1大学生方程式赛车立柱和轮毂设计及有限元分析

1大学生方程式赛车立柱和轮毂设计及有限元分析

悬架零件强度分析

赛车的悬架在赛车的行驶安全中具有重要的作用,所以在对赛车的悬架进行

设计时,悬架的受力分析显得尤为重要。通过对悬架的受力分析,可以对悬架的

安全性能进行评估,同时可以节约材料,使材料的使用更加合理。在SolidWorks中完成悬架零部件的建模后,使用SolidWorks 力学分析模块Simulation对悬架零部件的强度和刚度进行校核。

赛车高速过弯和高速制动减速是赛车行驶过程中比较常见的两种工况,高速过弯时赛车将承受极大的离心力并发生横向载荷转移,而高速制动减速时赛车则承受极大的惯性力并发生纵向载荷转移,这两种工况下悬架各个零部件将承受比较大的动载荷。

分别是立柱、轮毂进行受力分析,因为这两个是悬架的主要受力部分。通过建立SolidWorks 模型,并进入Simulation模块设置相应的单元的材料类型,设置夹持方式,施加载荷,然后进行网格划分,最后进行求解,可以得出最终的分析结果。

立柱模型

立柱材料属性

模型参考属性

名称: 7075-T6 (SN)

模型类型: 线性弹性同向性

默认失败准则: 最大 von Mises 应力

屈服强度: 5.05e+008 N/m^2

张力强度: 5.7e+008 N/m^2

弹性模量: 7.2e+010 N/m^2

大学生方程式赛车使用材料分析

大学生方程式赛车使用材料分析 摘要:本论文主要内容为大学生方程式赛车正在普及中国的高校,在参赛队伍的努力下,这项比赛正在给中国的汽车制造业注入活力。对于参赛者而言,对汽车材料知识的学习非常重要,因为通过对车架、车身、轮胎、油气系统材料选择以及优化可以极大提高赛车的整体性能下文,将会对现在的方程式赛车的整体车结构的材料进行分析以及对于参赛者材料选择重要性的论述。 Abstract: the main content of this thesis is to popularize Chinese for college students of Formula One racing college, in the team's efforts, this game is to Chinese automobile manufacturing industry infuse vigor.The contestants, to automotive materials knowledge learning is very important, because the frame, body, tires, oil and gas system in material selection and optimization can greatly improve the overall performance of the car below, will be on the present formula car integral structure material for analysis and material selection for contestants in the exposition of the importance. 中国大学生方程式汽车大赛(以下简称“FSAE”)是中国汽车工程学会及其合作会员单位在学习和总结美、日、德等国家相关经验的基础上结合中国国情精心打造的一项全新赛事。我们大学生参与其中主要意义在于通过动手实践增强理论知识,为我国的汽车工业发展输送高素质的人才。在参与FASE中,对于赛车的设计固然重要,但是对于赛车材料的选择同样是重中之重。通过对材料的准确把握,设计制造出合格的赛车,是FASE的灵魂。而灵魂的重要性值得所有参与其中的人认真研究。 首先我们从车架说起。车架是是构起赛车的基本,车架是车辆的主体结构,为其他部件,如悬架、发动机、座椅、踏板、传动装置等提供安装的位置,并承受所有部件传来的力。所以我们说,对于车架材料的选择非常重要,因为它决定了赛车的稳定性。对因为于大学生来讲,设计的赛车从简单以及可行性来考虑,多采用空间衍架结构,设计制造简单便宜,并且发生碰撞后可以很容易的检修。

