【必考题】高三数学上期中第一次模拟试卷(带答案)(2)

合集下载

高考数学高三模拟考试试卷压轴题第02节 一元二次不等式及解法

高考数学高三模拟考试试卷压轴题第02节 一元二次不等式及解法

高考数学高三模拟考试试卷压轴题第02节 一元二次不等式及解法一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1. 【·湖北八校联考】不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)2.【·潍坊质检】“01a <<”是“2210ax ax >++的解集是实数集R ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3. 关于x 的不等式x2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]4. 若函数f(x)=(a2+4a -5)x2-4(a -1)x +3的图像恒在x 轴上方,则a 的取值范围是( )A .[1,19]B .(1,19)C .[1,19)D .(1,19]5. 如果关于x 的不等式250x a ≤-的正整数解是1,2,3,4,那么实数a 的取值范围是( )A .80≤a<125B .80<a<125C .a<80D .a>1256.【厦门模拟】不等式(x2-2)log2x>0的解集是( )A .(0,1)∪(2,+∞)B .(-2,1)∪(2,+∞)C .(2,+∞)D .(-2,2)7.【莆田二模】若不等式20ax bx c >++的解集是(-4,1),则不等式2()(13)0b x a x c >-+++的解集为( )A.⎝ ⎛⎭⎪⎫-43,1B .(-∞,-1)∪⎝ ⎛⎭⎪⎫43,+∞ C .(-1,4)D .(-∞,-2)∪(1,+∞)8. 若不等式201x ax a ≤-+≤有唯一解,则a 的取值为( ) A. 0B. 2C. 4D. 69. 设2()1f x x bx =++,且(1)(3),f f -=则()0f x >的解集是 ( ) A.(,1)(3,)-∞-⋃+∞ B.R C.{}|1x x ≠ D.{}|1x x =10. 设奇函数()f x 在[]1,1-上是增函数,且()11f -=-,若函数()221f x t at ≤-+对所有的[]1,1x ∈-,[]1,1a ∈-都成立,则t 的取值范围是( )A .22t -≤≤B .1122t -≤≤ C .12t ≤-或0t =或12t ≥ D .2t ≤-或0t =或2t ≥11.【北京市房山区周口店中学高三上学期期中考试】已知一元二次不等式()<0f x 的解集为{}1|<-1>2x x x 或,则(10)>0x f 的解集为( )A .{}|<-1>lg2x x x 或B .{}|-1<<lg2x xC .{}|>-lg2x xD .{}|<-lg2x x12.【南昌二中高三上学期第三次考试】不等式2162a bx x b a+<+对任意,(0,)a b ∈+∞恒成立,则实数x 的取值范围是A .(2,0)-B .(,2)(0,)-∞-+∞C .(4,2)-D .(,4)(2,)-∞-+∞二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.若关于x 的不等式1420x x a ≥+--在[1,2]上恒成立,则实数a 的取值范围为________.14.已知不等式222xy ax y ≤+,若对任意[]2,1∈x 且[]3,2∈y ,该不等式恒成立,则实数a 的取值范围是.15.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 .16.【绍兴市一中高三9月回头考数学】已知关于x 的不等式220x ax a -+<的解集为A ,若A 中恰有两个整数,则实数a 的取值范围为三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.【日照模拟】已知函数2f(x)=21ax ax ++的定义域为R.(1)求a 的取值范围; (2)若函数f(x)的最小值为22,解关于x 的不等式220x x a a <---. 18.已知集合{}2|230,,A x x x x R =--≤∈{}22|240,,B x x mx m x R m R =-+-≤∈∈ (1)若[]0,3AB =,求实数m 的值;(2)若⊆A B C R ,求实数m 的取值范围. 19.已知不等式012<--mx mx .(1)若对R x ∈∀不等式恒成立,求实数m 的取值范围; (2)若对]3,1[∈∀x 不等式恒成立,求实数m 的取值范围;(3)若对满足2||≤m 的一切m 的值不等式恒成立,求实数x 的取值范围.20.【定州中学高三第一次月考数学】已知函数⎪⎪⎪⎩⎪⎪⎪⎨⎧>+∈≤≤-+-<--=)21(15))(212(3)2(1)(x x R x x x x x x f .(1)求函数)(x f 的最小值;(2)已知R m ∈,命题p :关于x 的不等式+≥2)(m x f 22-m 对任意R m ∈恒成立;q :函数x m y )1(2-=是增函数,若“p 或q ”为真,“p 且q ”为假,求实数m 的取值范围.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

【必考题】高中必修一数学上期中第一次模拟试卷(附答案)(1)

【必考题】高中必修一数学上期中第一次模拟试卷(附答案)(1)

【必考题】高中必修一数学上期中第一次模拟试卷(附答案)(1) 一、选择题 1.若集合|1,AxxxR,2|,ByyxxR,则AB

A.|11xx B.|0xx C.|01xx D.

2.已知函数25,1,,1,xaxxfxaxx是R上的增函数,则a的取值范围是( ) A.30a B.0a

C.2a D.32a≤≤

3.1()xfxex的零点所在的区间是( )

A.1(0,)2 B.1(,1)2 C.3(1,)2 D.

3(,2)

2

4.设fx是定义在R上的偶函数,且当0x时,21,0122,1xxxfxx,若对任意的,1xmm,不等式1fxfxm恒成立,则实数m的最大值是( ) A.1 B.13 C.12 D.

1

3

5.设函数2010xxfxx,,,则满足12fxfx的x的取值范围是( ) A.1, B.0, C.10, D.

0,

6.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是( ) A.50,2 B.1,4 C.1,22 D.

5,5

7.已知201911,02log,0xxfxxx,若存在三个不同实数a,b,c使得fafbfc,则abc的取值范围是( )

A.(0,1) B.[-2,0) C.2,0 D.(0,1)

8.若0.23log2,lg0.2,2abc,则,,abc的大小关系为 A.

cba

B.

bac

C.

abc

D.

bca

9.三个数0.377,0.3,ln0.3abc大小的顺序是( ) A.acb B.abc C.bac D.

2019年高三数学上期中第一次模拟试卷附答案(1)

2019年高三数学上期中第一次模拟试卷附答案(1)

