2018朝阳高三一模文科试题

合集下载

2018高三英语朝阳一模试题(版,含答案)

2018高三英语朝阳一模试题(版,含答案)

北京市朝阳区高三年级第一次综合练习英语学科测试2018.3(考试时间100分钟满分120分)本试卷共10页。

考生务必将答案答在答题卡上,在试卷上作答无效。

第一部分:知识运用(共两节,45分)第一节单项填空(共15小题;每小题1分, 共15分)从每题所给的A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。

例:It’s so nice to hear from her again. _____,we last met more than thirty years ago.A. What’s moreB. That’s to sayC. In other wordsD. Believe it ornot答案是D。

1.Peter has previous experience, ______I think he’s the right person for the job.A. orB. butC. forD. so2. ––What did the doctor say about your injury?––She said I should avoid doing too much exercise ______ it feels better.A. untilB. sinceC. ifD. while3. The meal itself was not so good—______ was boringly brown including vegetables.A. nothingB. everythingC. anythingD. something4. Don’t worry. A number of efforts are being made ______ the whole system operating normally.A. being keptB. keptC. keepingD. to keep5. Hawking believes the earth is unlikely to be the only planet _____ life has developed gradually.A. thatB. whyC. whereD. whose6. ––Cathy is not coming to your birthday party tonight.––But she ______!A. promisedB. promisesC.will promiseD. had promised7.Don’t forget to send ______ attended the conference a follow-up email.A. howeverB. whateverC. whoeverD. wherever8.Your red coat looks so good. It stood out clearly ______ the snow.A. acrossB. againstC. throughD. over9. Look! Here’s a photo ______ in my classroom at primary school. Can you recognize me in it?A. takenB. takingC. to takeD. being taken10. ––Are the repairs finished yet?––Yes, they ______ when I came back home.A.would be completedB. would completeC. had completedD. had been completed11. Sometimes it seems to bother the teacher ______ all the students are being too quiet.A. howB. whatC. thatD. where12. ______ such a problem before, we handled the situation very well this time.A. Deal withB. Dealing withC. To deal withD. Having dealt with13. It seems late to say anything. We probably ______ it if we had made an offer sooner.A. would have gotB. would getC. had gotD. got14. I think Ana ______ her packing since she started getting things ready early this morning.A. finishesB. has finishedC. had finishedD. would finish15. What I love most about reading novels is ______ the authors vividly describethe characters.A. whatB. whyC. howD. whom第二节完形填空(共20小题;每小题1.5分,共30分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

2018年高三北京市朝阳区2018届高三(一模)数学

2018年高三北京市朝阳区2018届高三(一模)数学

理科数学 2018年高三北京市朝阳区2018届高三(一模)数学(理)试题解析单选题略略略略略略略略填空题略略略略略略略略略略略略单选题(本大题共8小题,每小题____分,共____分。

)1.已知全集为实数集,集合,,则A.B.C.D.2.复数满足,则在复平面内复数所对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.直线的参数方程为(为参数),则的倾斜角大小为A.C.D.4.已知为非零向量,则“”是“与夹角为锐角”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为A.B.C.D.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于A.C.D.7.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是A. 甲B. 乙C. 丙D. 丁8.在平面直角坐标系xOy中,已知点,,动点满足,其中,则所有点构成的图形面积为A.B.C.D.填空题(本大题共12小题,每小题____分,共____分。