大学生方程式赛车设计——转向系统

赛车转向系统是用于改变或保持赛车行驶方向的专门机构。起作用是使赛车在行驶过程中能按照车手的操纵要求而适时地改变其行驶方向,并在受到路面传来的偶然冲击及赛车意外地偏离行驶方向时,能与行驶系统配合共同保持赛车继续稳定行驶。因此,转向系统的性能直接影响着赛车的操纵稳定性和安全性。对赛车的行驶安全至关重要,因此赛车转向系统的零件都称为保安件。赛车转向系统和制动系统都是赛车安全必须要重视的两个系统。当转动赛车方向盘时,车轮就会转向。为了使车轮转向,方向盘和轮胎之间发生了许多复杂的运动。最常见的赛车转向系统的工作原理包括:齿条齿轮式转向系统和循环球式转向系统。当赛车转向时,两个前轮并不指向同一个方向。要让赛车顺利转向,每个车轮都必须按不同的圆圈运动。由于内车轮所经过的圆圈半径较小,因此它的转向角度比外车轮要大。如果对每个车轮都画一条垂直于它们的直线,那么线的交点便是转向的中心点。转向拉杆具有独特的几何结构,可使内车轮的转向度大于外车轮。赛车转向系统分为两大类:机械转向系 统和动力转向系统。a机械转向 系统:完全靠车手手力操纵的转 向系统。b动力转向系统:借助 动力来操纵的转向系统。动力转 向系统又可分为液压动力转向系 统和电动助力动力转向系统。机 械转向系以车手的体力作为转向 能源,其中所有传力件都是机械 的。机械转向系由转向操纵机构、 转向器和转向传动机构三大部分 组成(如图)。车手对转向盘施 加的转向力矩通过转向轴输入转 向器。从转向盘到转向传动轴这 一系列零件即属于转向操纵机构。作为减速传动装置的转向器中有级减速传动副。经转向器放大后的力矩和减速后的运动传到转向横拉杆,再传给固定于转向节上的转向节臂,使转向节和它所支承的转向轮偏转,从而改变了赛车的行驶方向。这里,转向横拉杆和转向节属于转向传动机构。。 转向操纵机构由方向盘、转向轴、转向管柱等组成,它的作用是将车手转动转向盘的操纵力传给转向器。机械转向器(也常称为转向机)是完成由旋转运动到直线运动(或近似直线运动)的一组齿轮机构,同时也是转向系中的减速传动装置。常用的有齿轮齿条式、循环球曲柄指销式、蜗杆曲柄指销式、循环球-齿条齿扇式、蜗杆滚轮式等。齿条齿轮式齿轮组被包在一个金属管中,齿条的各个齿端都突出在金属管外,并用横拉杆连在一起。小齿轮连在

有限元分析在轮毂设计中的应用_王渭新

现代制造技术与装备2007第4期总第179期 在汽车的零部件中,轮毂由轮辋及轮辐构成,是一个高速转动和承受汽车总载荷的零部件,轮辋结构遵照《YEARBOOKFORTHETIREANDRIMASSOCIATION》标准规定设计,轮辐的形状则多种多样,没有统一的要求。轮毂的强度和刚度无论从安全性还是性能方面考虑都至关重要。本文通过有限元分析软件ANSYS对车轮进行弯曲疲劳、径向疲劳和冲击应力的模拟分析,最后结合试验结果对模拟分析进行验证,为轮毂设计开发人员提供可靠的设计依据,进而缩短开发周期、减少开发费用,从而提高企业的竞争力[1-2]。 1疲劳破坏的基本概念和车轮安全性试验的具体要求1.1疲劳破坏的基本概念 零件在受到交变的循环载荷作用并在达到一定的循环次数时,零件的表面会产生裂纹、裂纹继续扩大会导致构件断裂。零件表面产生裂纹称为疲劳破坏。疲劳破坏的过程是零部件在循环载荷作用下,在局部的最高应力处,最弱的及应力最大的晶粒上形成微裂纹,然后发展成宏观裂纹,裂纹继续扩展,最终导致疲劳断裂。所以,疲劳破坏经历了裂纹形成、扩展、和瞬断三个阶段[3-4]。 1.2车轮安全性试验的具体要求 由于汽车轮毂是一个高速转动和承受汽车总载荷的零部件,其在工作过程中承受交变的循环载荷:动态弯矩、动态径向力和路面的冲击力,因此轮毂装车前必须通过汽车行业标准QC/T221-1997和国家标准GB/T15704-1995规定的三项强度测试试验。这三大强度试验分别是弯曲疲劳试验,径向疲劳试验,冲击试验[5]。 2车轮安全性试验的有限元分析 2.1车轮安全性试验有限元分析的概述 本文研究的铝合金车轮材料为A356,经过T6热处理(固熔+时效处理)。因此在ANSYS中输入材料属性(MaterialProperty)时,选择为各项同性(Isotropic),并且是线弹性的(LinearElastic),同时需要限定的参数(材料特性)为: 弹性模量E:71E09N/mm2; 密度ρ:2.7*10-3g/mm2; 泊松比:0.33。 2.2弯曲疲劳试验有限元模拟 2.2.1试验概述 弯曲疲劳试验模拟汽车转弯时车轮的受力状态,试验台有一个旋转装置,车轮可在一个固定不动的弯矩作用下旋转,或是车轮静止不动,而承受一个旋转弯曲力矩作用。见图1。 图1弯曲疲劳试验装置 2.2.2试验弯矩 试验弯矩由下式确定: M=(u?R+d)?F?S(1)式中M—— —弯矩(N?m); u—— —轮胎和道路之间的摩擦系数,设定为0.7; R—— —静载半径,是轮毂厂或汽车制造厂规定的该轮毂配用的最大轮胎静载半径(m); d—— —轮毂的内偏距或外偏距,取绝对值,按轮毂规定(m); F—— —轮毂最大额定载荷,由轮毂厂或汽车制造厂规定(N); S—— —试验强化系数。 有限元分析在轮毂设计中的应用 王渭新张磊刘智冲 (戴卡轮毂制造有限公司,秦皇岛066003) 摘要:轮毂是汽车中的重要零部件,既要具有高承载能力,又要满足整体外观个性化设计要求,其设计与开发中也主要体现了此设计理念,因此其制造企业要想赢得市场,提高产品的竞争力,必须改变原有的紧靠设计经验开发轮毂的传统的设计开发模式。本文以有限元分析软件ANSYS和三位造型软件UG为工具,建立了与轮毂实际的弯曲疲劳试验、径向疲劳试验、冲击试验相等效有限元分析模型,对轮毂的可靠性进行预测,为轮毂产品的设计开发人员提供设计依据。 关键词:有限元分析轮毂疲劳设计ANSYS 安装面 试验加载力臂 32

