1998 Emulsifiers with high chemical resistance a key to high performance waterborne coatings

合集下载

迈图高新材料集团有机硅树脂介绍 - 080304 Xian

迈图高新材料集团有机硅树脂介绍 - 080304 Xian
An introduction of Momentive Silicone Resin 迈图高新材料集团有机硅树脂介绍
- Momentive Peformance Materials - 迈图高新材料集团 - 22/Nov./2007
1
CONTENTS 内容
- What is a silicone? 什么是有机硅? - Manufacture of Silicones 有机硅树脂的生产 - Silicone Basic Element 有机硅树脂基本结构 - Why Silicone Paints ? 为什么使用有机硅树脂? - Silicone Features & Benefits 有机硅树脂特点和优点 - Structure /performance relationship 有机硅树脂结构与性质的关系 - Cure Systems of Silicone Resins 有机硅树脂的固化 - Momentive Typical Silicone Resins 迈图公司典型的有机硅树脂产品 -Silicone application 有机硅树脂的应用 - Pure silicone resin 纯有机硅树脂 - Modified silicone resin 改性有机硅树脂 - Silicone oligomer 有机硅低聚物 - Spherical silicone resin 球形有机硅树脂 - Any Time, Please Contact Us 随时恭候您的咨询
Resistance for oxidation 耐氧化
Why Silicone Paints ? 为什么使用有机硅树脂?
共价键
ーOーSi-O-Si-O-SiーO-Siー R
Si-O-Si : 自由基反应惰性 : 离子反应敏感 Si-R : 低反应活性

Momentive PHC587

Momentive PHC587

Typical Physical Properties
Property Solids Content, % by weight Solvent Flash Point Pensky Martens, Closed Cup Density, lbs/gal (g/cc) pH Viscosity cstk @ 25°C VOC, g/l SilFORT PHC587 Hard Coat on polycarbonate (thickness, 6 - 8 µm) Taber Abrasion(1) Water Immersion
Product Safety, Handling and Storage
CAUTION Compatibility of Momentive Performance Materials hard coat and polycarbonate resin is dependent on a number of factors including operational stresses, chemical exposure, temperature levels, impact and exposure to ultraviolet light. While it is up to the end user to determine what application specific testing is appropriate, it is suggested that all polycarbonate resin applications be tested for at least thirty (30) days for compatibility and crazing with this hard coat use. There is no dependable substitute for careful testing of prototypes of production parts in typical operating environments.

不同碳链长度咪唑啉缓蚀剂在CO2_驱采油环境中的腐蚀防护作用

不同碳链长度咪唑啉缓蚀剂在CO2_驱采油环境中的腐蚀防护作用

表面技术第52卷第8期不同碳链长度咪唑啉缓蚀剂在CO2驱采油环境中的腐蚀防护作用倪小龙1,李欢1,李云飞1,郝卫国1,杨庆2a,林冰2a,2b,郑宏鹏2a,2b,唐鋆磊2a,2b(1.新疆油田采油二厂,新疆 克拉玛依 834008;2.西南石油大学 a.化学化工学院 b.碳中和研究院,成都 610500)摘要:目的合成制备适用于CO2驱油环境中井筒材料的腐蚀防护的咪唑啉缓蚀剂,探究碳链长度对咪唑啉缓蚀剂腐蚀防护性能的影响机制。

方法以辛酸、月桂酸、硬脂酸和二乙烯三胺等为原料,经酰胺化和环化后制备得到3种碳链长度(C7、C11和C17)的咪唑啉缓蚀剂。

通过傅里叶变换红外光谱、量子化学计算、失重法、电化学方法以及表面观察技术,对合成缓蚀剂在CO2驱油环境中对井筒材料的腐蚀防护性能进行了评价。

结果红外测试观察到3种链长(C7、C11和C17)的咪唑啉缓蚀剂的特征吸收峰,表明3种链长咪唑啉缓蚀剂成功制备。

量子化学计算表明,合成的C17咪唑啉缓蚀剂具有最优的供电子能力和最佳的疏水能力。

腐蚀失重和电化学测试结果显示,所合成的3种不同碳链长度的咪唑啉缓蚀剂均对CO2驱腐蚀环境中N80钢具有良好的腐蚀防护作用,随着缓蚀剂浓度的提升,其缓蚀效率逐渐增高。

其中含有17个碳链的咪唑啉缓蚀剂(C17)在10 mg/L时缓蚀效率达到了90%以上。

拉曼光谱观察到N80钢表面C=N和C—N的吸收峰,表明合成的3种缓蚀剂在N80表面上吸附。

SEM结果发现,添加C17咪唑啉的N80表面腐蚀最为轻微,其腐蚀防护效果最优。

结论合成的C17碳链的咪唑啉缓蚀剂具有优异的腐蚀防护效果,随着碳链长度的增加,碳链的推电子能力增强,使得咪唑啉缓蚀剂更容易在N80钢表面吸附,同时长碳链形成的缓蚀剂膜层也具有更好的疏水作用,导致咪唑啉中缓蚀剂越长其缓蚀效果越好。

关键词:CO2驱油;咪唑啉缓蚀剂;碳链长度;缓蚀效率;理论计算中图分类号:TG172文献标识码:A 文章编号:1001-3660(2023)08-0278-12DOI:10.16490/ki.issn.1001-3660.2023.08.022Corrosion Protection of Imidazoline Corrosion Inhibitors with Different Carbon Chain Length in CO2 Driving Oil EnvironmentNI Xiao-long1, LI Huan1, LI Yun-fei1, HAO Wei-guo1, YANG Qing2a,LIN Bing2a,2b, ZHENG Hong-peng2a,2b, TANG Jun-lei2a,2b收稿日期:2022-06-14;修订日期:2022-12-03Received:2022-06-14;Revised:2022-12-03作者简介:倪小龙(1984—),男,高级工程师,主要研究方向为油田开采。

具有烷基磺酸侧链的凝胶型聚苯并咪唑质子交换膜的制备与表征

具有烷基磺酸侧链的凝胶型聚苯并咪唑质子交换膜的制备与表征

化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 4 期具有烷基磺酸侧链的凝胶型聚苯并咪唑质子交换膜的制备与表征朱泰忠1,张良1,黄泽权1,罗伶萍1,黄菲1,薛立新1,2(1 浙江工业大学化工学院膜分离与水科学技术中心,浙江 杭州 310014;2温州大学化学与材料工程学院,浙江 温州 325035)摘要:磷酸(PA )掺杂聚苯并咪唑(PBI )以其优异的热化学稳定性和高玻璃化转变温度成为高温质子交换膜燃料电池(HT-PEMFCs )的首选材料。

然而,由于低温下磷酸较弱的解离度和传递速率,导致膜的质子传导性能不佳,电池冷启动困难。

因此,研发可在宽温湿度范围内高效运行的高温质子交换膜成为当前挑战。

特别是拓宽其低温运行窗口、实现冷启动对这类质子交换膜燃料电池在新能源汽车领域的实际应用具有重要意义。

本文通过多聚磷酸溶胶凝胶工艺与内酯开环反应设计并合成了一系列磷酸掺杂的具有柔性烷基磺酸侧链的凝胶型聚苯并咪唑质子交换膜。

重点探究了烷基磺酸的引入以及侧链长度对磷酸掺杂水平、不同温湿度下的质子传导率及稳定性的影响规律。

研究结果表明,所制备的质子交换膜具有凝胶型自组装片层堆叠的多孔结构,有利于吸收大量磷酸并提供质子快速传输通道。

其中,PA/PS-PBI 展现出了在宽温域范围内均优于目前所报道的其他工作的质子传导性能。

特别是常温下,其质子传导率从原膜的0.0286S/cm 提升至0.0694S/cm 。

80℃下,其质子传导率从原膜的0.1117S/cm 提升至0.1619S/cm 。

200℃下,其质子传导率从原膜的0.2609S/cm 提升至0.3578S/cm 。

此外,该膜在80℃和0%相对湿度(RH )条件下仍可具有与Nafion 膜在100%RH 时相当的质子传导率,为打破质子交换膜经典定义、实现宽温域(25~240℃)运行提供新的方案。

01-水性及高固体份汽车修补漆 _湛新树脂 2016 03

01-水性及高固体份汽车修补漆 _湛新树脂 2016 03

26
Daotan – 扩链
含NEP/NMP: Daotan Daotan Daotan Daotan Daotan
VTW 1233/36WANMP STW 1235/36WANMP VTW 1236/40WANMP VTW 1237/32WANMP VTW 6434/40WANMP
From Conventional Low/Medium Solids to High Solids and Water-based Systems for Auto Refinish Applications
汽车修补漆的高固体份及水性化方案 刘炳权 / 阮燕燕 2016.4
目 录
一般介绍- 汽车修补漆 背景和趋势 汽车修补漆水性化 高固体份化
Daotan VTW 6460/35WA Daotan VTW 1262/35WA
Daotan TW 7000/40WA
2K 塑料底漆
面漆
2K 单涂层或上涂
Polyester based
Polyester based, acrylated
Polycarbonate based, acrylated
Polycarbonate based
水性化及高固体份化的解决方案 底漆 中涂(二道底漆) 面漆 清漆 助剂技术 总结
汽车修补漆的概念
修补漆:使用与汽车售后的颜色替换,缺陷修 理的涂料。
整车修补
长时间使用之后的漆膜老化,造成的开裂, 失光等问题,需要对车辆进行翻新
局部修补
事故车辆,局部损坏
巴士涂装
Good flexibility 柔韧性好
Good flexibility 柔韧性好