)9.执行如图所示的程序框图,若输入,则输出的值为________.10.若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为_____________.11.函数()的部分图象如图所示,则____;函数在区间上的零点为____.12.已知点,若点是圆上的动点,则面积的最小值为____.13.等比数列满足如下条件:①;②数列的前项和.试写出满足上述所有条件的一个数列的通项公式____.14.已知,函数当时,函数的最大值是____;若函数的图象上有且只有两对点关于轴对称,则的取值范围是____.15. (本小题满分13分)在中,已知,.(Ⅰ)若,求的面积;(Ⅱ)若为锐角,求的值.16.(本小题满分14分)如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在线段上是否存在点,使得平面若存在,求出的值;若不存在,请说明理由.17.(本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列及数学期望.18. (本小题满分13分)已知函数.(Ⅰ)当时,(ⅰ)求曲线在点处的切线方程;(ⅱ)求函数的单调区间;(Ⅱ)若,求证:.19. (本小题满分14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与大小关系并加以证明.20. (本小题满分13分)已知集合是集合的一个含有8个元素的子集.(Ⅰ)当时,设,(i)写出方程的解;(ii)若方程至少有三组不同的解,写出的所有可能取值;(Ⅱ)证明:对任意一个,存在正整数,使得方程至少有三组不同的解.答案单选题1. C2. A3. C4. B5. B6. D7. A8. C 填空题9.410.11.12.213.14.15.(Ⅰ)由,得,因为,所以.因为,所以.故的面积.………………….7分(Ⅱ)因为,且为锐角,所以.所以.………….13分16.(Ⅰ)由已知,因为为中点,所以.因为平面平面,且平面平面,平面,所以平面.又因为平面,所以.………….5分(Ⅱ)设为线段上靠近点的四等分点,为中点.由已知易得.由(Ⅰ)可知,平面,所以,.以为原点,所在直线分别为轴建立空间直角坐标系(如图).因为,,所以.设平面的一个法向量为,因为,所以即取,得.而.所以直线与平面所成角的正弦值……….10分(Ⅲ)在线段上存在点,使得平面.设,且,则,.因为,所以,所以,所以,.若平面,则.即.由(Ⅱ)可知,平面的一个法向量,即,解得,所以当时,平面.……….14分17.(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有人.……….3分(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为.…….8分(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得的取值为.,,或.所以的分布列为12所以.…….13分18.当时,..(ⅰ)可得,又,所以在点()处的切线方程为. ….3分(ⅱ)在区间()上,且,则.在区间()上,且,则.所以的单调递增区间为(),单调递减区间为(). ….8分(Ⅱ)由,,等价于,等价于. 设,只须证成立.因为,,由,得有异号两根.令其正根为,则.在上,在上.则的最小值为.又,,所以.则.因此,即.所以所以.….….13分19.Ⅰ)由题意得解得,,.故椭圆的方程为.….….5分(Ⅱ).证明如下:由题意可设直线的方程为,直线的方程为,设点,,,.要证,即证直线与直线的斜率之和为零,即.因为.由得,所以,.由得,所以.所以..所以.….….14分20.(Ⅰ)(ⅰ)方程的解有:. (2)分(ii)以下规定两数的差均为正,则:列出集合的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以的可能取值有4,6.…………………………………………………………6分(Ⅱ)证明:不妨设,记,,共13个差数.假设不存在满足条件的,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而. …………①又,这与①矛盾!所以结论成立.……………………………………………………………………13分解析单选题略略略略略略略略填空题略略略略略略略略略略略略。

XXX2018年高三下学期期初考试(3月)数学(文)试题

XXX2018年高三下学期期初考试(3月)数学(文)试题

XXX2018年高三下学期期初考试(3月)数学(文)试题2018年全国高三文科数学统一联合考试一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合$A=\{x|x\leq1\}$,且$A\cap B=\{0,1\}$,则集合$B$可能是(。

)A.$\{x|x\geq\}$B.$\{x|x>-1\}$C.$\{-1,0,1\}$D.$\{0,1,2\}$2.已知向量$a=(1,2)$,$b=(-1,0)$,则$2a-b=$(。

)A.$17$B.$17\vec{a}$C.$5$D.$25$3.若复数$z$在复平面内对应的点的坐标是$(1,-2)$,则$z=$ (。

)A.$1-2i$B.$1+2i$C.$2-i$D.$-2-i$4.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边同时相向打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果这两只老鼠恰好用了7天把墙打穿,则墙厚为(。

)A.$8255$尺B.$129$尺C.$2079$尺D.$65$尺5.若双曲线$C:-\frac{x^2}{x^2+y^2}=1$的离心率为3,则实数$m=$ (。

)frac{m}{m+1}$A.$1$B.$2$C.$1$或$-2$D.$1$或$2$6.已知命题$p:\exists m\in R$,使得$f(x)=x^2+mx$是偶函数;命题$q:x^2=1\Rightarrow x=1$,现给出下列命题:①$p$;②$q$的逆否命题;③$p\land q$;④$p\lor(\negq)$。