汽车传动系统详细讲解

汽车传动系统详细讲解 以前我们介绍过汽车车身尺寸的意义和汽车心脏发动机的基本构造,然而汽车要行驶在道路上必须先使车轮转动,要如何将发动机的动力传送到车轮并使车轮转动?负责传递动力让汽车发挥行驶功能的装置就是传动系统,汽车没有了它就会成为一台发电机或坐人的空壳,并且还是一台烧钱的机器了。 在基本的传动系统中包含了负责动力连接的装置、改变力量大小的变速机构、克服车轮之间转速不同的,和联结各个机构的传动轴,有了这四个主要的装置之后就能够把发动机的动力传送到轮子上了。 一、动力连接装置 1. 离合器:这组机构被装置在发动机与手动之间,负责将发动机的动力传送到手动。 汽油发动机车辆在运行时,发动机需要持续运转。但是为了满足汽车行驶上的需求,车辆必须有停止、换档等功能,因此必须在发动机的外连动之处,加入一组机构,以视需求中断动力的传递,以在发动机持续运转的情形之下,达成让车辆静止或是进行换档的需求。这组机构,便是动力连接装置。一般在车辆上可以看到的动力连接装置有离合器与扭力转换器等两种。

离合器这组机构被装置在发动机与手动之间,负责将发动机的动力传送到手动。如图所示,飞轮机构与发动机的输出轴固定在一起。在飞轮的外壳之中,以一圆盘状的弹簧连接压板,其间有一摩擦盘与输入轴连接。 当离合器踏板释放时,飞轮内的压板利用弹簧的力量,紧紧压住摩擦板,使两者之间处于没有滑动的连动现象,达成连接的目的,而发动机的动力便可以通过这一机构,传递至,完成动力传递的工作。 而当踩下踏板时,机构将向弹簧加压,使得弹簧的外围翘起,压皮便与摩擦板脱离。此时摩擦板与飞轮之间已无法连动,即便发动机持续运转,动力并不会传递至及车轮,此时,驾驶者便可以进行换档以及停车等动作,而不会使得发动机熄火。 2. 扭力转换器:这组机构被装置在发动机与自动之间,能够将发动机的动力平顺的传送到自动。在扭力转换器中含有一组离合器,以增加传动效率。 当汽车工业继续发展,一般消费者开始对于控制油门、剎车以及离合器等三个踏板的复杂操作模式感到厌烦。机械工程师开始思考如何以利用机构来简化操作过程。扭力转换器便是在这样的情形之下被导入汽车产品的,成就了全新的使用感受。 扭力转换器导入,改变了人们驾驶汽车的习惯!扭力转换器取代了传统的机械式离合器,被安装在发动机与自动之间,能够将发动机的动力平顺的传送到自动。 从图中可以清楚地看到,扭力转换器的离作方式与离合器之间截然不同。在扭力转换器之中,左侧为发动机动力输出轴,直接与泵轮外壳连接。而在扭力转换器的左侧,则有一组涡轮,透过轴与位于右侧的变速系统连接。导轮与涡轮之间没有任何直接的连接机构,两者均密封在扭力转换器的外壳之中,而扭力转换器之内则是充满了黏性液体。 当发动机低速运转时,整个扭力转换器会同样低速运转,泵轮上的叶片会带动扭力转换器内的黏性液体,使其进行循环流动。但是由于转速太低,液体对于