氰特湛新氨基树脂资料 AllnexAminosProductGuide

氰特湛新氨基树脂资料 AllnexAminosProductGuide

AMINO CROSSLINKERSPRODUCT GUIDE • CYMEL® Resins •WorldwideAll About Resins FACTS & FIGURESAbout usdimately3Amino ResinsAllnex's expertise in crosslinking technology is part of our corporate heritage and the foundation to our leadership in supplying the market for amino resins. This brochureprovides product characteristics, compositional information and brief general comments on CYMEL ® amino crosslinkers used in industrial coatings applications includingautomotive, Original Equipment Manufacturers (OEM),kitchen cabinets, metal food and beverage packaging, metal building products and general metal finishing.Our new CYMEL formaldehyde-free crosslinkers are ideal for applications where formaldehyde emissions are a concern.Amino crosslinkers are used with epoxy, polyester, acrylic and alkyd resins and provide the desired balance offlexibility, exterior durability, chemical resistance and film toughness.Allnex's Goals in Research and DevelopmentSeveral factors drive Allnex's research and development efforts. Allnex focuses on gaining a fundamentalunderstanding of the technical challenges encountered by our customers as they work towards improving their formulations. Allnex also focuses on offering solutions quickly and cost-effectively. Equally important is ourcommitment to developing new products that fulfill long-standing needs of the industries we serve. Our technical specialists routinely visit customer locations, worldwide, to assist them in resolving problems and accelerating development of better products.True Customer CommitmentWith our extensive portfolio of liquid resin & additive, radiation cured and powder coating resin & additive, and crosslinker technologies, we are ideally positioned to help customers find the solutions to all of their coating challenges. We are dedicated to delivering value through the development of innovative, market-leading, high quality products that offer enhanced performance, increased ease-of-use, environmental compliance and reduced cost.IntroductionHigh Solids Methylated Melamine Resins ...............4Highly Methylated Melamine Resins ....................... 4Methylated High Imino Melamine Resins ................5Partially Methylated Melamine Resins .. (5)High Solids Mixed Ether Melamine Resins ............. 6 Highly Alkylated Melamine Resins ........................... 6High Imino Melamine Resins (7)Butylated Melamine Resins ....................................... 8n-Butlyated Melamine Resins ................................... 8Highly n-Butylated Melamine Resins ........................8n-Butylated High Imino Melamine Resins .............. 9iso-Butylated Melamine Resins (9)High Solids Urea Resins ........................................... 10Methylated Resins .................................................... 10Butylated Resins . (10)Butylated Urea Resins .............................................. 12n-Butylated Urea Resins ........................................... 12iso-Butylated Urea Resins . (13)Benzoguanamine and Glycoluril Resins ............... 14Benzoguanamine Resins ......................................... 14Glycoluril Resins .. (15)Formaldehyde Free Resins ...................................... 16CYMEL NF 2000 ........................................................ 16CYMEL NF 3041 .. (16)Table of ContentsHighly Methylated Melamine ResinsHighly methylated melamine resins consist of commercial versions of hexamethoxymethylmelamine (HMMM). They differ primarily in their degree of alkylation and monomer content. All are efficient crosslinking agentsfor hydroxyl, carboxyl and amide functional polymers. The practical equivalent weight for most of the resins is 130-180. Advantages are low VOCs; high film flexibility and toughness when used with inherently flexible backbone resins; excellent formulation stability, especially in waterborne systems formulated at a pH of 8-9; good mar resistance; and good intercoat adhesion properties. As typical with melamine resins, all are low in color and color development, have excellent exterior durability and good heat resistance. Because of their high extent of alkylation, the resins in this series require the addition of a strong acid catalyst for acceptable cure response when bakedat 125-150°C. Typically, 0.2- 0.4% p-toluene sulfonic acid based on total binder solids is recommended. The optimum concentration of acid catalyst depends on the basicity of the other components in the formulation and should be determined experimentally. Using a blocking amine forthe acid catalyst and adding a stabilizing alcohol to the formulation can enhance formulation stability.High Solids Methylated Melamine Resins4Methylated High Imino Melamine ResinsMethylated high imino melamine resins are partially methylolated and highly alkylated. These characteristics result in resins containing a significant concentration of alkoxy/imino or high NH functionality. The advantagesare fast cure response at 120-150°C without the need for strong acid catalysts, fast cure response in waterborne formulations, high film hardness, and low formaldehyde release on cure. In addition to reacting with hydroxyl, carboxyl and amide functionality on polymers, these resins also self-condense readily. Therefore, their practical equivalent weight is typically 180-240. They too, can be stabilized by adding tertiary amine and stabilizing primary alcohol to the formulation. Compared to their highly alkylated counterparts, the imino resins usually result in slightly less flexible coatings and slightly higher VOCs when used in solvent-based systems.Partially Methylated Melamine ResinsPartially methylated melamine resins are highly methylolated and partially alkylated. They cure well at 125-150°C without the need to add a strong acid catalyst. The acidity of most polymers used in thermoset coatings is sufficient to catalyze their reaction. Their film performance properties are similar to those of the high imino resinsin the previous category. In addition to reacting with the hydroxyl, carboxyl and amide functionality of polymers they, too, can self-condense readily. Their practical equivalent weight is also 180-240. As with all melamine resins, they can be stabilized by adding amine and stabilizing alcohol to the formulation. The major limitation of these products is high formaldehyde release on baking, primarily due to their high free methylol content.Product availability can vary by usage location. Please contact your local Allnex representative regarding availability in specific countries and regions.5Highly Alkylated Melamine ResinsThe highly alkylated melamine resins in thiscategory are similar to the commercial versions of hexamethoxymethylmelamine (HMMM) except for the type of alkylation alcohol. The resins contain combinations of methoxy sites and longer chain length alkoxy sites (ethoxy, n-butoxy or iso-butoxy). They also differ from each other in their degree of alkylation and monomer content. Longer chain length alkoxy sites impart lower viscosity, improved flow and leveling, and intercoat adhesion. All of the resins in the series are efficient crosslinking agents for hydroxyl, carboxyl and amide functional polymers. The practical equivalent weight for most is 140-200. Other advantages are low VOCs; high film flexibility and toughness when used with inherently flexible backbone resins; excellent formulation stability, especially in waterborne systems at a pH of 8-9 and good mar resistance properties. Because of their high extent of alkylation, the resins in this series require the addition of a strong acid catalyst for acceptable cure response when baked at 125-150°C. Typically, 0.2-0.4% p-toluene sulfonic acid based on total binder solids is recommended. The optimum concentration of acid catalyst depends on the basicity of the other components in the formulation and should be determined experimentally. The use of a blocking amine for the acid catalyst and the addition of a stabilizing alcohol to the formulation should enhance formulation stability.High Solids Mixed Ether Melamine Resins6High Imino Melamine ResinsThe high imino melamine resins in this category are similar to those in the high imino methylated melamine series in that they are partially methylated and highly alkylated. They differ from methylated melamine resins in the type of alkylation alcohol, and they contain combinationsof methoxy sites and n-butoxy sites. The butoxy sites impart improved flow and leveling and intercoat adhesion properties. As in the methylated series, their composition contains primarily alkoxy/imino or alkoxy/NH functionality. The advantages are fast cure response at 120-150°C without the need for strong acid catalyst addition; fast cure response in waterborne formulations; high film hardness; and low formaldehyde release on cure. In addition to reacting with hydroxyl, carboxyl and amide functional polymers, the resins also self-condense readily. Therefore, their practical equivalent weight is typically 200-250. They, too, can be stabilized by amine and stabilizing alcohol addition to the formulation.Product availability can vary by usage location. Please contact your local Allnex representative regarding availability in specific countries and regions.7n-Butylated Melamine Resinsn-butylated resins in this category are very polymeric in nature. They differ in extent of methylolation, butylation and polymerization. In general, higher extents of methylolation and butylation result in more hydrophobic resins with lower viscosities, higher stability, slightly higher film flexibility, film gloss and adhesion but slower cure response. Higher extents of polymerization result in faster film property development but also in higher viscosities, and therefore higher VOCs. None of the resins in this category require the addition of a strong acid catalyst for adequate cure at 125-150°C. Usually, the acidity of the other resin components in the formulation results in sufficient catalysis. In addition to reacting with hydroxyl, carboxyl and amide functionalities on polymers, these resinsself-condense readily. Their practical equivalent weight is typically 220-280 on a solids basis, High concentrations of the melamine resins in the formulation result in high film hardness and improved exterior durability but, possibly, lower film flexibility and lower adhesion properties. They, too, can be stabilized by adding amines and stabilizing alcohol to the formulation.Highly n-Butylated Melamine ResinsHighly butylated melamine resins are similar to the commercial versions of hexamethoxymethylmelamine (HMMM), except they are n-butylated. They also are slightly more oligomeric than their methylated counterparts.The butylation or butoxy sites impart improved flow and leveling and intercoat adhesion properties. However,cure response is slower than that of the resins in the methylated category. Yet, highly butylated melamine resins, are efficient crosslinking agents for hydroxyl, carboxyl and amide functional polymers. The practical equivalent weight is 160-220. Other advantages are high film flexibility and toughness when used with inherently flexible backbone resins; excellent formulation stability; and good mar resistance properties. Because of their high extent of alkylation, the resins require the addition of a strong acid catalyst for acceptable cure response when baked at 125-150°C. Typically 0.2-0.4% p-toluene sulfonic acid based on total binder solids is necessary. The optimum concentration of acid catalyst depends on the basicity of the other components in the formulation and should be determined experimentally. The use of a blocking amine for the acid catalyst and the addition of a stabilizing alcohol to the formulation should enhance formulation stability.Butylated Melamine Resins(1) = Foil solids 45 min at 45°C (2) = Pan solids 60 min at 100°C (3) = Pan solids 120 min at 105°C (4) = Pan solids 120 min at 120°C8n-Butylated High Imino Melamine ResinsButylated high imino melamine resins are similar to those in the high imino methylated melamine series; they are partially methylolated and highly alkylated. They differ from the high imino methylated melamine resins in that they are n-butylated. The butoxy sites impart improved flow and leveling and intercoat adhesion properties.As in the methylated series, their composition contains primarily alkoxy/imino or alkoxy/NH functionality. The advantages are fast cure response at 120- 150°C without the need to add a strong acid catalyst; high film hardness; and low formaldehyde release on cure. In addition to reacting with hydroxyl, carboxyl and amide functionality on polymers, the