其中真命题的个数为(。

)A.$0$B.$1$C.$2$D.$3$7.如图,网格纸上小正方形的边长为$1$,粗实线画出的是某几何体的三视图,则该几何体的体积为(。

2018年全国卷Ⅰ高考文综历史试题(含答案详细解析)

2018年全国卷Ⅰ高考文综历史试题(含答案详细解析)

2018年普通高等学校招生全国统一考试文科综合能力测试(历史)全卷满分300分。

考试用时150分钟。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上。

2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选途其他答案标号。

写在试卷上无效。

3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第I卷一、选择题:本题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.《墨子》中有关于“圆”“直线”“正方形”“倍”的定义,对杠杆原理、声音传播、小孔成像等也有论述,还有机械制造方面的记载。

这反映出,《墨子》A.汇集了诸子百家的思想精华B,形成了完整的科学体系C.包含了劳动人民智慧的结晶D.体现了贵族阶层的旨趣2.据学者研究,唐朝“安史之乱”后百余年间的藩镇基本情况如表2所示。

表2“安史之乱”后百余年间唐朝藩锁基本卅况去鹰侦类型数量(个)―官员任免侦供纳J兵颤与功能河朔型7落镇白擅_不上供初重兵以t\立中原型8朝廷任命少上供驻重兵防骄藩边41型17朝廷任命_少上供重乒守泌Zft东南型「9朝廷任命上供一驻兵少防盗贼由此可知,这一时期的藩镇A.控制了朝廷财政收入B.彼此之间攻伐不已C.注重维护中央的权威D.延续了唐朝的统治3.北宋前中期,在今四川井研县一带山谷中,密布着成百上千个采用新制盐技术的竹筒井,井主所雇工匠大多来自"他州别县”,以“佣身赁力”为生,受雇期间,若对工作条件或待遇不满意,辄另谋高就。

这反映出当时A.民营手工业得到发展B,手工业者社会地位高C.雇佣劳动已经普及D.盐业专卖制度已经解体4.图中的动物是郑和下西洋时外国使臣随船向明政府贡献的奇珍异兽。

2018高三英语朝阳一模试题(word版,含答案)

2018高三英语朝阳一模试题(word版,含答案)

北京市朝阳区高三年级第一次综合练习英语学科测试(考试时间100分钟满分120分)本试卷共10页。

考生务必将答案答在答题卡上,在试卷上作答无效。

第一部分:知识运用(共两节,45分)第一节单项填空(共15小题;每小题1分, 共15分)从每题所给的A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。

例:It’s so nice to hear from her again. _____, we last met more than thirty years ago.A. What’s moreB. That’s to sayC. In other wordsD. Believe it or not答案是D。

1. Peter has previous experience, ______ I think he’s the right person for the job.A. orB. butC. forD. so2. ––What did the doctor say about your injury––She said I should avoid doing too much exercise ______ it feels better.A. untilB. sinceC. ifD. while3. The meal itself was not so good—______ was boringly brown including vegetables.A. nothingB. everythingC. anythingD. something4. Don’t worry. A number of efforts are being made ______ the whole system operating normally.A. being keptB. keptC. keepingD. to keep5. Hawking believes the earth is unlikely to be the only planet _____ life has developed gradually.A. thatB. whyC. whereD. whose6. ––Cathy is not coming to your birthday party tonight.––But she ______!A. promisedB. promisesC. will promiseD. had promised7. Don’t forget to send ______ attended the conference a follow-up email.A. howeverB. whateverC. whoeverD. wherever8. Your red coat looks so good. It stood out clearly ______ the snow.A. acrossB. againstC. throughD. over9. Look! Here’s a photo ______ in my classroom at primary school. Can you recognize me in itA. takenB. takingC. to takeD. being taken10. ––Are the repairs finished yet––Yes, they ______ when I came back home.A. would be completedB. would completeC. had completedD. had been completed11. Sometimes it seems to bother the teacher ______ all the students are being too quiet.A. howB. whatC. thatD. where12. ______ such a problem before, we handled the situation very well this time.A. Deal withB. Dealing withC. To deal withD. Having dealt with13. It seems late to say anything. We probably ______ it if we had made an offer sooner.A. would have gotB. would getC. had gotD. got14. I think Ana ______ her packing since she started getting things ready early this morning.A. finishesB. has finishedC. had finishedD. would finish15. What I love most about reading novels is ______ the authors vividly describe the characters.A. whatB. whyC. howD. whom第二节完形填空(共20小题;每小题分,共30分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