大学生方程式赛车制动系统设计和优化

大学生方程式赛车制动系 统设计和优化 Prepared on 22 November 2020

摘要 Formula SAE比赛由美国车辆工程师学会(SAE)于1979年创立,每年在世界各地有600余支大学车队参加各个分站赛,2011年将在中国举办第一届中国大学生方程式赛车,本设计将针对中国赛程规定进行设计。 本说明书主要介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标。然后对制动系统进行方案论证分析与选择,主要包括制动器形式方案分析、制动驱动机构的机构形式选择、液压分路系统的形式选择和液压制动主缸的设计方案,最后确定方案采用简单人力液压制动双回路前后盘式制动器。除此之外,还根据已知的汽车相关参数,通过计算得到了制动器主要参数、前后制动力矩分配系数、制动力矩和制动力以及液压制动驱动机构相关参数。最后对制动性能进行了详细分析。 关键字:制动、盘式制动器、液压

Abstract Formula SAE race was founded in 1979 by the American cars institute of Engineers every year more than 600 teams participate in various races around the world,China will hold the first Formula one for Chinese college students,the design will be for design of the provisions of the Chinese calendar. This paper mainly introduces the design of breaking system of the Formula of all,breaking system's development,structure and category are shown,and according to the structures,virtues and weakness of drum brake and disc brake analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear , this paper also introduces the designing process of front brake and rear break,braking cylinder,parameter's choice of main components braking and channel settings and the analysis of brake performance. Key words:braking,braking disc,hydroid pressure

汽车轮毂有限元分析

第二章理论基础与模型建立 2.1 有限元技术及UG软件 2.1.1 有限元法基本原理 计算机辅助工程CAE(Computer Aid2ed Engineering) 指工程设计中的分析计算与分析仿真, 而有限元法FEM( FiniteElement Method) 是计算机辅助工程CAE中的一种, 另外CAE还包含了边界元法BEM(Boundary Element Method) 和有限差分法FDM( Finite Difference Method) 等。这几种方法各有其优缺点, 各有其应用领域,但有限元法的应用最广。 有限元法是求解数理方程的一种数值计算方法,是将弹性理论、计算数学和计算机软件有机结合在一起的一种数值分析技术,是解决工程实际问题的一种有力的数值计算工具。有限元是一种离散化的数值方法。离散后的单元与单元间只通过节点相联系, 所有力和位移都通过节点进行计算。对每个单元选取适当的插值函数,使得该函数在子域内部、子域分界面上(内部边界) 以及子域与外界分界面(外部边界) 上都满足一定的条件。然后把所有单元的方程组合起来, 就得到了整个结构的方程。求解该方程,就可以得到结构的近似解。离散化是有限元方法的基础。必须依据结构的实际情况,决定单元的类型、数目、形状、大小以及排列方式。这样做的目的是将结构分割成足够小的单元,使得简单位移模型能足够近似地表示精确解【13】。 因次它可以对各种类型的工程和产品的物理力学性能进行分析、模拟、预测、评价和优化,以实现产品技术创新, 故已广泛应用于各种力学、电学、磁学及很多结合学科领域; 同时, 由于它能够处理耦合问题, 使得其有更大的应用前景。你可以从专业的角度理解有限元:包括变分原理、等效积分和加权余量法等, 也可以从直观的意义上理解有限元: 把连续体划分为足够小的单元, 这些单元通过节点和边连接起来,通过选择简单函数(比如线形函数) 来近似表达位移或应力的分布或变化, 从而得到整个连续体物理量的分布和变化【14】。 2.1.2 有限元法分析过程 所谓有限元法(FEA)基本思想是把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。求解得到节点值后就可以通过设定

轿车传动系总体方案设计及万向传动轴的设计

汽车设计课程设计 题目轿车传动系统总体方案及万向传动轴的设计 院(系)机械与汽车工程学院 专业车辆工程(新能源) 年级2011级 学生姓名 学号 指导教师邓利军 二○一四年六月

摘要 汽车传动系统的基本功用是将发动机发出的动力传给驱动车轮。组成现代汽车普遍采用的是活塞式内燃机,与之相配用的传动系统大多数是采用机械式或液力机械式的。普通双轴货车或部分轿车的发动机纵向布置在汽车的前部,并且以后轮为驱动轮,其传动系统的组成和布置发动机发出的动力依次经过离合器、变速器(或自动变速器)和由万向节与传动轴组成的万向传动装置,以及安装在驱动桥中的主减速器、差速器和半轴,最后传到驱动车轮。传动系统的首要任务是与发动机协同工作,以保证汽车能在不同使用条件下正常行驶,并具有良好的动力性和燃油经济性。 关键词:离合器、变速器、万向节传动轴、驱动桥、主减速器、差速器、半轴、驱动车轮