resins self-condense readily. Therefore, their practical equivalent weight is typically 160-220. They can be stabilized by the addition of an amine and a stabilizing alcohol to the formulation. iso-Butylated Melamine ResinsThe iso-butylated melamine resins in this category are similar to polymeric n-butylated resins and differ only in that they are "iso" rather than "n"-butylated. It is generally believed that iso-butylated melamine resins cure faster than n-butylated resins, although differences in extentof methylolation, alkylation and polymerization are believed to be more significant factors with respect to cure response. The comments made previously concerning the n-butylated resins also apply to the iso-butylated resins.Product availability can vary by usage location. Please contact your local Allnex representative regarding availability in specific countries and regions.910Methylated ResinsMethylated urea resins were designed for waterborne and solvent-based formulations for interior and non-UV resistant applications. They differ from each otherprimarily in their extent of methylolation and methylation. As with other amino resins for coatings, higher extents of alkylation result in improved compatibility with most binders, improved stability; and better flow and leveling, but slower cure response. None of these resins require the addition of a strong acid catalyst for acceptable cure response at 125°C. The acidity of the other components in a formulation usually is sufficient for catalysis. For very low temperature cure systems, those for wood finishes, for example, a 2-component formulation is necessary. In such formulations, the acid catalyst is added to the fully-formulated system just prior to use. If the bake temperature is around 70°C, a concentration of 1-2% on total binder solids of a strong or weak acid is recommended. In general, urea resins react with thehydroxyl, carboxyl and amide functional sites on polymers, but they also have a high tendency for self-condensation. Their practical equivalent weight is in the range of 180- 260. The use of a blocking amine for the acid catalyst and the addition of a stabilizing alcohol to the formulation enhances formulation stability. The latter approach is recommended for 2-component formulations.Butylated resinsThe one resin in this category, CYMEL U-80 resin, issimilar in composition to several of the methylated resins, except that its alkylation alcohol is n-butanol. This resin is also recommended for interior and non-UV resistant coatings; it is used primarily in solvent-based systems. It is very hydrophobic and stable but slower curing than its methylated counterparts. A strong acid catalyst is recommended for acceptable cure response at 125°C. Other formulation details are the same as those given for methylated resins.High Solids Urea ResinsHigh Solids Urea ResinsProduct availability can vary by usage location. Please contact your local Allnex representative regarding availability in specific countries and regions.11n-Butylated Urea ResinsThe urea resins in this category are all partially n-butylated and very polymeric in nature. They differ in extent of methylolation, butylation, and polymerization. In general, higher extents of methylolation and butylation result in more hydrophobic resins with lower viscosities, higher stability, and slightly higher film toughness, film gloss and adhesion but slower cure response. Higher extents of polymerization result in faster film property development but also in higher viscosities and, therefore, higher VOCs. None of the resins require the addition of a strong acid catalyst for adequate cure at 125°C. Usually, the acidity of the other resin components in the formulation is sufficient for catalysis. In addition to reacting with hydroxyl, carboxyl and amide functional polymers, the resins also selfcondense readily. Their practical equivalent weight is typically 220-300 on a solids basis. High concentrations of the urea resins in the formulation result inhigh film hardness, but, possibly, lower film toughness and lower adhesion properties. They can be stabilized by amine and stabilizing alcohol addition to the formulation. As with other urea resins,they are recommended for interior, non-UV resistant applications. The most typical applications are interior container coatings andButylated Urea Resins(1) = Pan solids 90 min at 105°C (2) = Pan solids 120 min at 105°C (3) = Pan solids 120 min at 120°C(4) = Pan solids 60 min at 100°C122-component solvent-based wood finishes, In the latter application, the acid catalyst is added to the fully-formulated system just prior to use. A concentration of 1-2% on total binder solids of a strongor weak acid is recommended for systems that require low bake temperatures - typically less than 70°C.iso-Butylated Urea ResinsThe iso-butylated urea resins in this category are similar tothe polymeric n-butylated resins, except that they are iso-butylated rather than n-butylated. It is generally believed that iso-butylated urea resins cure faster than n-butylated resins, although differences in extent of methylolation, alkylation and polymerization are believed to be more significant factors with respect to cure response. iso-butylated urea resins performin much the same way as n-butylated urea resins. That is, high concentrations of these resins in the formulation result in high film hardness, but, possibly, lower film toughness and lower adhesion properties. iso-butylated resins can be stabilized by adding amine and stabilizing alcohol to the formulation. They are recommended for interior and non·UV resistant applications, as well.Product availability can vary by usage location. Please contact your local Allnex representative regarding availability in specific countries and regions.1314Benzoguanamlne ResinsBenzoguanamine resins are similar to melamine-based resins in that they, too, are triazine based, but in this instance, the triazine has a benzene group substitution. Therefore, they are less functional than melamine-based resins, and are not UV resistant. Benzoguanamine resins are noted for their enhanced film flexibility, or toughness, and for their chemical resistance. They are typically used in primers, container coatings, and appliance finishes. Usually, highly alkylated, monomeric benzoguanamine resins result in higher film flexibility than that which can be achieved with other types of resins, but they alsorequire the addition of a strong acid catalyst for adequate cure at temperatures greater than 125°C. Their practical equivalent weights are slightly higher than the practicalweights of their melamine counterparts and range from 160-220. The less alkylated polymeric resins only require the acidity of the other components in the formulation to cure adequately at greater than 125°C, but they have higher VOCs in a solvent-based formulation. Their practical equivalent weights are also slightly higher than those of their melamine counterparts and range from 200-260 on a solids basis. The use of a blocking amine and the addition of a stabilizing alcohol to the formulation should enhance formulation stability.(1) = Pan solids 120 min at 120°CBenzoguanamine and Glycoluril Resins(2) = Foil solids 45 min at 45°C(3) = Pan solids 120 min at 105°CGlycoluril ResinsGlycoluril resins are similar to their melamine resinscounterparts in that they, too, are based on a ring structure,glycoluril. Similar to benzoguanamine resins, they areless functional than melamine resins but are UV resistantand can be used in exterior coatings. Their advantagesare film toughness and flexibility, ability to adhere tometals, and low formaldehyde release on curing. There aretwo categories in the product line, unalkylated methylolglycoluril resins, and those which are highly alkylated.CYMEL 1172 is unalkylated, and was designed for water-based coatings with low temperature cure performanceproperties. The highly alkylated resin, CYMEL 1170, wasdesigned to replace HMMM where there is a desire toimprove film flexibility. The same comments concerninghighly alkylated monomeric melamine resins also apply tothe alkylated glycoluril resins.Product availability can vary by usage location. Please contact your local Allnex representative regarding availability in specific countries and regions.15CYMEL® NF 2000CYMEL NF 2000 crosslinking agent is a unique trifunctional melamine-based crosslinker containing reactive carbamate functionality. It can be used to crosslink hydroxy- and epoxy containing polymers to give highly durable, acid-resistant films that exhibit a favorable balance of hardness and flexibility. An important feature of CYMEL NF 2000is that it does not contain or emit formaldehyde on cure.It can be employed as the sole crosslinker in a coatingor ink formulation, or it may be used at lower levels in combination with other crosslinkers, such as conventional amino resins or isocyanates, in order to obtain a balance of properties. CYMEL NF 2000 is recommended for high quality durable finishes such as automotive topcoats, exterior can varnishes and coil coatings. CYMEL NF 2000 reacts with hydroxy functional backbone resins at >125°C bake schedules to form urethane linkages. Cure can typically be accomplished without use of a catalyst to yield films that exhibit excellent hardness, chemical resistance, exterior durability and environmental etch resistance. Addition of low levels of acid catalyst (e.g. 0.5% dodecyl benzene sulfonic acid on binder solids) has been found to improve humidity resistance properties in some systems. Both catalyzed and uncatalyzed formulations show good 1K package stability at 23°C. CYMEL NF 2000 will react with carboxy functional backbone resins, but require bake temperatures >150°C. CYMEL NF 3041CYMEL NF 3041 is a partially n-butylated crosslinker agent designed for 2 pack ambient and heat cured formulations for industrial wood and plastic applications. These systems have excellent early hardness, resistance properties, appearance and hot/cold cycle flexibility. CYMEL NF 3041 is a very effective crosslinking agent for alkyd, polyester and acrylic polymers containing primary hydroxyl functionality. CYMEL NF 3041 resin requires the addition of an acid catalyst to the formulation in order to obtain effective cure for both ambient and heat cured applications. It is recommended to use 2.0% CYCAT 500 based on weightof total binder solids. However, the acidity of other formulation components may affect the reaction rate and should be evaluated in combination with the catalyst. Catalyzed potlife can be extended by the addition of 10 to 20% primary alcohol on total binder solids. Methanol or ethanol is preferred to ensure early hardness development and sandability. The coatings demonstrate very good flow, gloss, early film hardness, early print resistance and chemical resistance.Formaldehyde Free Resins(1) = Foil solids 45 min at 45°C(2) = Pan solids 120 min at 105°C16Product availability can vary by usage location. Please contact your local Allnex representative regarding availability in specific countries and regions.1718All About ResinsNotice: Trademarks indicated with the ® or ™ are registered, unregistered or pending trademarks of Allnex Belgium SA or its directly orindirectly affiliated Allnex Group companies.Disclaimer: Allnex Group companies (“Allnex”) decline any liability with respect to the use made by anyone of the information containedherein. The information contained herein represents Allnex's best knowledge thereon without constituting any express or implied guaranteeor warranty of any kind (including, but not limited to, regarding the accuracy, the completeness or relevance of the data set out herein).Nothing contained herein shall be construed as conferring any license or right under any patent or other intellectual property rights of Allnexor of any third party. The information relating to the products is given for information purposes only. No guarantee or warranty is providedthat the product and/or information is adapted for any specific use, performance or result and that product and/or information do notinfringe any Allnex and/or third party intellectual property rights. The user should perform its own tests to determine the suitability for aparticular purpose. The final choice of use of a product and/or information as well as the investigation of any possible violation of intellectualproperty rights of Allnex and/or third parties remains the sole responsibility of the user.©2014 Allnex Group. All Rights Reserved.19XLR3001-EN-WW-0314 AFRICAASIAAUSTRALIAEUROPENORTH AMERICASOUTH AMERICAAllnex Global Operational HeadquartersSquare Marie Curie 111070 Anderlecht – BrusselsBELGIUM。