2019年高三数学上期中第一次模拟试卷附答案(1)一、选择题1.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x x =;④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④2.下列命题正确的是A .若 a >b,则a 2>b 2B .若a >b ,则 ac >bcC .若a >b ,则a 3>b 3D .若a>b ,则1a <1b3.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为 A .4B .5C .6D .4或54.在ABC V 中,4ABC π∠=,2AB =,3BC =,则sin BAC ∠=( )A .10 B .105C .310D .5 5.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则()235log a a ⋅的值为( ) A .8 B .10C .12D .16 6.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .367.已知AB AC ⊥u u u v u u u v ,1AB t=u u uv ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且4AB AC AP AB AC=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ). A .13B .15C .19D .218.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin 3cos 0b A a B -=,且2b ac =,则a cb+的值为( ) A .2B .2C .2 D .49.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6610.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( ) A .9B .27C .54D .8111.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --< D .log log c b a a <12.已知a >0,x ,y 满足约束条件1{3(3)x x y y a x ≥+≤≥-,若z=2x+y 的最小值为1,则a=A .B .C .1D .2二、填空题13.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,tan tan 2tan b B b A c B +=-,且8a =,73b c +=ABC V 的面积为______.14.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令114(1)n n n n nb a a -+=-,则数列{}n b 的前100的项和为______. 15.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.16.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2K ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡⎤--⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩()T a 表示非负实数a 的整数部分,例如()2.62T =,()0.20T =.按此方案第2016棵树种植点的坐标应为_____________. 17.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____.18.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____. 19.设等差数列{}na 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列{}n a 的通项公式n a =____.20.在中,若,则__________.三、解答题21.已知等差数列{}n a 满足12231()()()2(1)n n a a a a a a n n +++++++=+L (*n N ∈). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S . 22.已知ABC ∆中,角,,A B C 的对边分别为,,,2cos (cos cos )0.a b c C a C c A b ++=, (1)求角C 的大小;(2)若2,23,b c ==,求ABC ∆的面积. 23.设ABC ∆的内角A B C ,,所对的边分别为a b c ,,,已知cos (2)cos a B c b A =-.(Ⅰ)求角A 的大小;(Ⅱ)若4a =,BC 边上的中线22AM =ABC ∆的面积.24.若数列{}n a 是递增的等差数列,它的前n 项和为n T ,其中39T =,且1a ,2a ,5a 成等比数列.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,若对任意*n N ∈,24n S a a ≤-恒成立,求a 的取值范围.25.D 为ABC V 的边BC 的中点.222AB AC AD ===. (1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V .26.在△ABC 中,角,,A B C 所对的边分别是,,a b c ,且4cos 5A =. (1)求2sincos 22B CA ++的值; (2)若2b =,ABC ∆的面积3S =,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.2.C解析:C 【解析】对于A ,若1a =,1b =-,则A 不成立;对于B ,若0c =,则B 不成立;对于C ,若a b >,则33a b >,则C 正确;对于D ,2a =,1b =-,则D 不成立.故选C3.B解析:B 【解析】由{}n a 为等差数列,所以95532495S S a a d -=-==-,即2d =-, 由19a =,所以211n a n =-+, 令2110n a n =-+<,即112n >, 所以n S 取最大值时的n 为5, 故选B .4.C解析:C 【解析】试题分析:由余弦定理得22923cos5,4b b π=+-⋅==.由正弦定理得3sin sin 4BAC π=∠,解得sin 10BAC ∠=. 考点:解三角形.5.C解析:C 【解析】 【分析】数列{}n a ,是等比数列,公比为2,前7项和为1016,由此可求得首项1a ,得通项公式,从而得结论. 【详解】Q 最下层的“浮雕像”的数量为1a ,依题有:公比()717122,7,101612a q n S -====-,解得18a =,则()12*82217,n n n a n n N -+=⨯=≤≤∈,57352,2a a ∴==,从而()()571212352352222,log log 212a a a a ⋅=⨯=∴⋅==,故选C .【点睛】本题考查等比数列的应用.数列应用题求解时,关键是根据题设抽象出数列的条件,然后利用数列的知识求解.6.C解析:C 【解析】∵f (S n )=f (a n )+f (a n +1)-1=f[a n (a n +1)]∵函数f (x )是定义域在(0,+∞)上的单调函数,数列{a n }各项为正数∴S n =a n (a n +1)①当n=1时,可得a 1=1;当n≥2时,S n-1=a n-1(a n-1+1)②,①-②可得a n = a n (a n +1)-a n-1(a n-1+1)∴(a n +a n-1)(a n -a n-1-1)=0∵a n >0,∴a n -a n-1-1=0即a n -a n-1=1∴数列{a n }为等差数列,a 1=1,d=1;∴a n =1+(n-1)×1=n 即a n =n 所以故选C7.A解析:A 【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,10)4(0,1)(1,4)AP =+=u u u r (,,即14)P (,,所以114)PB t=--u u u r (,,14)PC t =--u u u r (,,因此PB PC ⋅u u u r u u u r11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅u u u r u u u r 的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.8.A解析:A 【解析】 【分析】由正弦定理,化简求得sin 30B B =,解得3B π=,再由余弦定理,求得()224b a c =+,即可求解,得到答案.【详解】在ABC ∆中,因为sin cos 0b A B -=,且2b ac =,由正弦定理得sin sin cos 0B A A B =, 因为(0,)A π∈,则sin 0A >,所以sin 0B B =,即tan B =3B π=,由余弦定理得222222222cos ()3()3b a c ac B a c ac a c ac a c b =+-=+-=+-=+-, 即()224b a c =+,解得2a cb+=,故选A . 【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.9.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.10.B解析:B 【解析】 【分析】根据题意,设等比数列{}n a 的公比为q ,由22a 为13a 和3a 的等差中项,可得21322a 3a a ⨯=+,利用等比数列的通项公式代入化简为2q 4q 30-+=,解得q ,又21a a 2-=,即()1a q 12-=,q 1≠,分析可得1a 、q 的值,可得数列{}n a 的通项公式,将n 4=代入计算可得答案. 【详解】解:根据题意,设等比数列{}n a 的公比为q ,若22a 为13a 和3a 的等差中项,则有21322a 3a a ⨯=+,变形可得21114a q 3a a q =+,即2q 4q 30-+=,解得q 1=或3;又21a a 2-=,即()1a q 12-=,则q 3=,1a 1=,则n 1n a 3-=,则有34a 327==;故选:B . 【点睛】本题考查等比数列的性质以及通项公式,关键是掌握等比数列通项公式的形式,属于基础题.11.D解析:D 【解析】 【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.12.B解析:B 【解析】 【分析】 【详解】画出不等式组表示的平面区域如图所示:当目标函数z=2x+y 表示的直线经过点A 时,z 取得最小值,而点A 的坐标为(1,2a -),所以221a -=,解得12a =,故选B. 【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.二、填空题13.【解析】【分析】由正弦定理和三角函数公式化简已知式子可得cosA 的值由余弦定理可求64=(b+c )2﹣bc 求bc 即可得三角形的面积【详解】∵在△ABC 中btanB+btanA=﹣2ctanB ∴由正弦【解析】 【分析】由正弦定理和三角函数公式化简已知式子可得cosA 的值,由余弦定理可求64=(b +c )2﹣bc ,求bc ,即可得三角形的面积. 【详解】∵在△ABC 中btanB +btanA=﹣2ctanB ,∴由正弦定理可得sinB (tanA +tanB )=﹣2sinCtanB ,∴sinB (tanA+tanB )=﹣2sinC•sinBcosB, ∴cosB (tanA+tanB )=﹣2sinC ,∴cosB (sinA cosA +sinBcosB)=﹣2sinC , ∴cosB•sinAcosB cosAsinBcosAcosB+=﹣2sinC ,∴cosB•()sin A B cosAcosB+=sinCcosA=﹣2sinC , 解得cosA=﹣12,A=23π;∵a=8,b c +=64=b 2+c 2+bc=(b+c )2﹣bc , ∴bc=9∴△ABC 的面积为S =12bcsinA=192⨯,. 【点睛】本题考查正、余弦定理解三角形,涉及同角三角函数基本关系和三角形的面积公式,属于中档题.14.【解析】【分析】首项利用已知条件求出数列的通项公式进一步利用裂项相消法求出数列的和【详解】解:设等差数列的首项为公差为2前n 项和为且成等比数列则:解得:所以:所以:所以:故答案为:【点睛】本题考查的 解析:200201【解析】 【分析】首项利用已知条件求出数列的通项公式,进一步利用裂项相消法求出数列的和. 【详解】解:设等差数列{}n a 的首项为1a ,公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.则:()2111(22)412a a a +=+,解得:11a =,所以:()12121n a n n =+-=-,所以:111411(1)(1)2121n n n n n n b a a n n --+⎛⎫=-=-⋅+ ⎪-+⎝⎭, 所以:100111111335199201S ⎛⎫⎛⎫⎛⎫=+-++⋯-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12001201201=-=, 故答案为:200201【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.15.14【解析】【分析】等差数列的前n 项和有最大值可知由知所以即可得出结论【详解】由等差数列的前n 项和有最大值可知再由知且又所以当时n 的最小值为14故答案为14【点睛】本题考查使的n 的最小值的求法是中档解析:14 【解析】 【分析】等差数列的前n 项和有最大值,可知0d <,由871a a <-,知1130a a +>,1150a a +<,1140a a +<,所以130S >,140S <,150S <,即可得出结论.【详解】由等差数列的前n 项和有最大值,可知0d <,再由871a a <-,知70a >,80a <,且780a a +<,又711320a a a =+>,811520a a a =+<,781140a a a a +=+<, 所以130S >,140S <,150S <, 当<0n S 时n 的最小值为14, 故答案为14. 【点睛】本题考查使0n S <的n 的最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.16.【解析】【分析】根据题意结合累加法求得与再代值计算即可【详解】由题意知故可得解得当时;当时故第棵树种植点的坐标应为故答案为:【点睛】本题考查数列新定义问题涉及累加法求通项公式属中档题解析:()4031,404. 【解析】 【分析】根据题意,结合累加法,求得k x 与k y ,再代值计算即可. 【详解】由题意知11x =,11y =211015555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,211055y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭322115555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,322155y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭433215555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,433255y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭L11215555k k k k x x T T ---⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,11255k k k k y y T T ---⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭故可得12121105555k k k x x x x x x k T T --⎛⎫⎛⎫+++=+++++-⎪ ⎪⎝⎭⎝⎭L L12121?10155k k k y y y y y y T T --⎛⎫⎛⎫+++=+++++- ⎪ ⎪⎝⎭⎝⎭L L解得155k k x k T -⎛⎫=+⎪⎝⎭,当2016k =时,2016201654034031x =+⨯=; 115k k y T -⎛⎫=+ ⎪⎝⎭,当2016k =时,20161403404y =+=. 故第2016棵树种植点的坐标应为()4031,404. 故答案为:()4031,404.【点睛】本题考查数列新定义问题,涉及累加法求通项公式,属中档题.17.(﹣∞﹣6∪6+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1ab=1即c=-b 将转为(a ﹣b )+利用基本不等式求得它的范围【详解】因为一元二次不等式ax2+2x+b >0的解集为{x|x解析:(﹣∞,﹣6]∪[6,+∞) 【解析】 【分析】由条件利用二次函数的性质可得ac=﹣1,ab=1, 即c=-b 将227a b a c +++转为(a ﹣b )+9a b -,利用基本不等式求得它的范围. 【详解】因为一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},由二次函数图像的性质可得a >0,二次函数的对称轴为x=1a-=c ,△=4﹣4ab=0, ∴ac=﹣1,ab=1,∴c=1a-,b=1a ,即c=-b,则227a b a c +++=()29a b a b-+-=(a ﹣b )+9a b -,当a ﹣b >0时,由基本不等式求得(a ﹣b )+9a b-≥6, 当a ﹣b <0时,由基本不等式求得﹣(a ﹣b )﹣9a b -≥6,即(a ﹣b )+9a b-≤﹣6, 故227a b a c+++(其中a+c≠0)的取值范围为:(﹣∞,﹣6]∪[6,+∞),故答案为(﹣∞,﹣6]∪[6,+∞). 【点睛】本题主要考查二次函数图像的性质,考查利用基本不等式求最值.18.【解析】【分析】设等比数列的公比为由数列为等比数列得出求出的值即可得出的值【详解】设等比数列的公比为由于数列为等比数列整理得即化简得解得因此故答案为:【点睛】本题考查等比数列基本量的计算同时也考查了 解析:12【解析】 【分析】设等比数列{}n a 的公比为q ,由数列{}12n S a -为等比数列,得出()()()2211131222S a S a S a -=--,求出q 的值,即可得出32a a 的值. 【详解】设等比数列{}n a 的公比为q ,由于数列{}12n S a -为等比数列,()()()2211131222S a S a S a ∴-=--,整理得()()2211321a a a a a a -=-⋅+-,即()()2211q q q -=-+-,化简得220q q -=,0q ≠Q ,解得12q =,因此,3212a q a ==. 故答案为:12. 【点睛】本题考查等比数列基本量的计算,同时也考查了等比中项的应用,考查运算求解能力,属于中等题.19.【解析】设等差数列的公差为d ∵且成等差数列∴解得 ∴ 解析:21n -【解析】设等差数列{}n a 的公差为d , ∵35a =,且1S ,5S ,7S 成等差数列,∴111125,7211020a d a a d a d +=⎧⎨++=+⎩解得11,2a d =⎧⎨=⎩ ∴21n a n =- 20.2π3【解析】∵由正弦定理可得sinA:sinB:sinC=7:8:13∴a :b :c=7:8:13令a=7kb=8kc=13k (k>0)利用余弦定理有cosC=a2+b2-c22ab=49k2+64 解析:【解析】 ∵由正弦定理可得,∴,令,,(),利用余弦定理有,∵,∴,故答案为.三、解答题21.(1)21n a n =-;(2)12362n n -+-. 【解析】【详解】(Ⅰ)设等差数列{}n a 的公差为d ,由已知得()()1212234,{12,a a a a a a +=+++=即12234,{8,a a a a +=+=所以()()()11114,{28,a a d a d a d ++=+++=解得11,{2,a d == 所以21n a n =-. (Ⅱ)由(Ⅰ)得112122n n n a n ---=,所以122135232112222n n n n n S ----=+++⋯++,① 23111352321222222n n n n n S ---=+++⋯⋯++,② -①②得:2211112123113222222n n n n n n S --+=++++⋯+-=-所以4662n nn S +=-. 点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn ”与“qSn ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn -qSn ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.22.(1) 120.C =o(2【解析】试题分析:(1)由()2cos cos cos 0C a C c A b ++=根据正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式可得2cos sin sin 0C B B +=,可得1cos 2C =-,即可得解C 的值;(2)由已知及余弦定理得解得a 的值,进而利用三角形面积公式即可得结果.试题解析:(1)()2cos cos cos 0C a C c A b ++=Q ,由正弦定理可得()()2020,20cosC sinAcosC sinBcosA sinB cosCsin A C cosCsinB sinB ∴++=∴+=∴+=即又10180,sin 0,cos ,120.2B BC C <<∴≠∴=-=ooo 即 (2)由余弦定理可得(2222222cos12024a a a a =+-⨯=++o又10,2,sin 2ABC a a S ab C ∆>=∴== ABC ∴∆23.(Ⅰ)3A π=(Ⅱ)S =【分析】(Ⅰ)由正弦定理化简得到答案.(Ⅱ)1()2AM AB AC =+u u u u r u u u r u u u r,平方,代入公式利用余弦定理得到答案.【详解】(Ⅰ)因为()acos 2cos B c b A =-,由正弦定理得()sin cos cos 2sin sin A B A C B =-,即sin cos cos sin 2sin cos A B A B C A +=,所以()sin 2sinccos A B A +=, 因为()sin sin 0A B C +=≠,所以1cos 2A =, 又因为(0,)A π∈,所以3A π=. (Ⅱ)由M 是BC 中点,得1()2AM AB AC =+u u u u r u u u r u u u r,即2221(2)4AM AB AC AB AC =++⋅u u u u r u u u r u u u r u u u r u u u r,所以2232c b bc ++=,①又根据余弦定理,有2222222cos 416a b c bc A b c bc =+-=+-==,② 联立①②,得8bc =.所以ABC ∆的面积1S bcsinA 2== 【点睛】本题考查了正弦定理,余弦定理,面积公式,向量加减,综合性强,意在考查学生的综合应用能力.24.(1) 21n a n =+ (2) 1a 2a ≤-≥或 【解析】试题分析:(1)根据题目中所给的条件,用基本量来表示数列中的项,求出基本量,即可得到通项;(2)由第一问可得,11122121n b n n ⎛⎫=- ⎪-+⎝⎭,进而裂项求和,得到221na a n ≤-+恒成立,求左式的最大值即可. 解析:(1)31239T a a a =++=Q ,13a d ∴+=又125,,a a a Q 成等比数列2215a a a ∴=11a ∴=`,221n d a n =∴=-(2)()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭1111111-++23352121n S n n ⎛⎫∴=-+⋅⋅⋅- ⎪-+⎝⎭ 111-221n =+() 21n n =+ 对任意的*n N ∈,24n S a a ≤-恒成立只需n S 的最大值小于或等于24a a-,而12n S <22a a ∴-≥1a ∴≤-或2a ≥25.(1)=BC 2【解析】 【分析】(1)由题意知21AB AC AD ===,.设BD DC m ==,在ADB △与ADC V 中,由余弦定理即可解得m 的值.(2)在ACE △与BCE V 中,由正弦定理,角平分线的性质可得AE AC BE BC ==.可求BE =,215AE =().利用余弦定理可求cos BAC ∠的值,根据同角三角函数基本关系式可求sin BAC ∠的值,利用三角形的面积公式即可计算得解. 【详解】解:(1)由题意知21AB AC AD ===,.设BD DC m ==.在ADB V 与ADC V 中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.即:212cos 4m m ADB +-∠=,①212cos 1m m ADB ++∠=.②由①+②,得:232m =,所以m =BC = (2)在ACE V 与BCE V 中,由正弦定理得:,sin sin sin sin AE EC BE ECACE EAC BCE CBE==∠∠∠∠,由于ACE BCE ∠=∠,且sin sin BC ACBAC CBA=∠∠,所以AE AC BE BC ==所以BE =,所以2615AE=-().又()2222221261 cos22214AB ACBCBACAB AC+-+-∠===-⋅⨯⨯,所以15sin BAC∠=,所以1121531015161225420ACES AC AE sin BAC-=⋅⋅∠=⨯⨯-⨯=V().【点睛】本题主要考查了余弦定理,正弦定理,角平分线的性质,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.26.(Ⅰ)5950(Ⅱ)a=13【解析】【分析】【详解】222221131sin cos2cos12sin cos12sin cos2sin 222222B C AA A A A A A++=+-=++-=+-⋅3sin5A=,4cos5A∴=2231314959sin cos2cos2sin22222255250B CA A A++=+-=+⨯-⨯=(2)133sin,2,sin25bc A b A===。

