比较器的工作原理,掌握外围电路设计与主要性能参数的测试方法。 1.2设计作用 1.2.1.滞回比较器:又称施密特触发器,其抗干扰能力强,如果输入电压受到干扰或噪声的影响,在门限电平上下波动,而输出电压不会在高、低两个电平间反复的跳动。 1.2.2.双限比较器:在实际工作中,有时需要检测输入模拟信号的电平是否处在两个给定的电平之间,此时要求比较器有两个门限电平,这种比较器称为双限比较器。 2设计任务及所用multisim软件环境介绍 2.1设计任务 初步了解和掌握滞回比较器和双限比较器的设计、调试过程,能进一步巩固课堂上学到的理论知识,了解滞回比较器和双限比较器的工作原理

2.2 Multisim软件环境介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 3 电路模型的建立 3.1.滞回比较器 图3.1 3.2.双限比较器

电压比较器LM393学习资料

电压比较器L M3 93

电压比较器LM393 【教材分析】 “电压比较器”这部分内容是上海市劳动技术教材(科教版)高二年级第二章控制技术里面电子控制系统部分的内容。理解掌握电压比较器电路的工作原理对于后续“光电自动循迹小车”控制原理部分的学习非常重要。 LM393数字电路作为一个新的知识点,如果结合“光电自动循迹小车”电路图讲解,由于还涉及到输入输出部分的分析,很多学生理解起来有困难。只有将电压比较器在电路中的功能及应用讲清讲透彻,在这个基础条件上再让学生学习制作“光电自动循迹小车”能起到事半功倍的效果。 本节课从电压比较器接法分析和实验验证入手,一步步引导学生深入探讨,然后结合生活实例让学生动手设计制作“光控照明电路”,在实践中加深 学生对于电压比较器的理解掌握。 【学情分析】 由于高二已进行文理分班,考虑到本班级是文科班,在课堂教学内容安排 上我尽量降低难度,在理论知识讲解上要透彻,在实践操作指导上要细致,能让大多数学生都能体验技术设计的过程,感受技术活动的乐趣。 在前阶段的学习中学生已经认识了基本的电子元器件如电阻、发光二极 管、传感器等,用电子实验板搭建过几个简单电路,也了解了一些数字集成电路的知识。通过生活实例讲解电压比较器作用后,让学生通过实验板搭建实验验证,在此过程中学生既能理解电压比较器功能,又能了解LM393的电路接 法。在此基础上结合生活实际启发学生设计制作“光控照明电路”,引导学生拓宽思路,开拓视野,有助于培养学生分析问题解决问题的能力,有助于学生

综合设计能力的提高。 【教学目标】 1、知识与技能 (1)初步学会识读集成电路LM393的内部结构和引脚图。 (2)理解电压比较器在电路中的作用和接入电路的方法。 (3)学会用集成电路LM393设计制作简单的电子作品。 2、过程与方法 (1)共同探讨电压比较器接入电路的方法,选择合适电子元器件在电子实验板上搭建验证电路,探究电压比较器电路的工作原理。 (2)联系生活实际,通过分析、设计、制作、调试“光控照明电路”,进一步了解电压比较器在实际电路中的作用,提高分析问题、解决问题的能力。 3、情感态度与价值观 (1)通过电压比较器电路分析、在电子实验板上组装与实验调试,达到“理论一实践一理论”相结合,激发学习兴趣,增强创新意识,合作意识。 (2)通过“光控照明电路”的设计和制作,感悟数字技术对改善生活的作用,激发学习科学技术、应用科学技术的热情。 【教学重点与难点】 1、重点:电压比较器电路的工作原理 2、难点:电压比较器接入电路的方法 【教学器材】 教具:多媒体课件、多媒体实物投影

电压比较器实验报告

85 专业:电气工程卓越 人才 姓名:卢倚平 学号: ________ 验 … 一 二、实验内容 五、思考题及实验心得 一、实验目的 了解电压比较器与运算放大器的性能区别: 二、实验数据记录、处理与分析 ①【过零电压比较器电路】 过零电压比较器是电压比较电路的基本结构,它可将交流信号转化为同频率 的双极性矩形波。常用于测量正弦波的频率相位等。当输入电压in< 输出out = 0L ;反之,当输入电压in N out 时,输出out = OH 。 实验仿真: 课程名称: 电路打电r 技术实於 指导老师: 周箭 成绩: 实验名称: 电压比较器及其应用 实验类型: 电子电路实验同组 学生姓名: 邓江毅 三、主要仪器设备 四、实验数据记录、处理与分析 一、实验目的 2. 举握电压比较器的结构及特点; 3. 掌握电压比较器电圧传输特性的测试方法: 4. 学习比较器在电路设计中的应用。