丙烯酸酯胶粘剂研究进展

[&]
艺, 为长远发展做充分准备。 "(! 改进现有品种的性能 " ( ! ( ! 第二代丙烯酸酯结构胶粘剂 现有 >?@ 虽然综合性能优异, 但是多存在稳定 性差、 贮存期短、 单体挥发气味大、 对湿热耐受性较 差、 易燃、 有毒等问题。各国科学家都在着手解决这 一系列问题。 (!) 改进贮存稳定性: 加入锌、 镍、 钴等的乙酸 盐、 丙酸盐, 甲酸、 乙酸、 甲基丙酸的铵盐。’, A1二 叔丁基 1 $ 1 甲基苯酚等也可改进其贮存性能而不
!
;<)
-
- ;<)
第 !! 卷第 " 期 中国胶粘剂 ・ $& ・ " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " 常用做双面胶带用压敏胶、 装饰薄膜压敏胶粘剂、 层 压薄膜压敏胶粘剂等。 组成如下: 单体: 丙烯酸酯类、 醋酸乙烯 (酯) (甲基) 、 丙 (!) 烯酸等, 有研究表明, 从经济、 性能比较, 丙烯酸与甲 基丙烯酸配合使用效果好, 最佳比例为 " # $ % $ # " 之 间

ZIF-67PEBA杂化膜分离水中乙酸乙酯

2021 年 4 月 Journal of Chemical Engineering of Chinese Universities Apr. 2021文章编号:1003-9015(2021)02-0259-08ZIF-67/PEBA杂化膜分离水中乙酸乙酯鲁落义, 胡听听, 王维, 徐大鹏, 邹昀, 童张法(广西大学化学化工学院, 广西石化资源加工及过程强化技术重点实验室, 广西南宁 530004)摘要:为了提升从水溶液中回收乙酸乙酯的渗透汽化分离效率,将疏水ZIF-67颗粒填充到聚醚共聚酰胺(PEBA)中,制备得到ZIF-67/PEBA杂化膜。

通过扫描电镜(SEM)、能谱(EDS)、接触角测量、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、热重(TGA)和溶胀度测试等手段对ZIF-67和杂化膜的物理化学性质进行表征,通过渗透汽化实验考察ZIF-67质量分数、进料质量分数和温度对膜分离性能的影响。

结果表明ZIF-67与PEBA基质之间为物理共混,杂化膜疏水性增强。

随着ZIF-67质量分数的增加,总渗透通量先降低后升高,分离因子先升高后降低,当ZIF-67质量分数为5%时分离因子最高;随着进料质量分数或温度增加,总渗透通量和分离因子均增加,最大总渗透通量为 2 299 g·m-2·h-1,最大分离因子为122。

研究为渗透汽化技术工业化应用提供了必要的基础数据和理论依据。

关键词:聚醚共聚酰胺;ZIF-67;渗透汽化;乙酸乙酯中图分类号:TQ 028.8 文献标志码:A DOI:10.3969/j.issn.1003-9015.2021.02.009ZIF-67/PEBA Hybrid membranes for ethyl acetate separation from aqueous solutionsLU Luo-yi, HU Ting-ting, WANG Wei, XU Da-peng, ZOU Yun, TONG Zhang-fa (Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China)Abstract: Hydrophobic ZIF-67 incorporated hybrid poly(ether-block-amide) (PEBA) membranes were prepared in order to improve their pervaporation performance for the recovery of ethyl acetate from aqueous solutions. The physical and chemical properties of ZIF-67 and ZIF-67/PEBA hybrid membranes were studied by SEM, EDS, contact angle measurement, FTIR, XRD, TGA and swelling experiments. The effects of ZIF-67 concentration, feed concentration and temperature on the membrane performance was systematically investigated, which revealed only physical interaction between ZIF-67 and PEBA matrix, and the hydrophobicity of the ZIF-67/PEBA hybrid membranes was higher than that of the pristine PEBA membrane. With the increase of ZIF-67 loading content, the total flux decreased initially and then increased while the maximum separation factor was obtained at 5% ZIF-67 loading. With increasing feed concentration and feed temperature, the total flux and separation factor increased with the maximum values of 2 299 g⋅m-2⋅h-1 and 122, respectively. This study can provide necessary basic information and theoretical basis for the industrialization of pervaporation techniques for ethyl acetate separation from aqueous solutions.Key words: poly(ether-block-amide); ZIF-67; pervaporation; ethyl acetate1前言乙酸乙酯在工业上主要通过酯化反应合成,及时从反应体系分离出产物可以提高可逆反应的正向转化率。