精品解析:2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)(解析版)

精品解析:2020届全国100所名校最新高考模拟示范卷高三理科数学模拟测试试题(二)(解析版)
所以目标函数 的最大值为 .
故答案为:
【点睛】本题考查简单的线性规划问题;考查运算求解能力和数形结合思想;根据图形,向下平移直线 找到使目标函数取得最大值的点是求解本题的关键;属于中档题、常考题型.
15.已知函数 ,点 和 是函数 图象上相邻的两个对称中心,则 _________.
【答案】
【解析】
【分析】
1.若集合 , ,则 ()
A. B. C. D.
【答案】D
【解析】
【分析】
求解分式不等式解得集合 ,再由集合并运算,即可求得结果.
【详解】因为 ,所以 .
故选:D.
【点睛】本题考查集合的并运算,涉及分式不等式的求解,属综合基础题.
2. 是虚数单位, ,则 ()
A. 3B. 4C. 5D. 6
【答案】C
方差 43.2,
所以选项C的说法是错误的.
故选:C.
【点睛】本题考查由茎叶图求中位数、平均数、方差以及众数,属综合基础题.
4.若双曲线 的左、右焦点分别为 ,离心率为 ,点 ,则 ( )
A. 6B. 8C. 9D. 10
【答案】C
【解析】
【分析】
根据题意写出 与 坐标,表示出 ,结合离心率公式计算即可.
【分析】
根据题意,利用函数奇偶性的定义判断函数 的奇偶性排除选项 ;利用 排除选项A即可.
【详解】由题意知,函数 的定义域为 ,其定义域关于原点对称,
因为
又因为 ,
所以 ,即函数 为偶函数,故排除 ;
又因为 ,故排除A.
故选:B
【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.

【必考题】高三数学上期中第一次模拟试题(附答案)(3)

【必考题】高三数学上期中第一次模拟试题(附答案)(3)