不疲器?5(£C1I JS J 时同270.001ms 270.001 ms 0.000s JIf 「反向—] 通道 上 ?4.998 V -4.998 V 0.000 V 通道丿 -17.847V -17.847 V 0.000 V H as 12^1 时基_ 标度:10 msX)iv X轴位移(格):0 通ilA 刻度: 20 VQ2 Y轴位移 (格):0 通ilB ____ 刻度:5 VQiv Y轴位移 (榆:0 L保Q外触发 触发 边沿:SB 0回国] 水 平:0 ~ 实测实验记录: 由于时间不足,没有做过零比较器的相关实测 ②【基本单门限比较器电路】 单门限比较器的输入信号Vin接比较器的同相输入端,反相输入端接参考电 压Vref (门限电平)。当输入电压Vin>Vref 输出为高电平VOH:当输入电压Vin

电压比较器实验报告材料

`实验报告 课程名称:电路与电子技术实验指导老师:成绩: 实验名称:电压比较器及其应用实验类型:电子电路实验同组学生姓名: 一、实验目的二、实验内容 三、主要仪器设备四、实验数据记录、处理与分析 五、思考题及实验心得 一、实验目的 1.了解电压比较器与运算放大器的性能区别; 2.掌握电压比较器的结构及特点; 3.掌握电压比较器电压传输特性的测试方法; 4.学习比较器在电路设计中的应用。 二、实验内容及原理 实验内容 1.设计过零电压比较器电路,反相输入端接地,同相输入端接1kHz、1V正弦波信号,测量并绘制输出波形和电压传输特性曲线。 2.设计单门限电压比较器电路,同相输入端接1V直流电压,反相输入端接1kHz、1V正弦波信号,测量3.并绘制输出波形和电压传输特性曲线。

4.设计反相输入(下行)滞回电压比较器,反相输入端接1kHz、1V正弦波信号,测量并绘制输出波形 和电压传输特性曲线。 5.设计窗口电压比较器电路,输入为1kHz、5V三角波信号,设置参考电压Vref1为1V直流电压,参考电压Vref2为4V直流电压,测量并绘制输出波形和电压传输特性曲线。 6.设计三态电压比较器电路,输入电压信号Vin为1kHz、5V三角波信号,当输入Vin

滞回电压比较器原理及特性

滞回电压比较器原理及特性 滞回电压比较器 滞回比较器又称施密特触发器,迟滞比较器。这种比较器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。 滞回比较器也有反相输入和同相输入两种方式。 UR是某一固定电压,改变UR值能改变阈值及回差大小。 以图4(a)所示的反相滞回比较器为例,计算阈值并画出传输特性 图4 滞回比较器及其传输特性 (a)反相输入;(b)同相输入 1,正向过程

正向过程的阈值为 形成电压传输特性的abcd段 2,负向过程 负向过程的阈值为 形成电压传输特性上defa段。由于它与磁滞回线形状相似,故称之为滞回电压比较器。 利用求阈值的临界条件和叠加原理方法,不难计算出图4(b)所示的同相滞回比较器的两个阈值 两个阈值的差值ΔUTH=UTH1–UTH2称为回差。 由上分析可知,改变R2值可改变回差大小,调整UR可改变UTH1和UTH2,但不影响回差大小。即滞回比较器的传输特性将平行右移或左移,滞回曲线宽度不变。 图5 比较器的波形变换 (a)输入波形;(b)输出波形

例如,滞回比较器的传输特性和输入电压的波形如图6(a)、(b)所示。根据传输特性和两个阈值(UTH1=2 V, UTH2=–2V),可画出输出电压uo的波形,如图6(c)所示。从图(c)可见,ui在UTH1与UTH2之间变化,不会引起uo的跳变。但回差也导致了输出电压的滞后现象,使电平鉴别产生误差。 图6 说明滞回比较器抗干扰能力强的图 (a)已知传输特性;(b)已知ui 波形; (c)根据传输特性和ui波形画出的uo波形