高性能海洋防污材料--主链降解-侧链水解高分子

第37卷第1期高分子材料科学与工程V o l .37,N o .1 2021年1月P O L YM E R MA T E R I A L SS C I E N C E A N DE N G I N E E R I N GJ a n .2021高性能海洋防污材料 主链降解-侧链水解高分子艾孝青,潘健森,谢庆宜,马春风,张广照(华南理工大学材料科学与工程学院,广东广州510640)摘要:海洋生物污损是人类进行海洋资源开发与利用过程中不可回避的问题㊂自2008年国际海事组织禁止使用有机锡基防污涂料后,发展高效环保海洋防污技术成为该领域最重要的方向㊂笔者实验室研制了主链降解-侧链水解(双解)高分子材料,它兼具水解和降解聚合物的优点,在海洋环境中能形成可控的自更新"动态表面",具有高效㊁长效和环保等特点㊂文中介绍了双解高分子防污材料的研究进展情况,并展望海洋防污技术的未来发展方向㊂关键词:海洋污损;降解;水解;动态表面;防污中图分类号:T Q 317 文献标识码:A 文章编号:1000-7555(2021)01-0277-07d o i :10.16865/j.c n k i .1000-7555.2021.0030收稿日期:2020-11-01通讯联系人:马春风,主要从事高性能海洋防护材料研究,E -m a i l :m s m c f @s c u t .e d u .c n;张广照,主要从事高分子物理和高性能高分子材料研究,1 前言海洋生物污损对于海洋工业有深刻的影响,它是海洋开发不可回避的问题㊂近年来,随着对海洋生态环境保护意识的日益增加和环保法规的日益严格,含有锡等重金属防污剂的防污涂料已被各国限制使用㊂2008年,国际海事组织I MO (I n t e r n a t i o n a l M a r i n eO r g a n i z a t i o n )全面禁止使用含锡防污涂料[1,2]㊂此后,无锡自抛光涂料㊁生物降解防污涂料以及其他环境友好型防污涂料逐渐成为研发的重点㊂目前正在使用的是聚丙烯酸锌㊁铜或硅烷酯树脂基自抛光防污涂料[3,4],该类涂料主要适用于远洋船舶,其防污性能对航期和航速都有很大的依赖性㊂原因在于这类自抛光聚合物只含有可水解侧基,通过其水解释放防污剂达到防污的目的,而其水解严重依赖于水流的冲刷,在静态或航速很低的情况下,防污性能不理想㊂另外,这类聚合物的主链不降解,水解后的聚合物在海洋中形成微粒(微塑料),对海洋生态产生不利影响[5]㊂近年来,本实验室发现具有可降解主链的聚合物在海洋环境中,能在水和酶的作用下形成自更新动态表面,即便在静态条件下也表现出优异的防污能力[6,7]㊂这些降解聚合物在海洋环境中最终完全降解成小分子,不产生海洋微塑料污染[8]㊂最近,笔者又研制了主链降解-侧链水解(双解)高分子,该类高分子具有侧链水解聚合物的特点,即水解速率稳定,水解后表面光滑;同时,它们还具有降解性主链结构,能有效地协调侧链的水解和聚合物的溶解,在静态环境下仍能以恒定速率降解并控制防污剂的释放㊂特别的,该类聚合物最终降解成小分子,不会造成海洋微塑料污染㊂本文综述了双解高分子防污材料的制备方法㊁防污性能及应用,并展望海洋防污的发展趋势㊂2 双解高分子材料的防污机理双解高分子材料结合了水解性聚合物和降解性聚合物的特点,其结构中含有可水解侧链(如铜酯㊁锌酯和硅烷酯等),又包含可降解主链,通过聚合物在海水中发生水解和降解双重反应,使涂层表面的不溶性聚合物变为可溶性小分子,使负载的防污剂不断可控释放,并形成新的表面而起到表面自更新作用(F i g.1)㊂与以往自抛光聚合物不同,双解高分子的降解对水流冲刷依赖性小,即便在静态或航速很低的情况下,在海水的作用仍可以完全降解为小分子并形成可控的动态表面,因而呈现优异的静态防污效果[9]㊂F i g.1S c h e m a t i c i l l u s t r a t i o n o f t h e a n t i f o u l i n gp r o c e s s o f d e g r a d a b l e s e l f-p o l i s h i n g c o p o l y m e rt o g e t h e rw i t h s e l f-p o l i s h i n g c o p o l y m e r a n dd e g r a d a b l e p o l y m e r3双解高分子材料的种类根据高分子主侧链结构不同,双解高分子材料可以分为双解聚丙烯酸酯㊁双解超支化聚合物和双解聚氨酯三大类㊂3.1双解聚丙烯酸酯聚丙烯酸酯类材料因其优异的成膜性能和对各种基材的黏附性而常用于涂料中㊂以往自抛光聚合物主要由水解性聚丙烯酸酯构成,其作用机理是聚合物侧链的酯基在海水中发生水解,使得聚合物由疏水变为亲水,水解后的亲水聚合物在海水的冲刷下发生溶解,脱落,表面不断更新,释放负载的防污剂㊂然而,基于该类聚合物的涂料经常有以下问题:1)自抛光性依赖于船的运动和海水的冲刷,不能满足静态防污的要求;2)侧链的化学结构对抛光速率影响较大;3)聚合物水解和溶解的协调性难以控制,造成抛光速率和防污剂释放速率控制性差;4)聚合物树脂不降解,形成高分子碎片或颗粒,对海洋生态造成不良影响㊂本实验室于2012年发现了一类新型聚合反应:杂化共聚(H y b r i dc o p o l y m e r i z a t i o n),它是乙烯基加成聚合和环状单体开环聚合的杂化[10~12],该聚合反应为研制双解高分子奠定了基础㊂笔者通过主链的降解和侧链的水解,控制双解聚丙烯酸酯树脂的溶解以及防污剂的释放[13]㊂首先通过自由基杂化共聚制备了包含甲基丙烯酸甲酯(MMA)㊁甲基丙烯酸三丁基硅烷酯(T B S i MA)和2-亚甲基-1,3-二氧杂环丁烷(M D O)的双解丙烯酸酯共聚物[14],该共聚物具有可降解主链和可水解侧基(F i g.2)㊂通过调节降解性链段和水解性侧基的含量,可以有效调控材料的降解速率和吸水率㊂与以往自抛光共聚物相比,双解聚丙烯酸酯具有更好的可降解性和更低的吸水率,在动态和静态海洋测试中都表现出优异的防污性能㊂由于主链降解速率比T B S i MA水解速率慢,聚酯和聚甲基丙烯酸硅烷酯的比例对于优化双解高分子材料的性能至关重要㊂笔者制备了含不同种类水解侧基的聚酯-聚甲基丙烯酸硅烷酯,发现水解侧基的水解速率能调控聚合物主链的降解速率,这是由于当硅烷酯基快速水解时,迅速产生的羧基具有较高的吸水率,从而促进了主链的降解[15]㊂因此,通过聚合物分子结构设计,可以获得降解速率和水解速率可调控的海洋防污材料㊂更重要的是,树脂通过主链断裂而降解成小分子,不会造成海洋污染㊂可见,这类材料具有环境生态友好㊁动静态防污性能优异等优点㊂F i g.2(a)S t r u c t u r a l f o r m u l ao f p o l y(M D O-c o-T B S M-c o-MM A)a n d(b)m e c h a n i s mab o u t t h er e l e a s eo fa n t i f o u l a n t sf r o mt h e c o p o l y m e r872高分子材料科学与工程2021年考虑到上述双解聚丙烯酸酯不含抗污基团,其防污性能有限,在实际应用中需要配合防污剂使用㊂将具有防污功能的基团引入聚合物侧链,可以获得具有抗污功能的双解聚丙烯酸酯㊂笔者合成了N -甲基丙烯酰氧基甲基苯并异噻唑啉酮(V -B I T )单体,使之与M D O 和MMA 通过自由基杂化共聚得到具有抗污功能的双解聚丙烯酸酯[16],该聚合物通过酯键的水解和酶解双重作用释放防污剂,能有效抑制海洋细菌和硅藻的黏附(F i g .3)㊂海洋实验表明,该材料通过表面自更新和防污剂可控释放双重作用,表现出优异的防污能力㊂F i g .3 (a )S t r u c t u r a l f o r m u l a o f p o l y (M D O -c o -MM A -c o -B I T )a n d (b )m e c h a n i s ma b o u t t h e r e l e a s e o f a n t i f o u l a n t s f r o mt h e c o p o l ym e r F i g .4 S t r u c t u r a l f o r m u l ao f p o l y (M D O -c o -MM A -c o -T C B S A ),(b )m a s s l o s so fP M T S i 15i nd i f f e r e n tc o n c e n t r a t i o n so f l i pa s e ,a n d (c )f l u o r e s c e n c e p h o t o g r a p h s o fm a r i n eb ac t e r i a ad he r e d o n c o p o l y m e r s u rf a c e sw i t h o u t (u p )a n dw i t h p r e h y d r o l ys i s f o r 3d (d o w n ) 笔者通过自由基杂化共聚制备了具有不同功能侧基的双解聚丙烯酸酯㊂例如,M D O ㊁2-(二甲基氨基)甲基丙烯酸乙酯(D MA E MA )和3-(甲基丙烯酰氧基丙基)三甲氧基硅烷(K H 570)的共聚物[17],它具有可降解㊁抗蛋白和自交联的性能㊂抗蛋白吸附材料自身的亲水性导致其在海水中易溶胀,因此其力学强度差㊂设计制备水解诱导两性离子(H y d r o l ys i s -i n -d u c e d z w i t t e r i o n s ,H I Z )聚合物是一种有效的解决方案㊂为此,笔者研制了一类两性离子前驱体单体 羧酸甜菜碱酯(T C B ),它本身是疏水性单体,但水解后变为亲水的两性离子㊂通过T C B 和M D O 的自由基杂化共聚制备得到含两性离子前驱体的双解聚丙烯酸酯[18]㊂该聚合物含有降解的主链和水解生成两性离子的侧链,在海水的水解以及降解作用下形成不断更新的表面,并且表面水解产生的两性离子基团赋予材料优异的抗蛋白㊁抗细菌和抗硅藻性能㊂为了进972 第1期艾孝青等:高性能海洋防污材料 主链降解-侧链水解高分子一步调控两性离子的生成速率,笔者合成了含三异丙基硅烷酯的羧酸甜菜碱单体(T C B S A),使之与M D O 和MMA共聚而得到自生成-自更新两性离子基双解聚丙烯酸酯[19]㊂如F i g.4所示,该聚合物的硅烷酯基水解后能自我生成两性离子㊂同时,因其主链在海水中降解从而形成自更新-自生成两性离子的动态表面㊂该材料对海洋细菌和硅藻的黏附都有优异的抑制效果㊂此外,该材料水解降解只发生在涂层表面,涂层内部仍具有疏水性并可以保持原有的力学强度㊂3.2双解超支化聚合物与线型聚合物相比,超支化聚合物具有低链缠结㊁低结晶度㊁高溶解度和高末端官能度[20,21],以其为基础的涂料具有高固含量㊁低黏度等特点㊂通过在P C L链段中引入支化点(缩水甘油)制备了可降解超支化聚酯[22]㊂这类降解性超支化聚合物可作为环境友好型防污剂的控制释放载体,通过分子结构设计来控制聚合物的降解速率从而控制防污剂的释放速率㊂然而,这类聚合物的抛光速率仅依赖于主链降解作用,降解后的小分子亲水能力有限,从而限制其自更新速率㊂之后,通过可逆加成-断裂链转移聚合将T C B单体引入降解性超支化聚合物,使其能够促使自生两性离子涂层的表面碎片化[23]㊂该聚合物的超支化结构不仅能有效降低P C L的结晶度,增加材料的降解速率,而且使聚合物降解后的碎片更小,进一步降低对环境的影响(F i g.5)㊂含有T C B侧基的超支化聚合物增加了降解水解后碎片的水溶性,增强材料的自更新能力,使材料自更新的性能不受水流影响㊂材料表面产生的两性离子能有效抑制海洋细菌和硅藻的黏附,实现了动态和静态条件下的防污㊂由于降解和水解反应只发生在材料涂层表面,疏水性的涂层内部在服役过程中仍能保持优异的力学性能㊂F i g.5(a)S y n t h e s i s o f h y p e r b r a n c h e d c o p o l y m e r s b y R A F T p o l y m e r i z a t i o n a n d(b)h y d r o l y s i s a n dd e g r a d a t i o no f h y p e r b r a n c h e d c o p o l y m e r s3.3双解聚氨酯聚氨酯因其优异的力学性能和对基材较高的附着力而广泛应用于涂料㊁胶黏剂㊁食品包装㊁建筑材料和医用材料等[24,25]㊂特别是在海洋防污领域,高黏附力和高形变的聚氨酯对于柔性基材如橡胶㊁网线的防污至关重要㊂近年来,本实验室将可降解链段引入聚氨酯制备了系列降解性聚氨酯材料并应用于海洋防污[26,27]㊂这类材料不仅具有优异的力学性能,而且在静态环境下仍能以恒定速率降解并控制防污剂的释放[28]㊂082高分子材料科学与工程2021年以 双解 概念为设计思路,笔者制备了双解聚氨酯防污材料,曾将生物降解性P C L 引入聚丙烯酸三异丙基硅烷酯聚合物(P T I P S A )制备了双解聚氨酯[29]㊂该材料通过降解主链和水解侧基的双重作用,在海洋环境中形成自更新的动态表面,即便在静态条件下也可有效抑制污损生物的黏附㊂同时能使防污剂可控释放,材料在南海㊁东海海域的长期静态海洋实验中展示出优异的防污性能㊂通过调节主侧链含量㊁侧基位阻可有效调控材料的降解速率,从而满足其在不同污损压力㊁航速等环境下的服役要求㊂笔者还制备了含有不同可降解聚酯链段(聚己内酯㊁聚丙交酯和聚己二酸乙二酯)和不同长度P T I P S A 