Abstract The basic issue of Automotive driveline is to driving force from the engine to drive wheels. The modern Motor commonly used is the piston-type internal combustion engine and usually use mechanical drive system or hydraulic mechanical drive system to match with it. The engine of General biaxial goods or part of the vertical layout are in the front of the car, and use the rear wheel for driving wheel, the composition of the drive system and arrangement of the engine power to issue the order after clutch、gearbox (or automatic transmission) and the drive shaft gear which make up of the universal section and the composition, and the main reducer which installed on the drive axle 、 differential and axle, and finally is the drive wheels.The primary tasks of transmission is to work together with the engine for ensure that the use of motor vehicles to normal in different traffic conditions, and has good power and fuel economy. Key words: Clutch, transmission, drive shaft universal joints, drive axle, main reducer, differential, axle, drive wheels

大学生方程式赛车悬架系统设计

大学生方程式赛车悬架系统设计 中国大学生方程式汽车大赛,在XX年开始举办,至XX 年已举办三届,大赛目的是为了提高大学生汽车设计与团队协作等能力,而华南农业大学XX年才组队设计赛车,现在还没有派队参加比赛,本文初步探讨SAE赛车悬架设计的方案,为日后华南农业大学参赛打下基础。 本课题的重点和难点 1、根据整车的布置对FSAE赛车悬架的结构形式进行的选择。 2、对前后悬架的主要参数和导向机构进行初步的设计。 3、用Catia或Proe建立悬架三维实体模型。 4、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。 5、悬架设计方案确定后的优化改良。优化的方案一:用ADAMS/Insight进行优化,以车轮的定位参数优化目标,以上下横臂与车架的铰接点为设计变量进行优化。优化的方案二:轻量化,使用Ansys软件进行模拟悬架工作状况,进行受力分析,强度校核,优化个部件结构,受力情况。 1、查阅FSAE悬架的设计。 2、运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。 3、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。 4、用ADAMS/Insight进行优化,改善操纵稳定性。

5、使用Ansys软件进行模拟悬架工作状况,进行受力分析,优化个部件结构及轻量化。 悬架设计流程如下: 首先要确定赛车主要框架参数,包括:外形尺寸、重量、发动机马力等等。 确定悬架系统类型,一般都会选用双横臂式,主要是决定选用拉杆还是推杆。 确定赛车的偏频和赛车前后偏频比。 估计簧上质量和簧下质量的四个车轮独立负重。 根据上面几个参数推算出赛车的悬架刚度和弹簧的弹性系数。 推算出赛车在没有安装防侧倾杆之前的悬架刚度初值,并计算车轮在最大负重情况下的轮胎变形。 计算没安装防侧倾杆时赛车的横向负载转移分布。 根据上面计算数值,选择防侧倾杆以获得预想的侧倾刚度和 LLTD。最后确定减振器阻尼率。 上面计算和选型完成后,再重新对初值进行校核。 运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能,并用ADAMS/Insight进行优化分析。 使用Ansys软件进行模拟悬架工作状况,进行受力分析,

基于ANSYS的汽车轮毂单元载荷分析

龙源期刊网 https://www.360docs.net/doc/ea13308708.html, 基于ANSYS的汽车轮毂单元载荷分析 作者:吕新飞 来源:《下一代》2019年第03期 摘要:轮毂是汽车系统重要的运动和支撑部件,从轮毂实际结构出发,建构SoliwdWorks 实体模型,并将模型导入ANSYSWorkbench有限元分析软件作为分析工具,通过模拟轮毂实际载荷,对轮毂的各项力学性能有限元分析,可以优化轮毂设计、提高强度。 关键词:轮毂;有限元;弯矩载荷 一、轮毂的几何结构、载荷分析 1.1轮毂的形状结构 本文轮毂为整体铸造辐条式铝合金轮毂,轮毂材料为ZL101A。通过三维软件SolidWorks 建立轮毂模型,轮毂上有5个直径为Φ22mm的PCD孔,均匀分布在直径为Φ108mm的圆周上。结合实际,将辐条表面形状设计为多曲面结合,较平面设计可提高结构的抗冲击性能。轮毂为五辐条式,且大部分汽车轮毂均为5幅设计。据统计,轿车轮毂PCD数值5孔占70%以上。下面通过五幅轮毂展开分析。 1.2汽车轮毂的轻量化发展趋势及材料选用 中国汽车行业的飞速发展带来了一系列安全、能源等方面的问题,为了获得更多经济效益和动力性能,汽车工业发展要有新的技术工艺。汽车轮毂轻量化在节能减排、降低油耗等方面起着至关重要的作用,考虑汽车平稳、舒适、无噪音等整体运行情况,对汽车的结构和形状进行优化。根据RAYS的测算,减轻lkg非簧载质量(例如,轮毂重量轻lkg,相当于整车质量轻15kg)铝合金以其轻量、散热性好、减震性好等诸多优点大量应用于汽车轻量化,推动了汽车轻量化的发展。 二、建立有限元模型 2.1轮毂模型的导入、建立及简化 将在SolidWorks软件中完成的零部件3D造型按照Parasolid标准输出“.x_t”文件,导入ANSYS环境。因轮辐表面由多曲而构成,结构相对复杂,以采用自由网格划分方式“AutomaticMethod”生成网格,而轮缘及胎圈座部分结构较为规则,采用六面体法“Hex Donimant Method”生成網格。共生成12174个节点,4725个基本单元。为了节约仿真计算时间