电压比较器工作原理及应用实例

电压比较器工作原理及应用实例 时间:2011-11-24来源:作者:方佩敏 来源:https://www.360docs.net/doc/e94362571.html, 本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。 什么是电压比较器 简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端)及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。VA和VB的变化如图1(b)所示。在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。在这种情况下,Vout 的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout 输出低电平。根据输出电平的高低便可知道哪个电压大。 如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。与图1(c)比较,其输出电平倒了一下。输出电平变化与VA、VB的输入端有关。 图2(a)是双电源(正负电源)供电的比较器。如果它的VA、VB输入电压如图

1(b)那样,它的输出特性如图2(b)所示。VB>VA时,Vout输出饱和负电压。 如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。此VB称为参考电压、基准电压或阈值电压。如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。 比较器的工作原理 比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。 图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为: Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。若R1=R2,R3=RF,则 Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。

八选一数据选择器和四位数据比较器verilog实验报告)

Verilog HDV 数字设计与综合 实验报告 微电子0901班 姓名:袁东明 _ 学号:_04094026 一、实验课题: 1.八选一数据选择器 2.四位数据比较器 二、八选一数据选择器Verilog程序: 2.1主程序 module option(a,b,c,d,e,f,g,h,s0,s1,s2,out); input [2:0] a,b,c,d,e,f,g,h; input s0,s1,s2; output [2:0] out; reg [2:0] out; always@(a or b or c or d or e or f or g or h or s0 or s1 or s2) begin case({s0,s1,s2}) 3'd0 : out=a;

3'd1 : out=b; 3'd2 : out=c; 3'd3 : out=d; 3'd4 : out=e; 3'd5 : out=f; 3'd6 : out=g; 3'd7 : out=h; endcase end endmodule 2.2激励程序 module sti; reg [2:0] A,B,C,D,E,F,G,H; reg S0,S1,S2; wire [2:0] OUT; option dtg(A,B,C,D,E,F,G,H,S0,S1,S2,OUT); initial begin A=3'd0;B=3'd1;C=3'd2;D=3'd3;E=3'd4;F=3'd5;G=3'd6;H=3'd7;S0=0;S1=0;S2=0; #100 A=3'd0;B=3'd1;C=3'd2;D=3'd3;E=3'd4;F=3'd5;G=3'd6;H=3'd7;S0=0;S1=0;S2=1; #100 A=3'd0;B=3'd1;C=3'd2;D=3'd3;E=3'd4;F=3'd5;G=3'd6;H=3'd7;S0=0;S1=1;S2=0; #100 A=3'd0;B=3'd1;C=3'd2;D=3'd3;E=3'd4;F=3'd5;G=3'd6;H=3'd7;S0=0;S1=1;S2=1; #100 A=3'd0;B=3'd1;C=3'd2;D=3'd3;E=3'd4;F=3'd5;G=3'd6;H=3'd7;S0=1;S1=0;S2=0; #100 A=3'd0;B=3'd1;C=3'd2;D=3'd3;E=3'd4;F=3'd5;G=3'd6;H=3'd7;S0=1;S1=0;S2=1;

电压比较器实验报告

`实验报告 课程名称: 电路与电子技术实验 指导老师: 周箭 成绩: 实验名称: 电压比较器及其应用 实验类型: 电子电路实验 同组学生姓名: 邓江毅 一、实验目的 二、实验内容 三、主要仪器设备 四、实验数据记录、处理与分析 五、思考题及实验心得 一、实验目的 1.了解电压比较器与运算放大器的性能区别; 2.掌握电压比较器的结构及特点; 3.掌握电压比较器电压传输特性的测试方法; 4.学习比较器在电路设计中的应用。 二、实验数据记录、处理与分析 ① 【过零电压比较器电路】 过零电压比较器是电压比较电路的基本结构,它可将交流信号转化为同频率的双极性矩形波。常用于测量正弦波的频率相位等。当输入电压 时,输出;反之,当输入电压时,输 出 。 实验仿真: 专业:电气工程卓越人才 姓名: 卢倚平 学号: 3150101215 日期: 4.1 地点: 东3 404