【必考题】高三数学上期中第一次模拟试题(附答案)(3)一、选择题1.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为 A .4 B .5C .6D .4或52.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .363.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .1404.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40375.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-36.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( )A .20202019 B .20191010 C .20171010 D .40372020 7.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12B .12-C .14D .14-9.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( )A .9B .27C .54D .8110.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 11.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<12.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .14924二、填空题13.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,tan tan 2tan b B b A c B +=-,且8a =,b c +=ABC V 的面积为______.14.设数列{}()1,n a n n N*≥∈满足122,6aa ==,且()()2112n n n n a a a a +++---=,若[]x 表示不超过x 的最大整数,则122019201920192019[]a a a +++=L ____________. 15.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.16.设数列{}n a 中,112,1n n a a a n +==++,则通项n a =___________. 17.已知数列{}n a 满足11a =,111n na a +=-+,*n N ∈,则2019a =__________. 18.已知实数,x y 满足240{220330x y x y x y -+≥+-≥--≤,,,则22x y +的取值范围是 .19.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++L 等于__________.20.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______.三、解答题21.已知数列{}n a 是等差数列,111038,160,37n n a a a a a a +>⋅=+=. (1)求数列{}n a 的通项公式;(2)若从数列{}n a 中依次取出第2项,第4项,第8项,L ,第2n 项,按原来的顺序组成一个新数列,求12n n S b b b =+++L . 22.已知{}n a 是递增的等差数列,2a ,4a 是方程的根.(1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.23.已知在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin cos 0a B b A -=. (1)求角A 的大小:(2)若5a =2b =.求ABC V 的面积. 24.已知{}n a 为等差数列,前n 项和为()*n S n N∈,{}nb 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式; (2)求数列{}221n n a b -⋅的前n 项和.25.在△ABC 中,角,,A B C 所对的边分别是,,a b c ,且4cos 5A =. (1)求2sincos 22B CA ++的值; (2)若2b =,ABC ∆的面积3S =,求a 的值.26.数列{}n a 中,11a = ,当2n ≥时,其前n 项和n S 满足21()2n n n S a S =⋅-.(1)求n S 的表达式; (2)设n b =21nS n +,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】由{}n a 为等差数列,所以95532495S S a a d -=-==-,即2d =-,由19a =,所以211n a n =-+, 令2110n a n =-+<,即112n >, 所以n S 取最大值时的n 为5, 故选B .2.C解析:C 【解析】∵f (S n )=f (a n )+f (a n +1)-1=f[a n (a n +1)]∵函数f (x )是定义域在(0,+∞)上的单调函数,数列{a n }各项为正数∴S n =a n (a n +1)①当n=1时,可得a 1=1;当n≥2时,S n-1=a n-1(a n-1+1)②,①-②可得a n = a n (a n +1)-a n-1(a n-1+1)∴(a n +a n-1)(a n -a n-1-1)=0∵a n >0,∴a n -a n-1-1=0即a n -a n-1=1∴数列{a n }为等差数列,a 1=1,d=1;∴a n =1+(n-1)×1=n 即a n =n 所以故选C3.B解析:B 【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x x =所以1n a n n =+11nn n a =+1121n S n n n n =+-L 11n =+,由1110n S n =+=解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.4.C解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n .由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.5.D解析:D 【解析】作出不等式对应的平面区域, 由z=x+y,得y=−x+z,平移直线y=−x+z ,由图象可知当直线y=−x+z 经过点A 时,直线y=−x+z 的截距最大, 此时z 最大为6.即x+y=6.经过点B 时,直线y=−x+z 的截距最小,此时z 最小. 由6{x y x y +=-=得A(3,3),∵直线y=k 过A , ∴k=3. 由3{20y k x y ==+=,解得B(−6,3).此时z 的最小值为z=−6+3=−3, 本题选择D 选项.点睛:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:b zy x a b =-+,通过求直线的截距z b的最值间接求出z 的最值.最优解在顶点或边界取得.解析:B 【解析】 【分析】由题意可得n ≥2时,a n -a n -1=n ,再由数列的恒等式:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),运用等差数列的求和公式,可得a n ,求得1n a =()21n n +=2(1n -11n +),由数列的裂项相消求和,化简计算可得所求和. 【详解】解:数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1, 即有n ≥2时,a n -a n -1=n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+2+3+…+n =12n (n +1),1n =也满足上式 1n a =()21n n +=2(1n -11n +), 则122019111a a a ++⋯+=2(1-12+12-13+…+12019-12020) =2(1-12020)=20191010.故选:B . 【点睛】本题考查数列的恒等式的运用,等差数列的求和公式,以及数列的裂项相消求和,考查化简运算能力,属于中档题.7.D解析:D 【解析】 【分析】由正弦定理化简(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,得到sin 2sin 20B A -=,由此得到三角形是等腰或直角三角形,得到答案. 【详解】由题意知,(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅, 结合正弦定理,化简可得(cos )(cos )a c B b b c A a -⋅⋅=-⋅⋅, 所以cos cos 0a A b B -=,则sin cos sin cos 0B B A A -=, 所以sin 2sin 20B A -=,得22B A =或22180B A +=o , 所以三角形是等腰或直角三角形. 故选D . 【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用.在解三角形问题中经常把边的问题转化成角的正弦或余弦函数,利用三角函数的关系来解决问题,属于基础题.8.C解析:C 【解析】试题分析:由21,,n n n S S S ++成等差数列可得,212n n n n S S S S +++-=-,即122n n n a a a ++++=-,也就是2112n n a a ++=-,所以等比数列{}n a 的公比12q =-,从而2231111()24a a q ==⨯-=,故选C.考点:1.等差数列的定义;2.等比数列的通项公式及其前n 项和.9.B解析:B 【解析】 【分析】根据题意,设等比数列{}n a 的公比为q ,由22a 为13a 和3a 的等差中项,可得21322a 3a a ⨯=+,利用等比数列的通项公式代入化简为2q 4q 30-+=,解得q ,又21a a 2-=,即()1a q 12-=,q 1≠,分析可得1a 、q 的值,可得数列{}n a 的通项公式,将n 4=代入计算可得答案. 【详解】解:根据题意,设等比数列{}n a 的公比为q ,若22a 为13a 和3a 的等差中项,则有21322a 3a a ⨯=+,变形可得21114a q 3a a q =+,即2q 4q 30-+=,解得q 1=或3;又21a a 2-=,即()1a q 12-=,则q 3=,1a 1=,则n 1n a 3-=,则有34a 327==;故选:B . 【点睛】本题考查等比数列的性质以及通项公式,关键是掌握等比数列通项公式的形式,属于基础题.10.D解析:D 【解析】 【分析】 先求出31()2n n a -=,再求出2511()2n n n a a -+=,即得解.由题得35211,82a q q a ==∴=. 所以2232112()()22n n n n a a q---==⨯=,所以32251111()()()222n n n n n a a ---+=⋅=. 所以1114n n n n a a a a +-=,所以数列1{}n n a a +是一个等比数列. 所以12231n n a a a a a a +++⋅⋅⋅+=18[1()]4114n --=()32143n --. 故选:D 【点睛】本题主要考查等比数列通项的求法和前n 项和的计算,意在考查学生对这些知识的理解掌握水平.11.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.12.D解析:D 【解析】 【分析】根据等差数列的性质前n 项和的性质进行求解即可. 【详解】因为等差数列{}n a 和{}n b ,所以2201111715111122a a a a b b b b +==+,又211121S a =,211121T b =,故令21n =有2121721214921324S T ⨯+==+,即1111211492124a b =,所以111114924a b =【点睛】本题主要考查等差数列的等和性质:若{}n a 是等差数列,且(,,,*)m n p q m n p q N +=+∈,则m n p q a a a a +=+ 与等差数列{}n a 前n 项和n S 的性质*21(21),()n n S n a n N -=-∈二、填空题13.【解析】【分析】由正弦定理和三角函数公式化简已知式子可得cosA 的值由余弦定理可求64=(b+c )2﹣bc 求bc 即可得三角形的面积【详解】∵在△ABC 中btanB+btanA=﹣2ctanB∴由正弦【解析】 【分析】由正弦定理和三角函数公式化简已知式子可得cosA 的值,由余弦定理可求64=(b +c )2﹣bc ,求bc ,即可得三角形的面积. 【详解】∵在△ABC 中btanB +btanA=﹣2ctanB ,∴由正弦定理可得sinB (tanA +tanB )=﹣2sinCtanB ,∴sinB (tanA+tanB )=﹣2sinC•sinBcosB, ∴cosB (tanA+tanB )=﹣2sinC ,∴cosB (sinA cosA +sinBcosB)=﹣2sinC , ∴cosB•sinAcosB cosAsinBcosAcosB+=﹣2sinC ,∴cosB•()sin A B cosAcosB+=sinCcosA=﹣2sinC , 解得cosA=﹣12,A=23π;∵a=8,b c +=64=b 2+c 2+bc=(b+c )2﹣bc , ∴bc=9∴△ABC 的面积为S =12bcsinA=192⨯,. 【点睛】本题考查正、余弦定理解三角形,涉及同角三角函数基本关系和三角形的面积公式,属于中档题.14.2018【解析】【分析】数列{an}满足a1=2a2=6且(an+2﹣an+1)﹣(an+1﹣an )=2利用等差数列的通项公式可得:an+1﹣an =2n+2再利用累加求和方法可得an =n (n+1)利解析:2018 【解析】 【分析】数列{a n }满足a 1=2,a 2=6,且(a n +2﹣a n +1)﹣(a n +1﹣a n )=2,利用等差数列的通项公式可得:a n +1﹣a n =2n +2.再利用累加求和方法可得a n =n (n +1).利用裂项求和方法即可得出. 【详解】∵()()2112n n n n a a a a +++---=,∴数列{a n +1﹣a n }为等差数列,首项为4,公差为2. ∴a n +1﹣a n =4+2(n ﹣1)=2n +2.∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1 =2n +2(n ﹣1)+…+2×2+2()122n n +=⨯=n (n +1).∴12201911111111111223201920202020a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L . ∴][][122019201920192019201912019201820202020a a a ⎡⎤+++=-=+⎢⎥⎣⎦L =2018. 故答案为:2018. 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法与裂项相消求和方法,考查了推理能力与计算能力,属于中档题.15.【解析】【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题解析:1,2⎛⎫+∞ ⎪⎝⎭【解析】 【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果 【详解】因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩ 【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.16.【解析】∵∴将以上各式相加得:故应填;【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住中系数相同是找到方法的突破口;此题可用累和法迭代法等; 解析:()112n n ++【解析】∵112,1n n a a a n +==++∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦L()()()()11111111222n n n n n n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112n n ++; 【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住11n n a a n +=++中1,n n a a +系数相同是找到方法的突破口;此题可用累和法,迭代法等;17.-2【解析】【分析】根据题干中所给的表达式得到数列的周期性进而得到结果【详解】根据题干表达式得到可以得数列具有周期性周期为3故得到故得到故答案为:-2【点睛】这个题目考查了求数列中的某些项一般方法是解析:-2 【解析】 【分析】根据题干中所给的表达式得到数列的周期性,进而得到结果. 【详解】根据题干表达式得到2341231111,2, 1.1211a a a a a a =-=-=-=-=-=+++ 5674551111,2, 1.1211a a a a a a =-=-=-=-=-=+++ 可以得数列具有周期性,周期为3,故得到20193673.÷= 故得到2019 2.a =- 故答案为:-2. 【点睛】这个题目考查了求数列中的某些项,一般方法是求出数列通项,对于数列通项不容易求的题目,可以列出数列的一些项,得到数列的周期或者一些其它规律,进而得到数列中的项.18.【解析】【分析】【详解】画出不等式组表示的平面区域由图可知原点到直线距离的平方为的最小值为原点到直线与的交点距离的平方为的最大值为因此的取值范围为【考点】线性规划【名师点睛】线性规划问题首先明确可行 解析:4[,13]5【解析】 【分析】 【详解】画出不等式组表示的平面区域,由图可知原点到直线220x y +-=距离的平方为22xy+的最小值,为2455=,原点到直线24=0x y -+与33=0x y --的交点(2,3)距离的平方为22x y +的最大值为13,因此22xy +的取值范围为4[,13].5【考点】 线性规划 【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线(一般不涉及虚线),其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数最值或值域范围.19.50【解析】由题意可得=填50解析:50 【解析】由题意可得51011912a a a a e ==,1220ln ln ln a a a ++⋅⋅⋅+=1050121920110ln()ln()ln 50a a a a a a e ===L ,填50.20.【解析】【分析】根据等差数列的前项和转化为关于和的数量关系来求解【详解】等差数列的前项和为则有解得故答案为【点睛】本题考查了等差数列前项和的公式运用在解答此类题目时可以将其转换为关于和的数量关系来求解析:【解析】 【分析】根据等差数列的前n 项和转化为关于1a 和d 的数量关系来求解 【详解】Q 等差数列{}n a 的前n 项和为n S ,39S =,636S =,则有()()31613313926616362S a d S a d ⎧⨯-=+=⎪⎪⎨⨯-⎪=+=⎪⎩,解得112a d =⎧⎨=⎩78911116783213121245a a a a d a d a d a d ∴++=+++++=+=⨯+⨯=故答案为45 【点睛】本题考查了等差数列前n 项和的公式运用,在解答此类题目时可以将其转换为关于1a 和d 的数量关系来求解,也可以用等差数列和的性质来求解,较为基础。