FASE方程式赛车传动设计报告

传动部分 1 发动机 1.1 发动机的选择: 根据大赛规则,驱动赛车的发动机必须采用四冲程、排量610CC一下的活塞式发 1.2 发动机的固定 采用六点固定,具体固定情况如下图: 2 传动系基本参数的确定: 2.1变速箱的基本参数: 2.2 根据功率平衡方程: 确定赛车的最高车速。 式中:P e——发动机有效输出功率 G——重力 η ——传动效率 T ?——滚动阻尼系数

u a ——最高车速 i——坡度 C D ——风阻系数 A——迎风面积 δ——旋转质量换算 m——质量 根据最高车速的定义得:i=0,du/dt=0 其中:加装限流阀后P e=51.45KW;G=2940N;ηT=0.85;C D=0.25;A=0.746m2; 滚动阻尼系数由经验公式:f=f0+f1v 100+f4(v 100 )4可算出 查表后取:f0=0.01;f1=0.00027;f4=0.0012; 由此求得:u a=118km/h。 2.3确定传动比 根据公式: u a=0.377rn i g i o i c 式中:u a=118km/h;r=0.2667m;n=9000rpm;i g=1.272;i c=1.822;求得:i o=3.3 2.4 链条的选择 2.5大链轮的计算 因为小链轮齿数Z1=15且ic=Z2 Z1 所以: 大链轮齿数:Z 2 =49 分度圆直径:d= p sin(180°/z) =12.7 sin180°49 ? =198.22mm 齿顶圆直径:d a=p(0.54+cot180° z ) =204.67mm 齿根圆直径:d f=d?d1=190.30mm 2.6 链速的确定 由公式v= znp 60×1000 得 v=14.37m/s

大学生方程式赛车悬架设计

大学生方程式赛车悬架设计 加布里埃尔·德·波拉爱德华多 圣保罗大学摘要 独立完成一次大学生方程式赛车的悬架设计。首先分析赛规,通常,赛规会对悬架的最小行程和轴距作出限制,并且给出本次设计所要达成的最终目的,除此之外还会评判出得分最高的一个团队。本文会讨论到轮胎的运动,并详细分析前后悬架的拉杆不等长的摆臂。维度论是基于CAD的尺寸限制发展出来的。在总的力与时间的图上分析了暂态稳定、控制和操纵性能。在分析运动学和动力学时创建了多体模型。该模型能模仿侧翻,驾驶和操纵并且能进行几何调整,使得弹簧和阻尼器实现其性能。 前言 美国汽车工程师学会举办的大学生方程式汽车大赛激励学生 们去设计、制作一个小的方程式风格的赛车,并参加比赛。竞争的基础是假设一个公司集合了一个工程师团队来制造一个小的方程式赛车。第一步是分析赛事规则,赛规限制悬架系统的最小轮距为50mm,轴距大于1524mm。FSAE悬架工作在一个狭窄的车辆动力学范围,这是由于赛道尺寸决定的有限过弯速度,140公里每小时为最高速度和60公里每小时为转弯最高速度。比赛的动态部分包括15.25m的直径防滑垫,91.44m的加速项目,0.8km的越野赛,44km耐力赛。 设计目标已经给定并且会评判出得分最高的十个团队。悬架系统的几何部分集中在一些悬架设计理念和亮点的基本领域。因此,