85 实测实验记录: 由于时间不足,没有做过零比较器的相关实测 ②【基本单门限比较器电路】 单门限比较器的输入信号Vin 接比较器的同相输入端,反相输入端接参考电压Vref(门限电平)。当输入电压Vin>Vref 时,输出为高电平VOH;当输入电压Vin

电压比较器原理分析(学年论文)

电压比较器原理分析 目录 第一章绪论 (2) 第二章电压比较器原理图 (2) 第三章电压比较器工作原理及应用 (3) 3.1 什么是电压比较器 (3) 3.2 电压比较器的工作原理 (5) 3.3 比较器与运放的差别 (5) 第四章比较器典型应用电路分析 (6) 4.1 散热风扇自动控制电路 (6) 4.2窗口比较器 (9) 参考文献 (11)

第一章绪论 电压比较器是对输入信号进行鉴幅与比较的电路,是组成非正弦波发生电路的基本单元电路,在测量和控制中有着相当广泛的应用。本文主要讲述各种电压比较器及其对应的应用电路,讲述各种电压比较器的特点及其电压传输特性,同时阐述电压比较器的组成特点和分析方法。 电压比较器是集成运放非线性应用电路,他常用于各种电子设备中,那么什么是电压比较器呢?下面我给大家介绍一下,它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。比较器可以组成非正弦波形变换电路及应用于模拟与数字信号转换等领域。 图1 图1所示为一最简单的电压比较器,UR为参考电压,加在运放的同相的输入端,输入电压UI加在反相的输入端。 第二章电压比较器原理图 电压比较器可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号。因此,可用电压比较器作为模拟电路和数字电路的接口电路。集成电压比较器虽然比集成运放的开环增益低,失调电压大,共模抑制比小,但其响应速度快,传输延迟时间短,而且一般不需要加限幅电路就可以直接驱动TTL、CMOS和ECL等集成数字电路;有些芯片带负载能力强,还可以直接驱动继电器和指示灯。 按一个器件上所含有电压比较器的个数,可分为单、双和四电压比较器;按功能,可分为通用性高速型低功耗型低电压型和高精度型电压比较器;按输出方式,可分为普通集电极(或漏极)开路输出或互补输出三种情况。集电极(或漏极)开路输出电压必须在输出端接一个电阻至电源,若一个为高电平,则另一个必为低电平。 此外,还有的集成电压比较器带有选通断,用来控制电路是处于工作状态,还是处于禁止状态。所谓工作状态,是指点乱编电压传输特性工作;所谓禁止状态,是指电路不按电压传输特性工作,从输出端看进去相当于开路,即处于高阻状态。 下面是对具体电压比较器的功能电路分析:(A)电路图1传输特性当UI<UR时,运放输出高电平,稳压管DZ反向稳压工作。输出端电位被其箝位在稳压管的稳定电压UZ,即UO=UZ