2018年内蒙古包头市高考一模数学试卷(文科)【解析版】

2018年内蒙古包头市高考一模数学试卷(文科)【解析版】

(2)若当 x≥0 时 f(x)≥0,求 m 的取值范围.
(二)选考题:共 10 分.请考生在第 22 题和第 23 题中任选一题作答.[选修
4-4:坐标系与参数方程]
22.(10 分)在直角坐标系 xoy 中,直线 l 的参数方程为
(t 为参数).以
坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 ρ =2. (1)若 a=﹣2 时,求 C 与 l 的交点坐标; (2)若 C 上的点到 l 距离的最大值为 ,求 a. [选修 4-5:不等式选讲] 23.已知函数 f(x)=|x+1|﹣|x﹣2|,g(x)=x2﹣x﹣a. (1)当 a=5 时,求不等式 f(x)≥g(x)的解集;
20.(12 分)已知 F1,F2 是椭圆 C:
的左右两个焦点,|F1F2|
=4,长轴长为 6,又 A,B 分别是椭圆 C 上位于 x 轴上方的两点,且满足 .
(1)求椭圆 C 的方程;
(2)求四边形 ABF2F1 的面积. 21.(12 分)已知函数 f(x)=ex﹣(mx2+x+1).
(1)若 m=0,求 f(x)的单调区间;
|AB|=10,则原点到 l 的距离为( )
A.
B.
C.
D.
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.(5 分)若

,则


14.(5 分)已知 f(x)为奇函数,当 x≤0 时,f(x)=﹣x2﹣3x,则曲线 y=f
(x)在点(1,﹣2)处的切线方程为

15.(5 分)在正方体 ABCD﹣A1B1C1D1 中,E 为棱 CD 的中点,有下列四个结论:

2018文数一模参考答案 (1)

BC AP , BC AF , PF AF F ,
BC 平面 PAF , BC PF
11 , 2
SPBC

1 BC PF 2

1 1 2
11 2
11 ,……………………………………….8 分 4
1
1
2
SPAB

2
PA
AB

2
2 1
2
又 PAB≌PAD , PBC≌PDC ,
2018 年马鞍山市高中毕业班第一次教学质量检测
高三文科数学参考答案
一、选择题:本题共 12 个小题,每小题 5 分,共 60 分.
题号 1
2
3
4
5
6
7
8
9 10 11 12
答案 C
B
B
D
A
D
B
D
A
A
C
D
12.提示:提示:设 | F1F2
| 2c
,令 |PF1|
t ,由题意得: t c
2a2,t c
13. 2 5
14. [ k, k ](k Z )
3
6
15. (n 1) 2n1 2n 2
16. 4 3
三、解答题:共 70 分。
17.(12 分)
解:(1)在△ ABC 中,由 tan A 15 , 可得 cos A 1 ……………………………………………………………………….4 分 4

2a1
,a1
a2

c
, 1 e1

1 e2
1,
e1
ቤተ መጻሕፍቲ ባይዱ

2018高三英语朝阳一模试题(word版-含答案)

2018高三英语朝阳一模试题(word版-含答案)北京市朝阳区高三年级第一次综合练习英语学科测试2018.3(考试时间100分钟满分120分)本试卷共10页。

考生务必将答案答在答题卡上,在试卷上作答无效。

第一部分:知识运用(共两节,45分)第一节 单项填空(共15小题;每小题1分, 共15分) 从每题所给的A 、B 、C 、D 四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。

例:It’s so nice to hear from her again. _____, we last met more than thirty years ago. A. What’s more B. That’s to say C. In other words D. Believe it or not 答案是D 。

1. Peter has previous experience, ______ I think he’s the right person for the job. A. or B. but C. for D. so 2. ––What did the doctor say about your injury? ––She said I should avoid doing too much exercise ______ it feels better. A. until B. since C. if D. while 3. The meal itself was not so good —______ was boringly brown including vegetables. A. nothing B. everything C. anything D. something 4. Don ’t worry. A number of efforts are being made ______ the whole system operating normally. A. being kept B. kept C. keeping______ it if we had made an offer sooner.A. would have gotB. would getC. had gotD. got14. I think Ana ______ her packing since she started getting things ready early this morning.A. finishesB. has finishedC. had finishedD. would finish15. What I love most about reading novels is ______ the authors vividly describe the characters.A. whatB. whyC. howD. whom第二节完形填空(共20小题;每小题1.5分,共30分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