FSAE悬架设计应该集中在竞赛的限制因素方面。例如,车辆轮距宽度和轴距是决定汽车操纵性设计成功与否的关键因素。这两个尺寸不仅影响重量传递还影响转弯半径。设计目标是首先满足赛则,其次降低系统重量,创造最大的机械抓地力,提供快速响应,准确的传输驱动程序的反馈,并能调节平衡。 轮胎和车轮 悬架设计过程中采用了“由外而内”的方法,先选择满足赛车要求的轮胎,然后设计悬架以适应轮胎参数。短的比赛时间和低速的比赛项目都要求轮胎快速达到其工作温度。轮胎对于车辆操纵性很重要,设计团队应当充分地调查轮胎尺寸及可用的化合物材料。轮胎的尺寸在这一阶段的设计中很重要,因为在确定悬架的几何结构之前,轮胎的尺寸必须已知。例如,一个给定了车轮直径的轮胎高度决定,如果轮胎内部被组装起来了,下球接头应当离地面多近。 设计者应当意识到提供对于给定车轮直径的轮胎尺寸的数量是有限的。因此,考虑到轮胎对于汽车操纵性的重要性,选择轮胎的过程应当有条不紊。由于轮胎在地面上的部分对抓地力有很大的影响,有时希望使用宽的轮胎,增加牵引力。然而,切记宽的轮胎使回转质量增加,而这又使FSAE发动机的加速受到限制。 相比较使用宽轮胎而引起的牵引力的增加,这些增加的回转质量也许会对整车的性能产生更大的损害。宽轮胎不仅增大质量,而且使受热的橡胶数量增加。因此比赛用的轮胎必须设计成在某一特定的

基于有限元分析的轿车铝合金车轮设计

摘要 轻量化是世界汽车工业发展的主要趋势,轻质材料铝及其合金等的使用是一种有效的途径。目前,大部分汽车车轮已使用铝及其合金做作为材料,利用现代设计方法,在此基础上进一步实现车轮的轻量化则是本文的研究所在。 在研究了CAD软件Pro /E以及有限元分析软件ANSYS的功能及其主要特点后,着重进行了了应用ANSYS对铝合金车轮进行结构强度分析的具体过程。 首先使用Pro/E软件,按照轮辋的国家标准,建构车轮的实体模型;然后把模型导入ANSYS,按2005年中国汽车行业标准中的汽车轻合金车轮的性能要求和实验方法所规定的疲劳实验要求施加荷载;然后进行强度分析和模态分析,分析结果表明,车轮的最大应力远小于铝合金的许用应力,车轮的固有频率满足要求,存在进一步改进的可能和必要。最后,改进车轮模型,改进结果表明,车轮的重量有了显著的减少。 利用CAE分析技术有助于提高汽车车轮的设计水平、缩短设计周期、减少开发成本。该方法具有普遍性,适用于指导任何其言型号车轮的设计和分析。 关键词:铝合金车轮;结构设计;有限元分析;强度分析;模态分析

ABSTRACT Lightweight is the main trends of the world's automotive industry, lightweight materials such as the use of aluminum and its alloys is an effective way. At present, most automotive aluminum and its alloy wheels have been used to do as a material, using modern design methods, based on the further realization of this lightweight wheels is the Institute of this article. In the study of the CAD software Pro / E and ANSYS finite element analysis software functions and the main characteristics, the Emphasis was the application of ANSYS, the structural strength of aluminum alloy wheel analysis of the specific process. First ,uses the Pro / E software, according to the rim of the national standards, building wheel solid model; then the model into ANSYS, by 2005 China's auto industry standard in automotive light-alloy wheels and performance requirements and test methods under the fatigue test requirements defined load and then the strength analysis and the results showed that the wheel is much less than the maximum stress allowable stress of aluminum alloy, there is further improvement possible and necessary. Then, the improved wheel models, improved results show that the weight of the wheels have been significantly reduced. The results show that the use of CAE analysis technology helps improve the design of automobile wheel level, shorten design cycles, reduce development costs. The method is universal, applicable to any of his words and models to guide the design and analysis of the wheel. Key words: Aluminum Alloy Wheels; Structural Design; Finite Element Analysis; Strength Analysis; Modal Analysis