侧链的双解聚氨酯[30]㊂通过改变酯基密度和P I T S -P A 的分子量来调控主链的降解速率和侧链的水解速率,从而调控防污剂释放速率㊂研究发现双解聚氨酯的主链酯键含量和可水解侧基含量越高,材料降解速率越快,静态防污性能越好㊂将该材料与天然产物基防污剂结合制备环境友好型防污涂料,在实际海洋环境下表现出优异的防污效果㊂F i g .6 (a )S t r u c t u r a l f o r m u l a o f P L A -p o l y u r e t h a n e ,(b )a n t i f o u l i n g m e c h a n i s ma n d (c )i m a g e s o f c o a t i n gsw i t h10%b u t e n o l i d e a f t e r i m m e r s i o n i nn a t u r a l s e a w a t e r f o r 90dF i g .7 D e v e l o p m e n t o f d e g r a d a b l e a n dh y d r o l y z a b l e c o p o l ym e r 182 第1期艾孝青等:高性能海洋防污材料 主链降解-侧链水解高分子取之于自然,用之于自然 是开发环保型防污涂料的有效策略㊂合成聚乳酸(P L A)的原料主要来源玉米,小麦和甘蔗等农作物,它是目前使用最广泛的生物基降解性聚酯之一㊂P L A能迅速完全降解为无毒的二氧化碳和水,最终返回到大自然㊂通过硫醇-烯反应和加聚反应,制备了含有可水解的T I P S A 侧基和基于P L A的双解聚氨酯[31]㊂这种聚合物具有高的基底黏合强度(约2.0M P a),其降解速率可通过改变其软链段和T I P S A含量调节(F i g.6)㊂该双解聚氨酯与衍生自海洋细菌的环境友好型防污剂(丁烯酸内酯)复配,可制得一种环保型涂料㊂随着该聚合物在海水中不断降解,丁烯酸内酯可以以可控而稳定的速率连续地从涂层中释放,从而抑制海洋细菌的黏附㊂在海洋实验中,该涂料表现出优异的防污性能㊂4展望由于海洋环境的复杂性和污损生物的多样性,发展高性能海洋防污材料一直是一个极具挑战性的课题,发展高性能海洋防污材料及相关技术是未来研究的重点㊂防污涂料是防止海洋污损生物在海洋设施表面附着㊁繁殖的有效手段㊂降解高分子在海水中能形成不断变化的动态表面,从而无论在动态还是静态条件下均具有良好防污能力㊂主链降解-侧链水解(双解)高分子(F i g.7)兼具降解高分子和水解高分子的特点,其表面自更新得到更有效的调控,并且具有良好的力学性能㊂双解高分子最终降解为小分子,不会对环境产生微塑料污染㊂双解高分子可以负载环境友好防污剂并使之可控释放,从而使防污效果进一步提高,并延长其服役时间㊂双解高分子材料作为一类新型的高性能海洋防污材料,将在我国海洋工业和海洋装备发展中起到重要作用㊂参考文献:[1]C a r t e a u D,V a l lée-Réh e lK,L i n o s s i e rI,e ta l.D e v e l o p m e n to fe n v i r o n m e n t a l l yf r i e n d l y a n t i f o u l i ng p a i n t s u s i n g b i o d e g r a d a b l ep o l y m e ra n d l o w e rt o x i c s u b s t a n c e s[J].P r o g r e s si n O r g a n i cC o a t i n g s,2014,77:485-493.[2] B r e s s y C,H e l l i oC,M a r e c h a l J P,e t a l.B i o a s s a y s a n d f i e l di m m e r s i o n t e s t s:a c o m p a r i s o no f t h e a n t i f o u l i n g a c t i v i t y o f c o p p e r-f r e e p o l y(m e t h a c r y l i c)-b a s e d c o a t i ng s c o n t a i n i n g t e r t i a r y a m i n e s a n da m m o n i u ms a l t g r o u p s[J].B i o f o u l i n g,2010,26:769-677.[3] K i i l S,D a m-J o h a n s e nK,W e i n e l l CE,e t a l.D y n a m i c s i m u l a t i o n s o fa s e l f-p o l i s h i n g a n t i f o u l i n gp a i n t e x p o s e d t o s e a w a t e r[J].J o u r n a l o fC o a t i n g sT e c h n o l o g y,2002,74:45-54.[4] K i i l S,W e i n e l l CE,P e d e r s e nMS,e t a l.A n a l y s i s o f s e l f-p o l i s h i n g a n t i f o u l i n g p a i n t s u s i n g r o t a r y e x p e r i m e n t s a n dm a t h e m a t i c a lm o d e l i n g[J].I n d u s t r i a l&E n g i n e e r i n g C h e m i s t r y R e s e a r c h,2001,40:3906-3920.[5] B r e s s y C,H e l l i oC,N g u y e nM N,e t a l.O p t i m i z e d s i l y l e s t e rd i b l o c k me t h a c r y l i c c o p o l y m e r s:A n e w c l a s s of b i n d e r s f o rc h e m i c a l l y a c t i v e a n t i f o u l i n g c o a t i n g s[J].P r o g r e s si n O r g a n i cC o a t i n g s,2014,77:665-673.[6] C h e nSS,M aCF,Z h a n g GZ.B i o d e g r a d a b l e p o l y m e r s f o rm a r i n ea n t ib i o f o u l i n g:P o l y(ε-c a p r o l a c t o n e)/p o l y(b u t y l e n e s u c c i n a t e)b l e n da sc o n t r o l l e dr e l e a s es y s t e m o fo r g a n i ca n t i f o u l a n t[J].P o l y m e r,2016,90:215-221.[7] C h e nSS,M aCF,Z h a n g GZ.B i o d e g r a d a b l e p o l y m e r a sc o n t r o l l e dr e l e a s es y s t e m o fo r g a n i ca n t i f o u l a n tt o p r e v e n t m a r i n eb i o f o u l i n g[J].P r o g r e s s i nO r g a n i cC o a t i n g s,2017,104:58-63.[8]潘健森,谢庆宜,马春风,等.生物降解高分子基海洋防污材料的研究进展[J].表面技术,2019,48(7):185-192.P a nJS,X i e Q Y,M a C F,e ta l.P r o g r e s si n b i o d e g r a d a b l e p o l y m e r-b a s e dm a r i n e a n t i f o u l i n g m a t e r i a l s[J].S u r f a c eT e c h n o l o g y, 2019,48(7):185-192.[9] X i eQ Y,P a nJS,M aCF,e ta l.D y n a m i c s u r f a c ea n t i f o u l i n g:M e c h a n i s ma n d s y s t e m s[J].S o f tM a t t e r,2019,15:1087-1107.[10]张广照.杂化共聚反应[J].高分子学报,2018(6):668-673.Z h a n g GZ.H y b r i dc o p o l y m e r i z a t i o n[J].A c t aP o l y m e r i c aS i n i c a, 2018(6):668-673.[11] X u J B,Y a n g HJ,Z h a n g GZ.S y n t h e s i s o f p o l y(ε-c a p r o l a c t o n e-c o-m e t h a c r y l i c a c i d)c o p o l y m e r v i a p h o s p h a z e n e-c a t a l y z e d h y b r i dc o p o l y m e r i z a t i o n[J].M a c r o m o l e c u l a r C h e m i s t r y a nd P h y s i c s,2013,214:378-385.[12] Y a n g HJ,X u J B,P i s p a s S,e t a l.H y b r i d c o p o l y m e r i z a t i o no fε-c a p r o l a c t o n e a n dm e t h y lm e t h a c r y l a t e[J].M a c r o m o l e c u l e s,2012,45:3312-3317.[13] D a i GX,X i eQY,C h e n S S,e t a l.B i o d e g r a d a b l e p o l y(e s t e r)-p o l y(m e t h y lm e t h a c r y l a t e)c o p o l y m e rf o r m a r i n ea n t i-b i o f o u l i n g[J].P r o g r e s s i nO r g a n i cC o a t i n g s,2018,124:55-60.[14]Z h o uX,X i eQ Y,M aCF,e t a l.I n h i b i t i o no fm a r i n e b i o f o u l i n gb y u s e o f d e g r a d a b l ea n dh y d r o l y z a b l e s i l y l ac r y l a t e c o p o l y m e r[J].I n d u s t r i a l&E n g i n e e r i n g C h e m i s t r y R e s e a r c h,2015,54:9559-9565.[15] X i eQ Y,M aCF,Z h a n g GZ,e ta l.P o l y(e s t e r)–p o l y(s i l y lm e t h a c r y l a t e)c o p o l y m e r s:s y n t h e s i sa n d h y d r o l y t i cd e g r a d a t i o nk i n e t i c s[J].P o l y m e rC h e m i s t r y,2018,9:1448-1454.[16] D a i GX,X i eQY,M aCF,e t a l.B i o d e g r a d a b l e p o l y(e s t e r-c o-a c r y l a t e)w i t h a n t i f o u l a n t p e n d a n t g r o u p s f o r m a r i n e a n t i-b i o f o u l i n g[J].A C SA p p l i e d M a t e r i a l s&I n t e r f ac e s,2019,11:11947-11953.[17] X i eQ N,Z h o uX,M aCF,e ta l.S e l f-c r o s s-l i n k i n g d e g r a d a b l ep o l y m e r sf o ra n t i f o u l i n g c o a t i n g s[J].I n d u s t r i a l&E n g i n e e r i n gC h e m i s t r y R e s e a r c h,2017,56:5318-5324.