2018年北京高考文科数学试题及答案详细解析版(精美word版,精校版)

2018年北京高考文科数学试题一、选择题共8小题,每小题5分,共40分.1.(5分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2}D.{﹣1,0,1,2} 2.(5分)在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.4.(5分)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A. f B. f C. f D. f 6.(5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.47.(5分)在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是()A.B.C. D.8.(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A二、填空题共6小题,每小题5分,共30分.9.(5分)设向量=(1,0),=(﹣1,m).若⊥(m﹣),则m=.10.(5分)已知直线l过点(1,0)且垂直于x轴.若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为.11.(5分)能说明“若a>b,则<”为假命题的一组a,b的值依次为.12.(5分)若双曲线﹣=1(a>0)的离心率为,则a=.13.(5分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是.14.(5分)若△ABC的面积为(a2+c2﹣b2),且∠C为钝角,则∠B=;的取值范围是.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)设{a n}是等差数列,且a1=ln2,a2+a3=5ln2(Ⅰ)求{a n}的通项公式;(Ⅱ)求e+e+…+e.16.(13分)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.17.(13分)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)18.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.19.(13分)设函数f(x)=[ax2﹣(3a+1)x+3a+2]e x.(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a;(Ⅱ)若f(x)在x=1处取得极小值,求a的取值范围.20.(14分)已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若k=1,求|AB|的最大值;(Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k.2018年北京高考文科数学试题答案1.解:∵集合A={x||x|<2}={x|﹣2<x<2},B={﹣2,0,1,2},∴A∩B={0,1},故选:A.2.解:复数==,共轭复数对应点的坐标(,﹣)在第四象限.故选:D.3.解:在执行第一次循环时,k=1,S=1.在执行第一次循环时,S=1﹣=.由于k=2≤3,所以执行下一次循环.S=,k=3,直接输出S=,故选:B.4.解:若a,b,c,d成等比数列,则ad=bc,反之数列﹣1,﹣1,1,1.满足﹣1×1=﹣1×1,但数列﹣1,﹣1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.故选:B.5.解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:=.故选:D.6.解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=,CD=,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.7.解:A.在AB段,正弦线小于余弦线,即cosα<sinα不成立,故A不满足条件.B.在CD段正切线最大,则cosα<sinα<tanα,故B不满足条件.C.在EF段,正切线,余弦线为负值,正弦线为正,满足tanα<cosα<sinα,D.在GH段,正切线为正值,正弦线和余弦线为负值,满足cosα<sinα<tanα不满足tanα<cosα<sinα.故选:C.8.解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A,C不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;故选:D.9.解:向量=(1,0),=(﹣1,m).m﹣=(m+1,﹣m).∵⊥(m﹣),∴m+1=0,解得m=﹣1.故答案为:﹣1.10.解:∵直线l过点(1,0)且垂直于x轴,∴x=1,代入到y2=4ax,可得y2=4a,显然a>0,∴y=±2,∵l被抛物线y2=4ax截得的线段长为4,∴4=4,解得a=1,∴y2=4x,∴抛物线的焦点坐标为(1,0),故答案为:(1,0)11.解:当a>0,b<0时,满足a>b,但<为假命题,故答案可以是a=1,b=﹣1,故答案为:a=1,b=﹣1.12.解:双曲线﹣=1(a>0)的离心率为,可得:,解得a=4.故答案为:4.13.解:作出不等式组对应的平面区域如图:设z=2y﹣x,则y=x+z,平移y=x+z,由图象知当直线y=x+z经过点A时,直线的截距最小,此时z最小,由得,即A(1,2),此时z=2×2﹣1=3,故答案为:314.解:△ABC的面积为(a2+c2﹣b2),可得:(a2+c2﹣b2)=acsinB,,可得:tanB=,所以B=,∠C为钝角,A∈(0,),cotA∈(,+∞).===cosB+cotAsinB=cotA∈(2,+∞).故答案为:;(2,+∞).15.解:(Ⅰ){a n}是等差数列,且a1=ln2,a2+a3=5ln2.可得:2a1+3d=5ln2,可得d=ln2,{a n}的通项公式;a n=a1+(n﹣1)d=nln2,(Ⅱ)e==2n,∴e+e+…+e=21+22+23+…+2n==2n+1﹣2.16.解:(I)函数f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.17.解:(Ⅰ)总的电影部数为140+50+300+200+800+510=2000部,获得好评的第四类电影200×0.25=50,故从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率=;(Ⅱ)获得好评的电影部数为140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=372,估计这部电影没有获得好评的概率为1﹣=0.814,(Ⅲ)故只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,则使得获得好评的电影总部数与样本中的电影总部数的比值达到最大.18.证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.19.解:(Ⅰ)函数f(x)=[ax2﹣(3a+1)x+3a+2]e x的导数为f′(x)=[ax2﹣(a+1)x+1]e x.曲线y=f(x)在点(2,f(2))处的切线斜率为0,可得(4a﹣2a﹣2+1)e2=0,解得a=;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(a+1)x+1]e x=(x﹣1)(ax﹣1)e x,若a=0则x<1时,f′(x)>0,f(x)递增;x>1,f′(x)<0,f(x)递减.x=1处f(x)取得极大值,不符题意;若a>0,且a=1,则f′(x)=(x﹣1)2e x≥0,f(x)递增,无极值;若a>1,则<1,f(x)在(,1)递减;在(1,+∞),(﹣∞,)递增,可得f(x)在x=1处取得极小值;若0<a<1,则>1,f(x)在(1,)递减;在(,+∞),(﹣∞,1)递增,可得f(x)在x=1处取得极大值,不符题意;若a<0,则<1,f(x)在(,1)递增;在(1,+∞),(﹣∞,)递减,可得f(x)在x=1处取得极大值,不符题意.综上可得,a的范围是(1,+∞).20.解:(Ⅰ)由题意可知:2c=2,则c=,椭圆的离心率e==,则a=,b2=a2﹣c2=1,∴椭圆的标准方程:;(Ⅱ)设直线AB的方程为:y=x+m,A(x1,y1),B(x2,y2),联立,整理得:4x2+6mx+3m2﹣3=0,△=(6m)2﹣4×4×3(m2﹣1)>0,整理得:m2<4,x1+x2=﹣,x1x2=,∴|AB|==,∴当m=0时,|AB|取最大值,最大值为;(Ⅲ)设直线PA的斜率k PA=,直线PA的方程为:y=(x+2),联立,消去y整理得:(x12+4x1+4+3y12)x2+12y12x+(12y12﹣3x12﹣12x1﹣12)=0,由代入上式得,整理得:(4x1+7)x2+(12﹣4x12)x﹣(7x12+12x1)=0,x1•x C=﹣,x C=﹣,则y C=(﹣+2)=,则C(﹣,),同理可得:D(﹣,),由Q(﹣,),则=(,),=(,),由与三点共线,则×=×,整理得:x1﹣x1=y1﹣y1,则直线AB的斜率k==1,∴k的值为1.。