神奇的滞回电压比较器

神奇的滞回电压比较器 初学者感觉滞回电压比较器比较奇妙,是因为它有两个转折的门限电压,为了容易理解,不妨从一个更通俗的例子说起。比如我们常用饮水机中的温控开关.就是比较简单也是比较典型的具有滞回特性的器件。假如我们设定开关工作的温度是T1,如果开关没有滞回的特点,当达到这个温度时,电热器断开,温度下降,当低于这个温度时,电加热器接通。这样就会出现一种情况,电热器在这个温度附近会频繁接通和断开,温度达到T1一加热器件断开一温度下降一导致电热器接通一温度上升-加热器件又断开,如此反复,在临界区附近产生振荡。这是我们不希望的结果,所以,温控开关一般是具有滞回的特点,动作(断开)温度TH和复位(接通)温度TL有一定的温度差一回复误差。比如:设定开关断开的温度是大于95℃,复位接通的温度是小于90℃,回复误差根据需要可以调整,这样就解决了温控开关频繁接通和断开的问题。接通到断开,断开到接通沿着不同的路径,不走回头路,故此称为滞回控制开关。 滞回电压比较器和上述的温控开关是一样的道理,可以类比理解。大家知道运算放大器在开环状态下可以用作比较器,其理想和实际的电压传输特性如附图所示,实际特性是只有当它的差模输入电压足够大时,输出电压Uo才为正负最大值。Uo在从+Uce变为-Uss或从-Uss变为+Uce的过程中,随着Ui的变化,将经过线性区,并需要一定的时间。可以知道,在单限比较器中,输入电压在阀值电压附近的微小变化,都将引起两个不同的输出状态之间产生不期望的频繁穿越跳变,不管这种微小变化是来源于输入信号还是外部干扰。因此,虽然单限比较器很灵敏,但是抗干扰能力差。而滞回比较器具有滞回特性,即具有惯性,因此也就具有一定的抗干扰能力。用带有内部滞回电路的比较器代替开环运算放大器能够抑制输出的频繁跳变和振荡。 滞回电压比较器电路有两个阀值电压,类似本文开始提到的温控开关,有两个门限值UH、UL。输入电压Ui从小变大过程中使输出电压Uo产生跃变的阔值电压UH,不等于Ui从大变小过程中使输出电压Uo产生跃变的阀值电压UL.电路具有滞回特性。举个例子,如附图所示为从反向输入端输入的滞回比较器电路.由分压电阻Rl:R2构成正反馈。假设Rl=lOkn,R2=lOOn,电源供电电压为:U CC=13V,Uss=-13V,反馈系数F=R2/(R 1+R2)。比较器的反相输入电压从0开始线性变化,当Ui=0时,加到同相的输入瑞电压为Uref=RI/(R1+R2)Eref,Uo=Uce,同相端总电压UH=1 V,同相端电压大于反相端电压,这是一个稳定的状态。 输入电压由零向正方向增长,只要它还小于UH,即Ui<1V,输出电压Uo都保持最大正的电征Ucc不变,即Uo=13V。当Ui一旦超过UH一点点,平衡即被破坏,由于反向输入电压大于正向输入电压,输出电压Uo就会从最大正向电压Ucc(+13V)向负向最大电压Uss(-13V)转换。而且由于R1、R2引入的正向反馈作用将加速这种转换,形成跳变,获得理想的传输电压特性,Uo从+13V跳变到-13V。 跳变完成后,加到同相端的总电压为:UL=0.86V,显然只要输入电压保持大干UL即U>0.86V,输出电压将保持负的最大值Uss(-13V)不变。但是当输入电压U从大到小下降到小于UL(0.86V)时,一个相反的连锁反馈又将使输出电压Uo从负的最大值Vss(-13V)跳变到正的最大值Ucc(+13 V)。通过改变Eref的大小可方便改变滞回区间。 斯密特滞回触发器只有-个触发端子,比较方便灵活,在实际中具有广泛的应用,如一开始提到的温控开关就可以用滞回触发器实现。再比如开关电源中的欠压保护就是滞回比较器的典型应用,当市电电压低于一定值时.通过滞回比较器使开关电源停止工作,保护电网和机器的安全。 我们以常用的UC3842为例简单说明其原理,UC3842⑦脚为电压输入端,内接施密特滞回触发器,利用其回滞特性实现锁存,其启动电压范围为16V-34V。 在电源启动,Vcc<16V时,输入电压施密器比较器输出为0,此时无基准电压产生,电路不工作;当Vcc>16V时输入电压施密特比较器送出高电平到5v稳压器,产生5v基准电压,此电压一方面供内部电路工作,另一方面通过⑧脚向外部提供参考电压。一旦施密特比较器翻转为高电平(芯片开始工作以后),Vcc可以在10V-34V范围内变化而不影响电路的工作状态。当Vcc低于10V时.施密特比较器又翻转为低电平,电路停止工作。当出现机器启动困难的故障时,就要考虑该脚外围元件是否正常,该部分电路比较简单,维修应该不复杂,关键是判断故障,要抓住其故障特点。由于保护电路的滞回特点,-般是启动困难,一旦启动成功,能长时间稳定工作。

电压比较器教程文件

电压比较器

实验十集成运放基本应用之三——电压比较电路 姓名:班级:学号:实验时间: 一、实验目的 1、掌握比较器的电路构成及特点 2、学会测试比较器的方法 二、实验原理 1、图1所示为一最简单的电压比较器,UR为参考电压,输入电压Ui加在反相输入端。图1(b)为(a)图比较器的传输特性。 (a) 图1 电压比较器 (b) 当UiUR时,运放输出低电平,Dz正向导通,输出电压等于稳压管的正向压降UD,即:Uo=-UD。 因此,以UR为界,当输入电压Ui变化时,输出端反映两种状态。高电位和低电位。 2、常用的幅度比较器有过零比较器、具有滞回特性的过零比较器(又称Schmitt触发器)、双限比较器(又称窗口比较器)等。 (1)、图2过零比较器 D1D2为幅稳压管。信号从运放的反相端输入,参考电压为零。当u1>0 时,u0=-(Uz+U D),当u1<0时,u0=+(Uz+U D)