[18] X i eQ Y,X i eQ N,P a n J S,e t a l.B i o d e g r a d a b l e p o l y m e rw i t hh y d r o l y s i s-i n d u c e d z w i t t e r i o n s f o ra n t i b i o f o u l i n g[J].A C S A p p l i e dM a t e r i a l s&I n t e r f a c e s,2018,10:11213-11220. [19] D a i GX,X i eQ Y,A i XQ,e t a l.S e l f-g e n e r a t i n g a n d s e l f-282高分子材料科学与工程2021年r e n e w i n g z w i t t e r i o n i c p o l y m e rs u r f a c e sf o r m a r i n ea n t i -b i o f o u l i n g [J ].A C SA p pl i e dM a t e r i a l s&I n t e r f a c e s ,2019,11:41750-41757.[20] J i a n g Q M ,Z h a n g YL ,D uYZ ,e t a l .P r e pa r a t i o n o f h y p e rb r a nc h ed p o l y me r s b y o x a -m i c h a e l a d d i t i o n p o l ym e r i z a t i o n [J ].P o l y m e rC h e m i s t r y,2020,11:1298-1306.[21] A y d o g a nC ,Y i l m a zG ,Y a g c i Y .S y n t h e s i s o f h y pe r b r a n c h e d p o l y m e r sb y p h o t o i n d u c e d m e t a l -f r e ea t r p [J ].M a c r o m o l e c u l e s ,2017,50:9115-9120.[22] A i XQ ,X i eQY ,M a CF ,e t a l .F o u l i n g r e l e a s e c o a t i n g c o n s i s t i n go f h y p e r b r a n c h e d p o l y (ε-c a p r o l a c t o n e )/s i l o x a n e e l a s t o m e r [J ].A C S A p p l i e dP o l ym e rM a t e r i a l s ,2020,2:1429-1437.[23] M e i LQ ,A i XQ ,M aCF ,e t a l .S u r f a c e -f r a g m e n t i n gh y p e r b r a n c h e dc o p o l y m e r s w i t h h y d r o l y s i s -g e n e r a t i n g zw i t t e r i o n s f o ra n t i f o u l i n g c o a t i n g s [J ].J o u r n a lo f M a t e r i a l s C h e m i s t r y B ,2020,8:5434-5440.[24] F o u r n i e rD ,P r e zFD . C l i c k c h e m i s t r y a s a p r o m i s i n g to o l f o r s i d e -c h a i n f u n c t i o n a l i z a t i o no f p o l yu r e t h a n e s [J ].M a c r o m o l e c u l e s ,2008,41:4622-4630.[25] 周登健,杨建军,吴庆云,等.抗菌型聚氨酯改性与应用研究进展[J ].聚氨酯工业,2019,34(5):1-4.Z h o uDJ ,Y a n g J J ,W uQ Y ,e t a l .P r o g r e s s i nm o d i f i c a t i o na n d a p p l i c a t i o no f a n t i b a c t e r i a l p o l y u r e t h a n e [J ].P o l y u r e t h a n e I n d u s t r y ,2019,34(5):1-4.[26] M aCF ,Z h a n g W P ,Z h a n g GZ ,e t a l .E n v i r o n m e n t a l l y f r i e n d l ya n t i f o u l i n g c o a t i n g sb a s e d o n b i o d g r a d a b l e p o l y m e ra n d n a t u r a l a n t i f o u l a n t [J ].A C SS u s t a i n a b l eC h e m i s t r y &E n g i n e e r i n g,2017,5:6304-6309.[27] M aCF ,X uL G ,X u W T ,e ta l .D e g r a d a b l e p o l yu r e t h a n e f o r m a r i n e a n t i -b i o f o u l i n g [J ].J o u r n a l o fM a t e r i a l s C h e m i s t r y B,2013,1:3099-3106.[28] M aJL ,M aC F ,Y a n g Y ,e ta l .B i o d e g r a d a b l e p o l yu r e t h a n e c a r r y i n g a n t i f o u l a n t s f o ri n h i b i t i o n o f m a r i n e b i o f o u l i n g [J ].I n d u s t r i a l&E n g i n e e r i n g C h e m i s t r y R e s e a r c h ,2014,53:12753-12759.[29] X uW T ,M aCF ,M a JL ,e t a l .M a r i n e b i o f o u l i n g re s i s t a n c e of p o l y u r e t h a n e w i t h b i o d eg r a d a t i o n a n dh y d r o l y z a ti o n [J ].A C S A p pl i e dM a t e r i a l s&I n t e r f a c e s ,2014,6:4017-4024.[30] M aCF ,X uW T ,P a n J S ,e t a l .D e g r a d a b l e p o l ym e r s f o r m a r i n e a n t i b i o f o u l i n g :o p t i m i z i n g s t r u c t u r e t o i m pr o v e p e r f o r m a n c e [J ].I n d u s t r i a l &E n g i n e e r i n g C h e m i s t r y Re s e a r c h ,2016,55:11495-11501.[31] P a nJS ,X i eQ Y ,C h i a n g H ,e ta l . F r o mt h en a t u r ef o r t h e n a t u r e :a n e c o -f r i e n d l y a n t i f o u l i ng c o a t i n g c o n s i s t i n g o f p o l y(l a c t i c a c i d )-b a s e d p o l y u r e t h a n e a n d n a t u r a l a n t i f o u l a n t [J ].A C S S u s t a i n a b l eC h e m i s t r y &E n g i n e e r i n g,2019,8:1671-1678.H i g h -P e r f o r m a n c eM a r i n eA n t i f o u l i n g M a t e r i a l s D e g r a d a b l e a n d H y d r o l y z a b l eC o p o l ym e r s X i a o q i n g A i ,J i a n s e nP a n ,Q i n g y i X i e ,C h u n f e n g M a ,G u a n g z h a oZ h a n g(F a c u l t y o f M a t e r i a l s S c i e n c e a n dE n g i n e e r i n g ,S o u t hC h i n aU n i v e r s i t yo f T e c h n o l o g y ,G u a n gz h o u 510640,C h i n a )A B S T R A C T :M a r i n e f o u l i n g i s a s t i c k y a n d i n e v i t a b l e p r o b l e m i n t h e d e v e l o pm e n t a n d u t i l i z a t i o n o fm a r i n e r e s o u r c e s .S i n c e t h eI n t e r n a t i o n a l M a r i n e O r ga n i z a t i o nb a n n e dt h eu s eo ft r i b u t y l t i ns e l f -p o l i s h i n gc o a t i n g si n2008,t h ede v e l o p m e n t of e n v i r o n m e n t a l l y f r i e n d l y a n d e f f i c i e n tm a r i n e a n t i f o u l i ng t e ch n o l o g yi s t h em o s t i m po r t a n t t a s k i n t h i s f i e l d .T h ec o p o l y m e r sw i t hd e g r a d a b l e m a i nc h a i n sa n dh y d r o l y z a b l es i d e g r o u p sc o m b i n e t h ea d v a n t a ge sof s e l f -p o l i s h i ng c o p o l y m e r s a n d d e g r a d a b l e p o l y m e r s .I t c a n f o r ma c o n t r o l l a b l e a n d s e l f -r e n e w a b l ed yn a m i c s u r f a c e i n t h e m a r i n e e n v i r o n m e n t a n d h a s t h e a d v a n t a g e s o f h i g h -e f f i c i e n c y ,l o n g -l a s t i n g a n d e n v i r o n m e n t a l l y f r i e n d l y.T h i s a r t i c l e r e v i e w e d t h e r e s e a r c h p r o g r e s s o f d e g r a d a b l e a n dh y d r o l y z a b l e c o p o l y m e r s ,a n d t h e f u t u r e d e v e l o p m e n t d i r e c t i o n s o f m a r i n e a n t i f o u l i n g t e c h n o l o g y w e r e p r o s pe c t e d .K e yw o r d s :m a r i n e f o u l i n g ;d e g r a d a t i o n ;h y d r o l y s i s ;d y n a m i c s u r f a c e ;a n t i f o u l i n g 382 第1期艾孝青等:高性能海洋防污材料 主链降解-侧链水解高分子。