2023届江西省上饶中学新八校高三上学期第一次联考数学(理)试题(解析版)

2023届江西省上饶中学新八校高三上学期第一次联考数学(理)试题(解析版)
详解: 为奇函数,舍去A,
舍去D;

所以舍去C;因此选B
点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.
6.防疫工作,人人有责,某单位选派了甲、乙、丙、丁、戊五名志愿者到A、B、C三处核酸点参加志愿工作,若每个核酸点至少去1名志愿者,则甲、乙两人派到同一处核酸点参加志愿者工作的概率为()
故选:B.
11.有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为 的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得.若点E为线段BC上的动点,则下列结论不正确的是()
[选修4—5:不等式选讲]
23.已知函数 , .
(1)当 时,求不等式 解集;
(2)设 ,且当 , ,求 的取值范围.
江西省新八校
东乡一中都昌一中丰城中学赣州中学
景德镇二中上饶中学上栗中学新建二中新八桥
2023届高三第一次联考理科数学试题
考试时间:120分钟分值:150分
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
【详解】复数 ,
∴ ,则复数 的虚部为1,
故选:A.
3.下列说法正确的是()
A.“ , ”的否定形式是“ , ”
B.若函数 为奇函数,则 .
C.两个非零向量 , , 是 的充分不必要条件

陕西省汉中市2024届高三一模数学(理)试题(教师版)