(a) 图2 过零比较器 (b) (2)、图3为滞回比较器。 过零比较器在实际工作时,如果Ui恰好在过零值附近,则由于零点漂移的存在,Uo将不断由一个极限值转换到另一个极限值,这在控制系统中,对执行机构将是很不利的。为此就需要输出特性具有滞回现象。如图3所示: (a) (b) 图3 滞回比较器 从输出端引入一个电阻分压支路到同相输入端,若Uo 改变状态,U∑ 点也随着改变点位,使过零点离开原来位置。当Uo 为正(记作U D )U∑=[ R2/( R2+ R f )]* U D ,则当UD> U∑后,Uo 再度回升到UD,于是出现图(b)中所示的滞回特性。- U∑ 与U∑ 的差别称为回差。改变R2 的数值可以改变回差的大小。 三、实验设备与器件 1、±12V直流电源 2、直流电压表 3、函数信号发生器 4、交流毫伏表 5、双踪示波器 6、运算放大器μA741×2 7、稳压管2CW231×1 8、二极管4148×2 9、电阻器等

2位二进制数据比较器实验报告

2位二进制数据比较器实验报告 一 实验目的? 1.熟悉Quartus II 软件的基本操作 2.学习使用Verilog HDL 进行设计输入 3.逐步掌握软件输入、编译、仿真的过程 二 实验说明? 输入信号 输出信号 A1 A0 B1 B0 EQ LG SM 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 逻辑表达式: 三 实验要求? 1、完成2位二进制数据比较器的Verilog HDL 程序代码输入并进行仿真 2、采用结构描述方式和数据流描述方式 3、完成对设计电路的仿真验证 A1 A0 EQ B1 comp_2 LG B0 SM 本次实验是要设计一个2位的二进制数据比较器。该电路应有两个数据输入端口A 、B ,每个端口的数据宽度为2 ,分别设为A0、A1和B0、B1、A0、B0为数据低位, 、B1为数据高位。电路的输出端口分别为EQ (A=B 的输出信号)、LG (A>B 时的输出信号)和SM (A

四、实验过程 1 程序代码 (1) module yangying(A,B,EQ,LG,SM); input [1:0]A,B; output EQ,LG,SM; assign EQ=(A==B)1'b1:1'b0; assign LG=(A>B)1'b1:1'b0; assign SM=(AB) begin EQ<=1'b1; LG<=1'b0; SM<=1'b0; end else begin EQ<=1'b0; LG<=1'b0; SM<=1'b1; end end endmodule 2 仿真结果 五、实验体会 通过2位二进制数据比较器的设计,使我们更加熟悉Quartus 软件进行数字系统设计的步骤,以及运用Verilog HDL进行设计输入,并掌握2位二进制数据比较器的逻辑功能和设计原理,逐步理解功能仿真和时序仿真波形。

模电实验五 电压比较器实验

实验五电压比较器实验 一、实验目的 熟练掌握用运算放大器构成比较器电路的特点。 学会测试比较器的方法。 二、实验设备 1.TX0833 19电源板(±15v) 2.双踪示波器 3.TX0531 29多功能信号发生器 4.交流毫伏表 5.TX0531 18直流电压表 6.TX0833 04运算放大器实验板 7.TX0533 25双路直流稳压电源 三、实验内容 1.过零电压比较器。 (1)按图5-1联接好过零电压比较器电路。 (2)测量u i未输入信号且悬空时的u O值。 (3)u i输入f=500Hz,幅值为2V的正弦信号,用双踪示波器观测u i、u O的波形,并将其记入表5-1 表5-1 f=500Hz u i=2V (4)改变输入信号u i的幅值,可由双路可调稳压电源提供下面表5-2的一组u i的电平值,测量传输特性曲线,并将其记入表5-2,并将曲线描绘于下面的直角坐标中。 表5-2 *(5)如果a,b端跨接稳压管,或b端对地接稳压管,其传输特性曲线如何?可用示波器观察并记录。此实验参考电路如图5-2