水滑石基臭氧分解催化剂性能研究

DOI: 10.1016/S1872-5813(23)60337-8水滑石基臭氧分解催化剂性能研究马嘉川1,2,郭明星1,* ,王 胜2,* ,王树东2(1. 大连海事大学 环境科学与工程学院, 辽宁 大连116026;2. 中国科学院大连化学物理研究所 洁净能源国家实验室, 辽宁 大连116023)摘 要:居室环境内臭氧严重危害人体健康,催化分解法是最有效的臭氧净化技术之一。

高活性和稳定性臭氧分解催化剂的开发是关键,特别是在高湿度大空速下,臭氧的低温催化分解具有较高的技术壁垒。

层状双金属氢氧化物(LDH )具有独特的二维层状结构,具有灵活的结构可调控性。

本实验通过共沉淀法用过渡金属制得Ni 3Fe 、Ni 3Co 、Ni 3Mn 与Co 3Fe 水滑石结构催化剂,在30 ℃、600000 mL/(g·h)、低湿度RH < 5%和高湿度RH > 90%条件下,测试了其臭氧催化分解性能。

结果表明,Ni 3Co-LDH 在低湿度和高湿度下,都表现出优良的臭氧分解性能,臭氧转化率分别为88%和77%。

结合XRD 、BET 、SEM 、XPS 、Raman 、FT-IR 、TG 等表征手段,揭示了LDH 催化剂优良臭氧分解性能的内在原因机理。

本实验的研究为过渡金属臭氧分解催化剂开发提供了新的思路。

关键词:臭氧分解;层状双氢氧化物;二维层状结构;催化剂;抗水性中图分类号: X511 文献标识码: AStudy on the performance of hydrotalcite-based ozone decomposition catalystMA Jia-chuan 1,2,GUO Ming-xing 1,*,WANG Sheng 2,*,WANG Shu-dong2(1. College of Environmental Science and Engineering , Dalian Maritime University , Dalian 116026, China ;2. Dalian National Laboratory for Clean Energy , Dalian Institute of Chemical Physics ,Chinese Academy of Sciences , Dalian 116023, China )Abstract: Ozone in the indoor environment is seriously harmful to human health, and the catalytic decomposition method is one of the most effective ozone purification technologies. The development of ozone decomposition catalyst with superior activity and stability is the bottleneck, especially under high humidity, high space velocity,and ambient temperature. Layered double hydroxide (LDH) has a unique two-dimensional layered structure and excellent water resistance. In the paper, Ni 3Fe, Ni 3Co, Ni 3Mn, and Co 3Fe hydrotalcite-structured catalysts were prepared by the coprecipitation method. And their ozone catalytic decomposition performance was tested under 30 ℃, 600000 mL/(g·h), low humidity (RH< 5%), and high humidity (RH > 90%). The results showed that Ni 3Co-LDH exhibited excellent ozone decomposition performance, and the ozone conversion was 88% and 77% under low humidity and high humidity, respectively. Combined with XRD, BET, SEM, XPS, Raman, FT-IR, TG and other characterizations, the intrinsic mechanism of the excellent ozone decomposition performance of LDH catalysts was revealed. The paper provided new ideas for developing transition metal ozone decomposition catalysts.Key words: ozone decomposition ;layered double hydroxide ;two-dimensional layered structure ;catalyst ;waterresistance臭氧(O 3),由三个氧原子构成,O–O 键的距离为0.128 nm ,是氧气的同素异形体,具有极强的氧化性,主要来源于大气中的平流层,可阻挡紫外线、保护地球生物及生存环境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Emulsifierswithhighchemicalresistance:akeytohighperformancewaterbornecoatings

VolkerDuecoffre,WolfgangDiener,CarmenFlosbach,WalterSchubert*HerbertsGmbH,D-Wuppertal,GermanyReceived15July1997;revisedversionreceived14April1998;accepted21April1998

AbstractApowerfulwaytocoatingswithlowvolatilecontentarewaterbornesystems.Theyareanimportantalternativetohighsolid-andpowdercoatings.Itisessential,thatwaterbornecoatingsshouldnothavealowerpropertylevelcomparedwithconventionalsystems.Anoveltypeofemulsifierallowsthepreparationofnon-ionicstabilizedaqueousemulsions.Themainadvantageofthisnewtypeofemulsifierconsistsinimprovingthechemicalresistanceoftheresultingcrosslinkedfilms,especiallyagainstacids.Thereupontheyshownodiscoloringevenathighstavingtemperaturesandaverygoodemulsifyingbehavior.Thebasetypecanbeeasilyfunctionalizedwithamultitudeofchemicalfunctionalitieslike-OH,-COOHorvinylgroups.Thatmeanstheemulsifiercanbeincorporatedinthefilmduringthecrosslinkingreaction.Amigrationtothecoatingsurfacecanbeavoidedundertheseconditions.Thedifferentsynthesisrouteswillbedescribedindetail.Acomparisonofthreenon-ionicstabilizedwaterborneautomotivecoatingsystemswithdifferentcrosslinkingreactions(polyurethane,transetherifyingandnucleophilicaddition)withthecorrespondingionicstabilizedsystemsshowstheextraordinaryqualityofthenewtonesofemulsifiers.©1998PublishedbyElsevierScienceS.A.Allrightsreserved

Keywords:Emulsifier;Waterborne;Non-ionicstabilizer;Chemicalresistance;Automotivecoating

1.IntroductionInrecentyearstheimportanceofwaterbornecoatingshasincreased.Thisnewtechnologyprovidescoatingswithbothimprovedperformancepropertiesandgreaterenvironmen-talacceptability.Aqueouscompositionshavetheimportantadvantagethatduringapplicationoruseofaco-solventonlyasmallamountoforganicsolventisreleasedintotheatmo-sphere.Moreover,theuseofwaterleadstofewerphysio-logicaldrawbacksandfireandexplosionhazards.Fig.1showstheadvantageofwaterbornecoatingsduetotheirlowcontentofvolatileorganicsolvents.

2.Ionicandnon-ionicstabilizedemulsionsTherearedifferentapproachestopreparingaqueousemulsions(Fig.2).Ionicstabilizedemulsionsshowadvan-tages,butalsosufferseveraldrawbacks.Usuallytheyshow

agoodtemperaturestability,buttheyaregenerallysensitiveagainstelectrolytes.Moreoverneutralizationaminesinanionicstabilizedemulsions,butalsoneutralizationacidsincationicstabilizedemulsionsarenotgenerallyusablebecauseofpossibleundesiredreactionswithfunctional

ProgressinOrganicCoatings34(1998)200–205

0300-9440/98/$19.00©1998PublishedbyElsevierScienceS.A.AllrightsreservedPIIS0300-9440(98)00032-0

*Correspondingauthor.Fig.1.Comparisonofdifferentcoatingsystems.groupsoftheemulsifierresin.Forinstancea,b-unsaturated-orepoxyfunctionalizedresinsveryoftenaregelling,iftheemulsionisneutralizedwithamines.Mostoftheseproblemscanbeavoided,whenemulsionsarestabilizedwithnon-ionicemulsifiers.Thesematerialsarecharacterizedbythepresenceoftwochainswithdiffer-entpolarity.Thefirstchainisgenerallyhydrophilic,theotherchainismoreorlesshydrophobic.Typicalexamplesaresulfate-orphosphateesters.Thestabilizationofnon-ionicemulsionsisdiscribedinFig.3.Atfirstthenon-ionicemulsionmicelleisdesaggregatingandsubsequentlycover-ingtheorganicdroplets.Thehydrophobicchainispenetrat-Fig.2.Stabilizationofemulsions.

Table1DependenceoftheamountofemulsifieronthechemicalstructureLineartypesHighamounts(>20%)FattyalcoholethoxylateR-O-(-CH2-CH2-O-)n-H

AlkylphenolethoxylateR-C6H4-O-(-CH2CH-O-)n-HFattyacidethoxylateR-CO-O-(CH2-CH2-O-)n-H

BranchedtypesLowamounts(5–20%)DerivativesofpolyglycosidesEthoxylatesofpolyolsandtheirsubsequentproductslikesorbitanefattyacidesters

BranchedtypeswithhighmolecularweightVerylowamounts(Ͻ5%)Combinedsorbitanefattyacidesters

Fig.3.Stabilizationofnon-ionicemulsions.

201V.Duecoffreetal./ProgressinOrganicCoatings34(1998)200–205ingintotheorganicdroplet,thehydrophiliccanterismov-ingtothewater–resininterphase.Thenecessaryamountofnon-ionicemulsifierstoper-formstoragestableemulsionsdependsontheirstereochem-istry,molecularweightandhydrophilic/hydrophobicgradient(Table1).Beneaththestabilityoftheemulsionstheparticlesizeandtheparticlesizedistributionareveryimportantpara-meters.Onlysmallparticlesizesfarbelow5mmusuallyareyieldingcoatingswithsmoothsurfaces.Especiallyinthatwaythemolecularweightoftheemulsifierhasaverygreatinfluence.Oneapproachtoemulsionswithverysmallparticlesizesistheuseofhighmolecularnon-ionicemulsifiers.Thegreatdisadvantageofcommonlyusedhighmolecularemulsifiersaretheirtendencytoyellowingunderstovingconditionsandtheirmoderateorsometimesbadresistanceagainstche-micals.

相关文档
最新文档