汉中市2024届高三年级教学质量第一次检测考试数学(理科)本试卷共23小题,共150分,共4页.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合{}{}1,0,1,2,023A B x x =-=<-<,则A B = ()A.{0,1}B.{1,0}- C.{1,0,1}- D.{0,1,2}【答案】A 【解析】【分析】将集合B 化简,再结合集合的交集运算即可得到结果.【详解】将集合B 化简可得{}12B x x =-<<,则{}0,1A B = 故选:A2.已知()2i 1z +=,则复数z 的虚部为()A.15-B.15 C.1i5- D.1i 5【答案】A 【解析】【分析】利用复数的四则运算及定义计算即可.【详解】由()2i 1z +=可得12i 21i 2i 555z -===-+,即虚部为15-.故选:A3.已知向量(2,)m λ= ,(2,4)n λ=-- ,若m与n共线且同向,则实数λ的值为()A.2B.4C.2- D.2-或4【答案】C 【解析】【分析】通过向量共线且同向,即可求出实数λ的值.【详解】由题意,(2,)m λ= ,(2,4)n λ=--,∵m 与n共线且同向∴(2)80λλ-+=,解得2λ=-或4λ=,当4λ=时,m与n共线且反向,舍去,故选:C .4.已知一平面截某旋转体,截得的几何体的三视图如图,则该截得几何体的体积为()A.67.5πB.πC.πD.【答案】A 【解析】【分析】将两个几何体合并成一个完整的圆柱,再计算体积即可.【详解】将两个几何体可以合并成一个完整的圆柱,则体积为()21π310567.5π2V =⨯⨯⨯+=.故选:A 5.已知2tan 3α=,则sin 2cos(2)απα--=()A.713B.1113C.73D.1713【答案】D 【解析】【分析】根据题意,结合二倍角公式与同角的三角函数关系,构造齐次式即可求解.【详解】2222222sin cos cos sin 2tan 1tan 17sin 2cos(2)sin cos tan 113αααααααπαααα+-+---==++.故选:D.6.将数据1,3,5,7,9这五个数中随机删去两个数,则所剩下的三个数的平均数大于5的概率为()A.15B.310C.25D.12【答案】C 【解析】【分析】计算出所有的随机删去两个数的方法,再求出剩下数据的平均数大于5的删去方法,根据古典概型的概率公式,即可求得答案.【详解】从5个数中随机删去两个数有(1,3),(1,5),(1,7),(1,9),(3,5),(3,7),(3,9),(5,7),(5,9),(7,9)共10种方法,要使剩下数据的平均数大于5,删去的两个数可以是(1,3),(1,5),(1,7),(3,5)共有4种,所以剩下数据的平均数大于5的概率为42105P ==,故选:C7.下列说法正确的是()A.“a b ≥”是“22am bm ≥”的充要条件B.“,4k x k π=∈Z ”是“tan 1x =”的必要不充分条件C.命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+>R ”D.“1xy=”是“lg lg 0x y +=”的充分不必要条件【答案】B 【解析】【分析】利用不等式的性质判断A 的正误,利用正切函数的性质判断B 的正误,利用命题的否定形式判断C 的正误,利用对数的定义判断D 的正误.【详解】对A ,若22am bm ≥中,0m =时a b <也成立,故A 错;对B ,当34x π=时,tan 1x =-,故tan 1x ≠,若tan 1x =,则(41)4k x π+=,故B 对;对C ,存在量词命题的否定是1,2x x x∀∈+<R ,故C 错;对D ,若1,,xy x y =均为负数,则lg ,lg x y 无意义,故D 错.8.已知双曲线221mx y +=的一条渐近线的斜率为2,则m =()A .-4B.4C.14-D.14【答案】A 【解析】【分析】利用双曲线的方程求解渐近线,求出m 的值.【详解】根据221mx y +=,得到2211x y m-=-,则焦点在y轴,故渐近线为y =,2=,故4m =-.故选:A9.下列函数中,既是偶函数,又在(),0∞-上是增函数的是()A.()22x x f x -=- B.()23f x x =- C.()2ln =-f x xD.()cos3=f x x x【答案】C 【解析】【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B 错误,C 正确即可.【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233f x x x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在(),0∞-上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0∞-()0,+∞ ,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0∞-上是增函数,故符合题意.故选:C.【点睛】方法点睛:定义法判断函数()f x 奇偶性的方法:(1)确定定义域关于原点对称;(2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.10.“欢乐颂”是音乐家贝多芬创作的重要作品之一.如图,如果以时间为横轴、音高为纵轴建立平面直角坐标系,那么写在五线谱中的音符就变成了坐标系中的点,如果这些点恰好在函数4sin()y x ωϕ=+π0,||2ωϕ⎛⎫>< ⎪⎝⎭的图象上,且图象过点π,224⎛⎫ ⎪⎝⎭,相邻最大值与最小值之间的水平距离为π2,则使得函数单调递增的区间的是()A.ππ,34⎡⎤--⎢⎥⎣⎦B.π5π,824⎡⎤⎢⎥⎣⎦C.5π3π,248⎡⎤⎢⎣⎦ D.5π3π,84⎡⎤⎢⎣⎦【答案】B 【解析】【分析】根据已知得出函数的周期,求出ω,根据点的坐标,结合ϕ的取值范围,求出ϕ的值.然后得出函数的单调区间,即可得出答案.【详解】由已知可得,π22T =,所以πT =,2π2Tω==,()4sin 2y x ϕ=+.又图象过点π,224⎛⎫⎪⎝⎭,所以有π4sin 212ϕ⎛⎫+= ⎪⎝⎭,所以,π1sin 122ϕ⎛⎫+= ⎪⎝⎭.因为π2ϕ<,所以5ππ7π121212ϕ-<+<,所以ππ126ϕ+=,所以π12ϕ=,π4sin 212y x ⎛⎫=+ ⎪⎝⎭.由πππ2π22π,2122k x k k -+≤+≤+∈Z 可得,7π5πππ,2424k x k k -+≤≤+∈Z ,所以,函数的单调递增区间为7π5ππ,π,2424k k k ⎡⎤-++∈⎢⎥⎣⎦Z .当1k =-时,单调递增区间为31π19π,2424⎡⎤--⎢⎥⎣⎦;当0k =时,单调递增区间为7π5π,2424⎡⎤-⎢⎥⎣⎦;当1k =时,单调递增区间为17π29π,2424⎡⎤⎢⎣⎦;对于A 项,19ππ7π24324-<-<-,故A 项错误;对于B 项,因为7ππ5π24824-<<,故B 项正确;对于C 项,因为5π3π17π24824<<,故C 项错误;对于D 项,因为5π5π17π24824<<,故D 项错误.故选:B.11.如图,已知抛物线E :()220y px p =>的焦点为F ,过F 且斜率为1的直线交E 于A ,B 两点,线段AB的中点为M ,其垂直平分线交x 轴于点C ,MN y ⊥轴于点N .若四边形OCMN 的面积等于8,则E 的方程为()A.22y x =B.24y x =C.23y =D.28y x=【答案】B 【解析】【分析】根据1AB k =求出M 的坐标,然后得MC 的方程,令0y =,得C 的坐标,利用直角梯形的面积求出p ,可得抛物线方程.【详解】易知,02p F ⎛⎫⎪⎝⎭,直线AB 的方程为2p y x =-,四边形OCMN 为直角梯形,且//FC NM .设()11,A x y ,()22,B x y ,00(,)M x y ,则1212221212122122AB y y y y pk y y x x y y p p--====-+-,所以122y y p +=,所以0y p =,00322p p x y =+=,∴3,2p M p ⎛⎫⎪⎝⎭.所以MC 直线方程为32p y p x ⎛⎫-=--⎪⎝⎭,∴令0y =,∴52p x =,∴5,02p C ⎛⎫⎪⎝⎭.所以四边形OCMN 的面积为1538222p p p ⎛⎫⨯+⨯= ⎪⎝⎭,∴2p =.故抛物线E 的方程为24y x =.故选:B.12.已知函数2e ()2x k f x x kx x =+-,若1x =是()f x 在区间(0,)+∞上的唯一的极值点,则实数k 的取值范围是()A.2e ,4⎛⎫-+∞ ⎪⎝⎭B.3e ,9⎡⎫-+∞⎪⎢⎣⎭ C.2e ,4⎡⎫-+∞⎪⎢⎣⎭ D.3e ,9⎛⎫-+∞ ⎪⎝⎭【答案】C 【解析】【分析】求出函数导数221()(e )x x f x kx x-'=+⨯,由题可知需使得()2e x h x kx =+在(0,)+∞上没有变号零点,因此分离参数2e x k x -=,令2e ()(0)x g x x x =>,利用导数求得其最小值,则可得2e 4k -≤,即可求得答案.【详解】由题意得2222e e e 1()()(1)(e )x x x x x xf x kx k k x kx x x x--'=+-=+-=+⨯,由题意可得1x =是函数()f x '在区间(0,)+∞上唯一变号的零点,令()2e xh x kx =+,则需满足()h x 在(0,)+∞上没有变号零点;令()2e 0xh x kx =+=,得2e x k x -=,令2e ()(0)x g x x x =>,则3(2)()e xx g x x'-=,当2x >时,()0g x '>,函数()g x 单调递增,当02x <<时,()0g x '<,函数()g x 单调递减,故当2x =时()g x 取得最小值2e(2)4g =,其大致图象如图:要使()h x 没有变号零点,则需2e 4k -≤,即2e4k ≥-,即实数k 的取值范围是2e ,)4[-+∞.故选:C.【点睛】关键点点睛:本题考查的时根据函数在区间(0,)+∞上有唯一的极值点,求参数的范围,那么要满足这一点,解答的关键在于求出导数221()(e )xx f x kx x-'=+⨯后,需使得()2e x h x kx =+在(0,)+∞上没有变号零点,由此转化为函数的最值问题解决.第Ⅱ卷(非选择题共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知(13)n x +的展开式中含有2x 项的系数是54,则n=_____________.【答案】4【解析】【分析】利用通项公式即可得出.【详解】解:(1+3x )n 的展开式中通项公式:T r +1rn =ð(3x )r =3r rn ðx r .∵含有x 2的系数是54,∴r =2.∴223n =ð54,可得2n =ð6,∴()12n n -=6,n ∈N *.解得n =4.故答案为4.【点睛】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.14.函数2log (1),0()4,0xx x f x x -<⎧=⎨≥⎩,则2(3)(log 3)f f -+=__________.【答案】11【解析】【分析】根据分段函数解析式,结合对数运算,求得所求表达式的值.【详解】依题意2(3)(log 3)f f -+=()2222log 32log 3log 32222log 134log 22222311++=+=+=+=.故答案为:11【点睛】本小题主要考查分段函数求值,考查对数运算,属于基础题.15.已知ABC 中,=3AB ,=2AC ,60A ∠=︒,则ABC 的外接圆面积为___________.【答案】7π3【解析】【分析】利用余弦定理求解边长BC ,再利用正弦定理求解外接圆半径,即可得外接圆面积.【详解】解:根据题意,由余弦定理可得2222cos 7BC AB AC AB AC A BC =+-⨯⨯=⇒=,该ABC 的外接圆的半径为r ,则由正弦定理得:2221217π2πsin 333BCr r S r A===⇒=⇒==.故答案为:7π3.16.已知正三棱锥的各顶点都在表面积为64π球面上,正三棱锥体积最大时该正三棱锥的高为______.【答案】163##153【解析】【分析】根据球的性质,结合导数的性质、棱锥的体积公式、球的表面积公式进行求解即可.【详解】因为2464V R ππ==球,所以正三棱锥外接球半径4R =,如图所示,设外接球圆心为O ,过PO 向底面作垂线垂足为D ,(04)OD a a =≤<,要使正三棱锥体积最大,则底面ABC 与P 在圆心的异侧,因为-P ABC 是正三棱锥,所以D 是ABC 的中心,所以4,OP OA AD ====,又因为23ADB π∠=,所以AB BC AC ===⨯,()2133sin 16234ABC S AB AC a π=⨯⨯⨯=-△,所以()()232116(4)41664344P ABC ABC V S PD a a a a a -=⨯⨯=⨯-⨯+=--++△,令32()41664,(04)f a a a a a =--++≤<,2()3816(34)(4)0f a a a a a =--+=--+='解得4a =-或43,当40,3a ⎡⎫∈⎪⎢⎣⎭,()0f a '>;当4,43a ⎛∈⎫ ⎪⎝⎭,()0f a '<,所以()f a 在40,3⎡⎫⎪⎢⎣⎭递增,在4,43⎛⎫ ⎪⎝⎭递减,故当43a =时,正三棱锥的体积P ABC V -最大,此时正三棱锥的高为416433a OP +=+=,故正三棱锥体积最大时该正三棱锥的高为163.