2.任意电平比较器。 u OH = +15V u OL = -15V 按图5-3联接好任意电平的比较器电路。 令u R =2V ,按表5-3,使u i 为表中所列的一组电压数值,测u O 的电压数值,将其记入表5-3 令u R =-2V ,按表5-3,使u i 为表中所列的一组电压数值,测u O 的电压数值,将其记入表5-3 表5-3 (1)按图5-4联接好滞后电压比较器。 (2)按照前面的比较器实验经验,自行构思,并用示器来观测,不难发现滞后电压比较器为一具有上、下门限电平的比较器。这里提供给大家上、下门限值的计算公式,供实验中参考。 当输出电压为u OH 时,同相端的电压为2 12f f OH R f f R R V V V R R R R '=?+?++(上门限)

滞回比较器

滞回比较器文件管理序列号:[K8UY-K9IO69-O6M243-OL889-

实验十电压比较器的安装与测试 一.实验目的 1.了解电压比较器的工作原理。 2.安装和测试四种典型的比较器电路:过零比较器、电平检测器、滞回比较器和窗口比较器。 二.预习要求 1.预习过零比较器、电平检测器、滞回比较器和窗口比较器的工作原理。 2.预习使用示波器测量信号波形和电压传输特性的方法。 三.实验原理 电压比较器的基本功能是能对两个输入电压的大小进行比较,判断出其中那一个比较大。比较的结果用输出电压的高和低来表示。电压比较器可以采用专用的集成比较器,也可以采用运算放大器组成。由集成运算放大器组成的比较器,其输出电平在最大输出电压的正极限值和负极限值之间摆动,当要和数字电路相连接时,必须增添附加电路,对它的输出电压采取箝位措施,使它的高低输出电平,满足数字电路逻辑电平的要求。 下面讨论几种常见的比较器电路。 基本过零比较器(零电平比较器) 过零比较器主要用来将输入信号与零电位进行比较, +15V

以决定输出电压的极性。电路如图1所示: u i 2 7 放大器接成开环形式,信号u i 从反向端输入,同 μA741 6 u o 相端接地。当输入信号u i < 0时,输出电压u o 为正极限 3 4 值U OM ;由于理想运放的电压增益A u →∞,故当输 ?15V 入信号由小到大,达到 u i = 0 时,即 u ?= u + 的时刻, 输出电压 u o 由正极限值 U OM 翻转到负极限值 ?U OM 。 图 1 反向输入过零比较器 当u i > 0时输出u o 为负极限值 ?U OM 。因此,输出翻转的临界条件是u + = u ? = 0。 即: +U OM u i < 0 u o = (1) ?U OM u i > 0 其传输特性如图2(a )所示。所以通过该电路输出的电压值,就可以鉴别输入信号电压u i 是大于零还是小于零,即可用做信号电压过零的检测器。

模电实验报告 九 电压比较器

模电实验报告 实验 集成运放基本应用电压比较器 姓名: 学号: 班级: 院系: 指导老师: 2016年月日星期

目录 实验目的: (2) 实验器件与仪器: (2) 实验原理: (3) 实验内容: (4) 实验:集成运放基本应用电压比较器 实验目的: 1.掌握比较器的电路构成及特点。 2.学会测试比较器的方法。 实验器件与仪器:

实验原理: 电压比较器的功能是比较两个电压的大小。例如,将一个信号电压Ui和另一个参考电压Ur进行比较,在Ui>Ur和Ui0时,Uo为低电平 Ui<0时,Uo为高电平

电压传输特性曲线 2、滞回电压比较器 滞回电压比较器是由集成运放外加反馈网络构成的正反馈电路,Ui为信号电压,Ur为参考电压值,输出端的稳压管使输出的高低电平值为±Uz。 电压传输特性曲线 可以看出,当输入电压从低逐渐升高或从高逐渐降低经过0电压时,Uo会从一个电平跳变为另一个电平,称0为过零比较器的阈值。阈值定义为当比较器的输出电平从一个电平跳变到另一个电平时对应的输入电压值。 实验内容: 1.过零比较器