大学生方程式赛车使用材料分析

大学生方程式赛车使用材料分析 机械工程学院 1116150107 包俊 中文摘要:本篇论文介绍了大学生方程式赛车所用的材料,主要从车身材料,底盘材料以及车轮材料三个方面介绍。材料是方程式赛车的基础,必须具有优良的性能。其中,车身材料主要采用的是碳纤维,它具有轻盈,抗冲击的性能;赛车底盘则采用蜂窝铝材和碳纤维合成的复合材料,其具有机械强度高,耐温性好,耐腐蚀性好等性能;而车轮材料则比较复杂,会根据比赛赛道的不同选用不同的轮胎,有的软,有的硬,每场比赛所使用的轮胎成分差别很大,但是其外框主要是尼龙和聚酯纤维的复杂编织物。 English Abstract: This paper introduces the formula of materials used for college students, mainly from the body material, material of the chassis and wheel material is introduced from three aspects. Material is a Formula One racing based, must have excellent performance, which, the body material is the main use of carbon fiber, it has a light, shock resistant performance; racing chassis uses the titanium alloy material, which has high mechanical strength, good temperature resistance, good corrosion resistance and other properties; while the wheel material more complex, depending on the race track choose different tires, some soft, some hard, every game the used tire composition varies greatly, but the frame is mainly nylon and polyester fiber complex woven fabric. 中国大学生方程式汽车大赛(简称“中国FSAE”)是一项由高等院校汽车工程或汽车相关专业在校学生组队参加的汽车设计与制造比赛。各参赛车队按照赛事规则和赛车制造标准,在一年的时间内自行设计和制造出一辆在加速、制动、操控性等方面具有优异表现的小型单人座休闲赛车,能够成功完成全部或部分赛事环节的比赛。而本文则主要对其车身所用材料展开探究,赛车主要由车身,底盘和轮胎构成,下面就从这三方面来分别详细地介绍其所用材料和性能特点。 车身材料:碳纤维 车身是一辆赛车的主体部分,其重要性不言而喻,而赛车对于速度的追求则理所当然地要求车身材料必须具有轻盈的特点。而作为赛车手的屏障,其又必须具有良好的抗冲击性能,这两种看似矛盾的要求必须在一种材料中体现,似乎有些困难,而碳纤维材料则很好地符合了这两样要求。碳纤维,又称碳化纤维,泛指一些以碳纤维编织或多层复合而成的材料。因为它又轻又坚硬,所以它的用途很广泛。碳纤维在汽车领

方程式赛车转向系统设计毕业设计论文 精品

河南科技大学毕业设计(论文) 题目方程式赛车前、后悬架及 转向系统设计(转向系统)

方程式赛车前、后悬架及转向系统设计(转向系统) 摘要 赛车转向系的设计对赛车转向行驶性能、操纵稳定性等性能都有较大影响。在赛车转向系设计过程中首先通过转向系统受力计算和UG草图功能进行运动分析,确定转向系的传动比,确定了方向盘转角输入与轮胎转角输出之间的关系;运用空间机构运动学的原理,采用Matlab软件编制转向梯形断开点的通用优化计算程序,确定汽车转向梯形断开点的最佳位置,从而将悬架导向机构与转向杆系的运动干涉减至最小;然后采用UG运动分析的方法,分析转向系在转向时的运动,求解内外轮转角、拉杆与转向器及转向节臂的传动角、转向器的行程的对应关系,为转向梯形设计及优化提供数据依据。 完成结构设计与优化后我们对转向纵拉杆与横拉杆计算球铰的强度与耐磨性校核以及对一些易断的杆件进行了校核计算,确保赛车有足够的强度与寿命。完成了对转向轻便性的计算,我们计算了转向轮的转向力矩M , 转 以及转向盘回转总圈数n,以确认是否达到赛车规则中转向盘上作用力p 手 所规定的要求以及转向的灵活性与轻便性。最后我们建立三维模型数据进行预装配,在软件上检查我们设计的转向系是否存在干涉等现象以及检查我们的转向系是否满足我们的设计要求,对我们的设计进行改进。我们还计划采用adams柔性体单元建立转向系统模型,以提高模型仿真优化的精确度。 关键词:赛车,转向,UG,转向梯形,运动分析,齿轮齿条

The design of Formula front and rear suspension and steering system (steering system) ABSTRACT Steering System Design of a car has a significant impact of driving performance, steering stability. In the car design process, first through the steering force calculations and the UG kinetic analysis we determine the ratio of steering system, the relationship between the wheel angle input and output; The principles of spatial mechanism kinetics and a related optimization program by using Matlab are applied to the calculation of the spatial motion of the ackerman steering linkage. By using the method,the interference between suspension guiding mechanism and steering linkage is minimized; then UG kinetic analysis is used to analysis the motion of steering system when turning and calculating the corresponding relation between the turning angle of inside and outside wheels, the transmission angle of steering linkage and steering box or steering linkage and track-rod, and steering box stroke. And it provides a theoretical basis for designing and optimizing the steering trapezoidal mechanism. After the work we calculate the ball joints tie rod strength and wear resistance, and some calculations was made on some dangerous bars, to ensure the car has enough strength and life. After carrying out a complete calculation of the portability, we calculate the torque of the wheel, the force of steering wheel on the hands and the total number of turns , to meet the requirements in the car ruls. Finally, we set up pre-assembled three-dimensional model data, checking the steering we designed whether there is interference phenomena and to examine whether our steering meet our design requirements, to improve our design. We also plan to use adams flexible body element to establish steering system model to improve the accuracy of simulation and optimization models. KEY WORD:FSAE,UG, steering trapezoid, motion analysis, rack and pinion

相关文档
最新文档