2018年全国高考新课标1卷文科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标1卷文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={0,2},B={-2,-1,0,1,2},则A ∩B=A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2} 解析:选A2.设z=1-i1+i+2i ,则|z|=A .0B .12 C .1 D . 2解析:选C z=1-i1+i+2i=-i+2i=i3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 解析:选A4.已知椭圆C :x 2a 2+y24=1的一个焦点为(2,0),则C 的离心率为A .13B .12C .22D .223解析:选C ∵ c=2,4=a 2-4 ∴a=2 2 ∴e=225.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π解析:选B 设底面半径为R,则(2R)2=8 ∴R=2,圆柱表面积=2πR ×2R+2πR 2=12π6.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2x B .y=-x C .y=2x D .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 7.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC →8.已知函数f(x)=2cos 2x-sin 2x+2,则A .f(x)的最小正周期为π,最大值为3B .f(x) 的最小正周期为π,最大值为4C .f(x) 的最小正周期为2π,最大值为3D .f(x)的最小正周期为2π,最大值为4 解析:选B f(x)= 32cos2x+52故选B9.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2 解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长10.在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为300,则该长方体的体积为 A .8 B .6 2 C .8 2 D .8 3解析:选C ∵AC 1与平面BB 1C 1C 所成的角为300,AB=2 ∴AC 1=4 BC 1=2 3 BC=2 ∴CC 1=2 2 V=2×2×22=8 2 11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=23,则|a-b|= A .15B .55C .255D .1解析:选B ∵cos2α=23 2cos 2α-1=23 cos 2α=56 ∴sin 2α=16 ∴tan 2α=15又|tan α|=|a-b| ∴|a-b|=5512.设函数f(x)= ⎩⎪⎨⎪⎧2-x,x ≤01,x>0,则满足f(x+1)< f(2x)的x 的取值范围是A .(-∞,-1]B .(0,+ ∞)C .(-1,0)D .(-∞,0)解析:选D x ≤-1时,不等式等价于2-x-1<2-2x,解得x<1,此时x ≤-1满足条件-1<x ≤0时,不等式等价于1<2-2x, 解得x<0, 此时-1<x<0满足条件 x>0时,1<1不成立 故选D二、填空题(本题共4小题,每小题5分,共20分)13.已知函数f(x)=log 2(x 2+a),若f(3)=1,则a=________. 解析:log 2(9+a)=1,即9+a=2,故a=-714.若x ,y 满足约束条件⎩⎪⎨⎪⎧x-2y-2≤0x-y+1≥0 y ≤0 ,则z=3z+2y 的最大值为_____________.解析:答案为615.直线y=x+1与圆x 2+y 2+2y-3=0交于A,B 两点,则|AB|=________.解析:圆心为(0,-1),半径R=2,线心距d=2,|AB|=2R 2-d 2=2 216.△ABC 的内角A,B,C 的对边分别为a,b,c ,已知bsinC+csinB=4asinBsinC ,b 2+c 2-a 2=8,则△ABC 的面积为________.解析:由正弦定理及bsinC+csinB=4asinBsinC 得2sinBsinC=4sinAsinBsinC ∴sinA=12由余弦定理及b 2+c 2-a 2=8得2bccosA=8,则A 为锐角,cosA=32, ∴bc=833∴S=12bcsinA=233三、解答题:共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区高三年级第一次综合练习