(1)按图接线Vi悬空时测Vo的电压。 实验测得Vi悬空时测Vo的电压为3.8154V。 (2) Vi输入500HZ有效值为1V的正弦波,观察Vi和Vo波形并记录。 (3)改变Vi幅值,观察Vo变化。 增大Vi值测得Vi和Vo波形如下: 当Ui<0时,由于集成运放的输出电压Uo’=+Uom,使稳压管D2工作在稳压状态,所以输出电压Uo=Uz;当Ui>0时,由于集成运放的输出电压Uo’=-Uom,使稳压管D1工作在稳压状态,所以输出电压Uo=-Uz。 2.反相迟滞比较器

比较器工作原理及应用

电压比较器(以下简称比较器)就是一种常用得集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F 变换电路、 A /D 变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用得电压比较器。 什么就是电压比较器 简单地说,电压比较器就是对两个模拟电压比较其大小(也有两个数字电压比较得,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)就是比较器,它有两个输入端:同相输入端(“ + ” 端)及反相输入端(“一”端),有一个输出端Vou t (输出电平信号)。另外有电源V+ 及地(这就是个单电源比较器),同相端输入电压VA,反相端输入VB。V A与VB得变化如图1(b )所示。在时间0~ t 1时,V A > V B ;在上1?t 2时,V B > VA ;在上2~t3时,V A> VB。在这种情况下,Vo u t得输出如图1 (c)所示:V A>VB 时,Vou t输出高电平(饱与输出);V B >V A时,V o u t输出低电平。根据输出电平得高低便可知道哪个电压大.

如果把V A 输入到反相端,V E 输入到同相端,VA 及V B 得电压变化仍然如图1(b)所示则Vout 输出如图1(d )所示.与图 1 (c )比较,其输出电平倒了一下。输出电平变化与 VA 、VE 得输入 端有关。 图2⑻就是双电源(正负电源)供电得比较器?如果它得 VA 、VB 输入电压如图1 (b )那样,它得输出特性如图2(b)所示。VB > V A 时,Vou t 输出饱与负电压。 国1 ■KT \ I V 咚庄

实验十二 电压比较器

实验十二电压比较器 学院:信息科学与技术学院专业:电子信息工程 姓名:刘晓旭 学号:2011117147

一.实验目的 1.掌握电压比较电路的分析及计算 2.学会测试电压比较器的方法 二.实验仪器 双踪示波器,信号发生器,数字发生器,直流电源 三.预习要求 1.复习电压比较器的工作原理 2.计算图1实验电路的阈值,画出电路的电压传输特性曲线 3.分析各实验电路,画出当输入为正弦波时的输出波形图。 4.根据实验内容自拟实验数据记录表格。 四.实验原理 电压比较器(通常称为比较器)的功能是比较两个电压的大小。例如,将 一个信号电压u i 和另一参考电压U R 进行比较,在u I >U R 和u I 0 时,u o 为低电平 u i < 0 时,u o 为高电平 集成运放输出的高低电平值一般为最大输出正负电压值U 0m 。 图1.过零比较器

2.滞回电压比较器 滞回电压比较器是由集成运放外加反馈网络构成的正反馈电路,如图 2 所示。 u i 为信号电压,U R 为参考电压值,输出端的稳压管使输出的高低电平值为±U Z 。可以看出,此电路形成的反馈为正反馈电路。 图2反相滞回电压比较器 电压比较器的特性可以用电路的传输特性来描述,它是指输出电压的关系曲线,如图1(b)为过零比较器的电压传输特性曲线。 可以看出,当输出电压从低逐渐升高或从高逐渐降低讲过0电压时,u o 会从一个电平跳变为另一个电平,称0为过零比较器的阈值。阈值定义为当比较器的输出电平从一个电平跳变到另一个电平时对应的输入电压值。 滞回电压比较器的电压传输特性曲线如图2(b)所示。 曲线表明,当输入电压由低向高变化,经过阈值U TH1时,输出电平由高电平跳变为低电平。 3 221 R R U R U Z TH += 当输入电压从高向低变化经过阈值U TH2时,输出电压由低电平跳变为高电平, 3 222R R U R U Z TH +-= 3.电压比较器的测试 测试过零比较器时,可以用一个低频的正弦信号输入至比较器中,直接用双踪示波器监视输出和输入波形,当输入信号幅度适中时,可以发现输入电压大于0,小于0时,输出的高低电平变化波形,即将正弦波变换成方波。 滞回电压比较器测试时也可以用同样的方法,但是在示波器上读取上下阈值

相关文档
最新文档