故答案为:163三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知等差数列{}n a 的前n 项和为n S ,且满足38a =,572S a =.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()112nn n n b a +=-+,求数列{}n b 的前2n 项和2n T .【答案】(1)31n a n =-(2)1344n n ++-【解析】【分析】(1)由等差数列前n 项和以及通项公式结合已知联立方程组,求出基本量1,a d 即可.(2)由分组求和法以及等比数列公式法即可求解.【小问1详解】设{}n a 公差为d ,依题意得()11154526228a d a d a d ⨯⎧+=+⎪⎨⎪+=⎩,解得123a d =⎧⎨=⎩,所以()()1123131n a a n d n n =+-=+-=-,()*Nn ∈.【小问2详解】因为()112n n n n b a +=-+,()*N n ∈,所以()()()()232122143221222n n n n T a a a a a a +-=-+-+⋯+-+++⋯+()22221212332434412n n n n n n ++-=⨯+=+⨯-=+--.18.佩戴头盔是一项对家庭与社会负责的表现,某市对此不断进行安全教育.下表是该市某主干路口连续4年监控设备抓拍到的驾驶员不戴头盔的统计数据:年度2018201920202021年度序号x1234不戴头盔人数y 125010501000900(1)请利用所给数据求不戴头盔人数y 与年度序号x 之间的回归直线方程ˆˆˆy bx a =+,并估算该路口2022年不戴头盔的人数;(2)交警统计2018~2021年通过该路口的开电瓶车出事故的50人,分析不戴头盔行为与事故是否伤亡的关系,得到下表,能否有95%的把握认为不戴头盔行为与事故伤亡有关?不戴头盔戴头盔伤亡73不伤亡1327参考公式:()()()1122211ˆˆˆ,n n i i i i i i n n i i i i x y nxyx x y y b ay bx xnx xx ====---===---∑∑∑∑()2P K k ≥0.100.050.0250.0100.005k2.7063.841 5.024 6.6357.879()()()()22()n ad bc K a b c d a c b d -=++++其中n a b c d =+++【答案】(1)ˆ1101325yx =-+,775(2)能有95%的把握认为不戴头盔行为与事故伤亡有关,理由见解析.【解析】【分析】(1)先求出x 与y ,代入公式后求出ˆb ,ˆa ,得到回归直线方程;(2)代入公式求出2 4.6875K =,与3.841比较,显然有95%的把握认为不戴头盔行为与事故伤亡有关.【小问1详解】1234542x +++==,12501050100090010504y +++==,1222151250210030003600410502ˆ11051491642n i i i n i i x y nxy b xnx ==-+++-⨯⨯===-⎛⎫-+++-⨯ ⎪⎝⎭∑∑,5ˆˆ105011013252a y bx =-=+⨯=,回归直线方程为ˆ1101325yx =-+5x =时,ˆ5501325775=-+=y【小问2详解】2250(727313)10402030 4.6875 3.841K ⨯⨯-⨯=>⨯⨯=⨯,故有95%的把握认为不戴头盔行为与事故伤亡有关,19.如图,在斜三棱柱111ABC A B C -中,ABC 是边长为4的正三角形,侧棱1AA =1A 在平面ABC 上的射影为BC 边的中点O.(1)求证:平面1AOA ⊥平面11BCC B ;(2)求二面角11C A B O --的余弦值.【答案】(1)证明见解析;(2)13.【解析】【分析】(1)先证明出BC ⊥面1AOA ,利用面面垂直的判定定理即可证明;(2)以O 为原点,1,,OA OB OA 分别为,,x y z 轴正方向建立空间直角坐标系.利用向量法求解.【小问1详解】因为ABC 是边长为4的正三角形,BC 边的中点O ,所以BC OA ⊥.因为顶点1A 在平面ABC 上的射影为O ,所以1OA ⊥平面ABC ,1OA BC ⊥.因为1OA Ì面1AOA ,OA ⊂面1AOA ,1OA OA O = ,所以BC ⊥面1AOA .所以BC ⊂面11BCC B ,所以平面1AOA ⊥平面11BCC B .【小问2详解】以O 为原点,1,,OA OB OA 分别为,,x y z 轴正方向建立空间直角坐标系.因为ABC 是边长为4的正三角形,O 为BC 边的中点,所以3sin 6042OA AB =︒=⨯=.在直角三角形1OAA中,16OA ==.所以()0,0,0O ,()A ,()0,2,0B ,()0,2,0C-,()10,0,6A .所以()AB =- ,()2,0AC =-- .在三棱柱111ABC A B C -中,由11AB A B =,()10,0,6A 可求得:()12,6B -.同理求得:()12,6C --.所以()11A B =- ,()10,2,6CA = ,()10,0,6OA = .设(),,m x y z = 为平面11OA B 的一个法向量,n 为平面11CA B 的一个法向量.因为11100A B m OA m ⎧⋅=⎪⎨⋅=⎪⎩ ,即2000060y z ⎧-++=⎪⎨++=⎪⎩,不妨设1x =,则()m = .同理可求:33n ⎛=- ⎝⎭ .设θ为二面角11C A B O --的平面角,由图可知:θ为锐角,所以,239cos cos ,13m n m n m n θ===⨯ .即二面角11C A B O --.20.已知椭圆C :()222210x y a b a b +=>>经过点2A ⎛ ⎪⎝⎭,点()1,0F 为椭圆C 的右焦点.(1)求椭圆C 的方程;(2)过点()1,0F 作两条斜率都存在且不为0的互相垂直的直线1l ,2l ,直线1l 与椭圆相交1A 、1B ,直线2l 与椭圆相交2A 、2B 两点,求四边形1212A A B B 的面积S 的最小值.【答案】(1)2212x y +=(2)169【解析】【分析】(1)根据已知条件列式求出,a b 可得椭圆C 的方程;(2)联立直线与椭圆方程,根据弦长公式求出11||A B 和22||A B ,求出S 后,根据基本不等式求出最值可得解.【小问1详解】由题意可得2222212141a b c a b c ⎧+=⎪⎪=⎨⎪=+⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为2212x y +=.【小问2详解】设直线1l 的方程为()10x ty t =+≠,联立22112x ty x y =+⎧⎪⎨+=⎪⎩得:()222210t y ty ++-=,22244(2)8(1)0t t t ∆=++=+>,设()111,A x y ,()122,B x y ,则12222t y y t +=-+,12212y y t =-+,所以11A B =====)2212tt+=+,同理可得)2222221111212t tA Btt⎫⎛⎫-+⎪⎪⎪+⎝⎭⎝⎭==+⎛⎫-+⎪⎝⎭,则()()()()22221122222224141116||||292212212t tS A B A Bt t t t++=⋅=≥=++⎛⎫+++⎪⎝⎭,当且仅当22212t t+=+,即1t=±时取等号.所以四边形1212A AB B的面积S的最小值为169.21.已知函数()lnf x x x=,()()21f xg x xx x=-+.(1)求函数()g x的单调区间;(2)若方程()f x m=的根为1x、2x,且21x x>,求证:211ex x m->+.【答案】(1)单调递减区间为()0,∞+,无单调递增区间;(2)证明见解析【解析】【分析】(1)求出()g x的解析,从而求出导函数,即可得到函数的单调区间;(2)求导分析()f x的单调性,()1lnf x x'=+,推出()f x x<-,设直线y x=-与y m=的交点的横坐标为3x,则13x x m<=-,证明当1,1ex⎛⎫∈ ⎪⎝⎭时,()1(1)e1f x x<--,即可得证.【小问1详解】解:因为()lnf x x x=,()()21f xg x xx x=-+,所以()l1n2xg x xx=-+定义域为()0,∞+,()()222221212110xx xg x xx x x---+-'=--==≤,所以()g x在()0,∞+上单调递减,即()g x的单调递减区间为()0,∞+,无单调递增区间;【小问2详解】证明:()ln f x x x =,()1ln f x x '=+,当10e x <<时()0f x '<,当1ex >时()0f x ¢>所以()f x 在10,e ⎛⎫ ⎪⎝⎭上是单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,则()min 11e e f x f ⎛⎫==-⎪⎝⎭,当01x <<时,()ln 0f x x x =<,所以12101x x e <<<<,且10em -<<,当10,e ⎛⎫∈ ⎪⎝⎭x 时,ln 1x <-,所以ln x x x <-,即()f x x <-,设直线y x =-与y m =的交点的横坐标为3x ,则1311ln x x m x x <=-=-,下面证明当1,1e x ⎛⎫∈ ⎪⎝⎭时,()1(1)e 1f x x <--,设l e 111()ln (1)(n )11e ()e 1h x x x x x x x =--=-+---,11()ln 1e (1e )m x x x=-+--,则22e 11(1)1(e )(1))e (1x m x x x x --'=-=--,当11e e 1x <<-时,()0m x '<,当11e 1x <<-时,()0m x '>,所以()m x 在11,e e 1⎛⎫ ⎪-⎝⎭上是减函数,在1,1e 1⎛⎫ ⎪-⎝⎭上增函数,又因为10e m ⎛⎫= ⎪⎝⎭,()10m =,所以当11ex <<时,()0m x <,()0h x <,故当1,1e x ⎛⎫∈ ⎪⎝⎭时,()1(1)e 1f x x <--,设直线1(1)1y x e =--与y m =的交点的横坐标为4x ,则241(e 1)x x m >=+-,所以21431e x x x x m ->-=+,得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系:xOy 中曲线1C 的参数方程为cos 1sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足3OP OM = ,P 点的轨迹为曲线2C .(Ⅰ)求2C 的参数方程;(Ⅱ)在以O 为极点,x轴的正半轴为极轴的极坐标系中,直线3y x =与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,将曲线1C 、2C 的方程转化为极坐标方程后,求AB .【答案】(Ⅰ)3cos 33sin x y αα=⎧⎨=+⎩(α为参数).(Ⅱ)2【解析】【分析】(Ⅰ)直接利用转换关系的应用,把参数方程和直角坐标方程进行转换.(Ⅱ)利用极径的应用和三角函数关系式的变换的应用求出结果.【详解】解:(Ⅰ)设(),P x y 由于P 点满足3OP OM = ,所以,33x y M ⎛⎫ ⎪⎝⎭,由于点M 在1C 上,所以cos 31sin 3x y αα⎧=⎪⎪⎨⎪=+⎪⎩,整理得2C 的参数方程3cos 33sin x y αα=⎧⎨=+⎩(α为参数).(Ⅱ)曲线1C 的参数方程转换为极坐标方程为2sin ρθ=,曲线2C 的参数方程转换为极坐标方程为6sin ρθ=,直线3y x =转换为极坐标方程为π6θ=.所以2sin π6ρθθ=⎧⎪⎨=⎪⎩,解得1A ρ=,同理6sin π6ρθθ=⎧⎪⎨=⎪⎩,解得3B ρ=,故312A B AB ρρ=-=-=.【点睛】本题考查极坐标与参数方程的综合应用,其中涉及到轨迹方程的求解、极坐标中两点间的距离求解,难度一般.极坐标系中,极角相同的两点间的距离等于极径差的绝对值.[选修4-5:不等式选讲]23.设函数()|21|||,f x x x a a R=-++∈(1)当1a =时,解不等式()3f x ≥;(2)若存在x R ∈,使得()1f x a ≤-成立,求a 的取值范围.【答案】(1)1x ≥或1x ≤-;(2)14a .【解析】【分析】(1)当1a =时,利用零点法进行分类,求出不等式()3f x ≥的解集;(2)若存在x R ∈,使得()1f x a ≤-成立,即min |1|()a f x - ,根据1,2a -之间的大小关系,进行分类,最后求出a 的取值范围.【详解】解:(1)当1a =时,1()211322113x f x x x x x ⎧⎪=-++⇔⎨⎪-++⎩ ,或1121123x x x ⎧-<<⎪⎨⎪++-⎩ 或11213x x x -⎧⎨---⎩ ,即121x x ⎧⎪⎨⎪⎩ ,或1121x x ⎧-<<⎪⎨⎪-⎩ ,或11x x -⎧⎨-⎩ ,即1x ≥或1x ≤-.(2)即min |1|()a f x - ,当12a =-时,min 1(),()|1|2f x f f x a ⎛⎫=- ⎪⎝⎭ 恒成立;当12a >-时,31,1()1,2131,2x a x a f x x a a x x a x ⎧⎪-+--⎪⎪=-++-<<⎨⎪⎪+-⎪⎩,可知min 11()22f x f a ⎛⎫==+ ⎪⎝⎭,得1142a >- ;当12a <-时,131,21()1,231,x a x f x x a x a x a x a ⎧-+-⎪⎪⎪=--<<-⎨⎪+--⎪⎪⎩,同理min 11()22f x f a ⎛⎫==- ⎪⎝⎭,得12a <-.综上,a 的取值范围为14a .【点睛】本题考查了解绝对值不等式,考查了不等式存在性问题,正确的分类是解题的关键.21。