数学学科测试(文史类)
2018.3

(考试时间120分钟 满分150分)
第一部分(选择题 共40分)

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出
符合题目要求的一项.
1.已知全集为实数集,集合,,则
R230Axxx2log0BxxAB
R

ð

A. B. C. D.
01,,01,
3,

2.在复平面内,复数所对应的点位于
i
1+i
z

A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.已知平面向量,,且,则实数的值是
(,1)xa(2,1)xb//abx

A. B. C. D.或
11212
4.已知直线平面,则“直线”是“”的
mnm//n

A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
5.已知为抛物线的焦点,过点的直线交抛物线于两点,若
FC:24yx=FlC,AB

,则线段的中点到直线的距离为
8AB=ABM
10x+=

A.2 B. 4 C.8 D.16
6.某四棱锥的三视图如图所示,则该四棱锥的体积等于

A. B.
132
3

C. D.
123
4

7.函数的零点个数为
2

πsin12()12x
fx
xx


A. B. C. D.
0
1
24

俯视图

正视图
侧视图
111
1
8.某学校举办科技节活动,有甲、乙、丙、丁四个团队参加 “智能机器人”项目比赛,该项
目只设置一个一等奖,在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛
团队获奖结果预测如下:
小张说:“甲或乙团队获得一等奖”;
小王说:“丁团队获得一等奖”;
小李说:“乙、丙两个团队均未获得一等奖”;
小赵说:“甲团队获得一等奖”.
若这四位同学中只有两位预测结果是对的,则获得一等奖的团队是

A.甲 B.乙 C.丙 D.丁
第二部分(非选择题 共110分)
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.
9.执行如图所示的程序框图.若输入,则输出的值为________.
5mk

10.双曲线的焦距为__________;渐近线方程为_________.
2
2
14xy

11.已知圆:内有一点,经过点的直线与圆交于
C222410xyxy(2,1)PPlC
A
,两点,当弦恰被点平分时,直线的方程为 .
BABP
l

12.已知实数满足若取得最小值的最优解有无数多
,xy10101xyxyy,,,(0)zmxym

m>50
输出k
结束

开始
输入m
k=0

m=2m1


k=k+1

相关文档
最新文档