江西省南昌市2019届高三数学(文科)第一次模拟测试卷

— 高三文科数学(一模)第1页(共4页) —NCS20190607项目第一次模拟测试卷文科数学本试卷分必做题和选做题两部分.满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自已的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人的准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,用0.5毫米的黑色墨水笔写在答题卡上.写在本试卷上无效.3.考试结束后,监考员将答题卡收回.一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|40}M x x ,2{|log 1}N x x ,则M NA. B.)2,0( C.)2,2( D.)2,2[2.已知复数i(12i)z ,则||zD.33.已知抛物线方程为22x y ,则其准线方程为A.1yB. 1yC. 12yD. 12y 4.设函数22,(0)()(3),(0)x x x f x f x x ,则(5)f 的值为 A.7 B. 1 C. 0 D. 125. 已知平面向量,a b ,||2a ,||1b ,则||a b 的最大值为A.1B.2C.3D.56. 已知25ln 52a ,ln e e b (e 是自然对数的底数),ln22c ,则,,a b c 的大小关系是 A. c a b B. a c b C. b a c D. c b a7.已知0,,R r x y ,:p “222x y r ”,:q “||||1x y ”,若p 是q 的充分不必要条件,则实数r 的取值范围是A.(0,]2B.(0,1]C.[,)2D.[1,)— 高三文科数学(一模)第2页(共4页) —8.如图所示算法框图,当输入的x 为1时,输出的结果为A.3B.4C.5D.69. 2021年广东新高考将实行312 模式,即语文数学英语必选,物理历史二选一,政治地理化学生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史与政治,假若他们都对后面三科没有偏好,则他们选课相同的概率为 A.12 B. 13C. 16D.19 10.函数13)1ln()(22 x x x x x f 的图象大致为11.过双曲线22221(0,0)x y a b a b的左焦点1F 作圆222x y a 的切线交双曲线的右支于点P ,且切点为T ,已知O 为坐标原点,M 为线段1PF 的中点(M 点在切点T 的右侧),若OTM 的周长为4a ,则双曲线的渐近线的方程为A. 34y xB. 43y xC. 35y xD. 53y x 12.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n ,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5, ,则此数列的前55项和为A. 4072B. 2026C. 4096D. 2048二.填空题:本大题共4小题,每小题5分,共20分.13. 已知{}n a 为等差数列,若2321a a ,4327a a ,则3a .14.底面边长6,侧面为等腰直角三角形的正三棱锥的高为 .15.已知锐角A 满足方程3cos 8tan 0A A ,则cos 2A .16.若对任意[1,2]t ,函数22()(1)f x t x t x a 总有零点,则实数a 的取值范围是______.— 高三文科数学(一模)第3页(共4页) —三.解答题:共70分. 解答应写出文字说明、证明过程或演算步骤. 第17题-21题为必考题,每个试题考生都必须作答.第22题、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)函数()2sin()(0,||)22f x x的部分图象如下图所示,A ,(2,0)C ,并且//AB x 轴.(Ⅰ)求 和 的值;(Ⅱ)求ACB cos 的值.18.(本小题满分12分) 如图,四棱台1111D C B A ABCD 中,底面ABCD 是菱形, 1CC 底面ABCD ,且 60 BAD ,42111 D C CC CD ,E 是棱1BB 的中点.(Ⅰ)求证:BD AA 1;(Ⅱ)求三棱锥E C A B 111 的体积.19.(本小题满分12分) 市面上有某品牌A 型和B 型两种节能灯,假定A 型节能灯使用寿命都超过5000小时.经销商对B 型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:某商家因原店面需重新装修,需租赁一家新店面进行周转,合约期一年.新店面只需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,A 型20瓦和B 型55瓦的两种节能灯照明效果相当,都适合安装.已知A 型和B 型节能灯每支的价格分别为120元、25元,当地商业电价为75.0元/千瓦时.假定该店面一年周转期的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯管更换.(用频率估计概率)(Ⅰ)根据频率直方图估算B 型节能灯的平均使用寿命;(Ⅱ)根据统计知识知,若一支灯管一年内需要更换的概率为p ,那么n 支灯管估计需要更换np 支.若该商家新店面全部安装了B 型节能灯,试估计一年内需更换的支数;(Ⅲ)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.— 高三文科数学(一模)第4页(共4页) — 20.(本小题满分12分)如图,椭圆E :22221(0)x y a b a b与圆O :221x y 相切,并且椭圆E 上动点与圆O上动点间距离最大值为22. (Ⅰ)求椭圆E 的方程;(Ⅱ)过点)0,1(N 作两条互相垂直的直线21,l l ,1l 与E 交于B A ,两点,2l 与圆O 的另一交点为M ,求ABM 面积的最大值,并求取得最大值时直线1l 的方程.21.(本小题满分12分)已知函数)(ln e )(b a ax x x f x (e 为自然对数的底数),R , b a ,直线x y 2e 是曲线)(xf y 在1 x 处的切线. (Ⅰ)求b a ,的值;(Ⅱ)是否存在Z k ,使得)(x f y 在)1,( k k 上有唯一零点?若存在,求出k 的值;若不存在,请说明理由.(二)选考题:共10分.请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为2,1x t y (t 为参数),曲线C 的参数方程为sin 23cos 24y x ( 为参数) ,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系. (Ⅰ)求C 的极坐标方程;(Ⅱ)设点)1,2(M ,直线l 与曲线C 相交于点B A ,,求||||MA MB 的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数2()|||23|f x x m x m .(Ⅰ)求证:()2f x ;(Ⅱ)若不等式(2)16f 恒成立,求实数m 的取值范围.。

吉林省延边第二中学2020届高三上学期第一次调研数学(文)试题 Word版含答案

(1)求直线 l 的普通方程及曲线 C 的直角坐标方程; (2)设直线 l 与曲线 C 交于 A, B 两点,求 AB .
23.(选修 4-5:不等式选讲)(本小题满分 10 分)
已知函数 f (x) | x 1| | x a| . (1)当 a 2 时,求不等式 f (x) 5 的解集; (2)若 f (x) 2 的解集为 R,求 a 的取值范围.
2020 届高三模拟考试试卷
15
A.
B. 8
C.14
D.15
6.函数 y loga x 4 2 ( a 0 ,且 a 1)的图象恒过定点 A ,且点 A 在角 的终边
上,则 sin 2 ( )
5 A. 13
5 B. 13
12 C. 13
如图所示,则这个几何体的体积为( )
又∵ an1 4an 3n 1,∴ bn
an n
an n
an n
.
又∵ b1 a1 1 11 2 ,
∴数列bn 是首项为 2,公比为 4 的等比数列.
(2)由(1)求解知, bn 2 4n1 ,
∴ an bn n 2 4n1 n ,
点的的个数是( )
A.7
B.8
C.9
D.10
11.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用,
比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即 1,1,2,
3,5,8,13,21,34,55,89,144,233,….即 F (1) F (2) 1,
x
(1)若函数 f x 在 x 1 处的切线方程为 2x y 4 0 ,求 a,b ; (2)当 a b, x 0, e 时, f x 1 ,求实数 a 的取值范围.

【冲刺卷】高三数学上期中第一次模拟试卷(带答案)(1)

【冲刺卷】高三数学上期中第一次模拟试卷(带答案)(1)一、选择题1.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--2.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1223.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸4.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .35.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-6.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .167.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( ) A .10 kmBkmC.D.8.已知AB AC ⊥u u u v u u u v ,1AB t=u u uv ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且4AB AC AP AB AC=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ). A .13B .15C .19D .219.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30°,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A 33B 53C 73D 8310.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形11.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6612.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( ) A .3B .13C .12+D .4二、填空题13.设0,0,25x y x y >>+=xy______.14.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令114(1)n n n n nb a a -+=-,则数列{}n b 的前100的项和为______. 15.已知数列{}n a 的前n 项和为n S ,且221n S n n n N *=++∈,,求n a =.__________.16.已知实数x y ,满足2,2,03,x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩则2z x y =-的最大值是____.17.对一切实数x ,不等式2||10x a x ++≥恒成立,则实数a 的取值范围是_______ 18.设a >0,b >0. 若关于x,y 的方程组1,{1ax y x by +=+=无解,则+a b 的取值范围是 .19.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =________.20.已知数列{}n a 的通项1n n a n+=+,则其前15项的和等于_______.三、解答题21.已知数列{}n a 的首项123a =,且当2n ≥时,满足1231312n n a a a a a -++++=-L . (1)求数列{}n a 的通项公式; (2)若2n n nb a =,n T 为数列{}n b 的前n 项和,求n T . 22.如图,A ,B 是海面上位于东西方向相距()533+海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?23.已知向量113,sin 222x x a ⎛⎫+ ⎝=⎪ ⎪⎭v 与()1,b y =v 共线,设函数()y f x =. (1)求函数()f x 的最小正周期及最大值.(2)已知锐角ABC ∆的三个内角分别为,,A B C ,若有33f A π⎛⎫-= ⎪⎝⎭,边217,sin 7BC B ==,求ABC ∆的面积. 24.已知各项均为正数的数列{}n a 的前n 项和为n S ,且11a =,1n n n a S S -(*n N ∈,且2n ≥) (1)求数列{}n a 的通项公式; (2)证明:当2n ≥时,12311113232n a a a na ++++<L 25.等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.26.在△ABC 中,角,,A B C 所对的边分别是,,a b c ,且4cos 5A =. (1)求2sincos 22B CA ++的值; (2)若2b =,ABC ∆的面积3S =,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值. 【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率 1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤….故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.2.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.3.B解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==,所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【必考题】高三数学上期中第一次模拟试卷(带答案)(2) 一、选择题 1.已知等比数列na,11a,418a,且12231nnaaaaaak,则k的取值范围是( ) A.12,23 B.1,2 C.12,23 D.

2,3



2.已知等比数列na的前n项和为nS,且满足122nnS,则的值是( ) A.4 B.2 C.2 D.

4

3.在ABCV中,4ABC,2AB,3BC,则sinBAC( )

A.1010 B.105 C.31010 D.

5

5

4.已知等差数列na的前n项为nS,且1514aa,927S,则使得nS取最小值时的n为( ). A.1 B.6 C.7 D.6或7

5.关于x的不等式210xaxa的解集中,恰有3个整数,则a的取值范围是( ) A.3,24,5 B.3,24,5 C.4,5 D.(4,5)

6.等差数列na满足120182019201820190,0,0aaaaa,则使前n项和0nS成立的最大正整数n是( ) A.2018 B.2019 C.4036 D.

4037

7.已知:0x,0y,且211xy,若222xymm恒成立,则实数m的取值范围是( ) A.4,2 B.,42,U C.

2,4

D.

,24,

8.若x,y满足20400xyxyy,则2zyx的最大值为( ). A.8 B.4 C.1 D.

2

9.已知正数x、y满足1xy,则141xy的最小值为( )

A.2 B.92 C.143 D.

5 10.若a,b,c,d∈R,则下列说法正确的是( ) A.若a>b,c>d,则ac>bd B.若a>b,c>d,则a+c>b+d

C.若a>b>0,c>d>0,则cdab D.若a>b,c>d,则a﹣c>b﹣d

11.已知数列{}na中,3=2a,7=1a.若数列1{}na为等差数列,则9=a( ) A.12 B.54 C.45 D.

4

5

12.已知锐角三角形的边长分别为1,3,a,则a的取值范围是( ) A.8,10 B.22,10 C.22,10 D.

10,8

二、填空题 13.在ABCV中,角A,B,C的对边分别为a,b,c,tantan2tanbBbAcB,且8a,73bc,则ABCV的面积为______.

14.已知实数x,y满足不等式组203026xyxyxy,则2zxy的最小值为__________. 15.已知命题20001:,02pxRaxx,若命题p是假命题,则实数a的取值范围是________.

16.已知等差数列na的前n项和为nS,且136S,则91032aa__________.

17.已知120,0,2abab,2ab的最小值为_______________.

18.设数列{an}的首项a1=32,前n项和为Sn,且满足2an+1+Sn=3(n∈N*),则满足2188177nn

S

S的所有n的和为________.

19.已知在△ABC中,角,,ABC的对边分别为,,abc,若2abc,则C的取值范围为________ 20.在锐角ΔABC中,内角,,ABC的对边分别为,,abc,已知24,sin4sin6sinsinabaAbBaBC,则ABCn的面积取最小值时有

2c__________.

三、解答题

21.在等差数列na中,2723aa,38

29aa.

(1)求数列na的通项公式; (2)设数列nnab是首项为1,公比为2的等比数列,求nb的前n项和n

S. 22.若数列na的前n项和nS满足*231? (N)nnSan,等差数列nb满足

113233babS,.

(1)求数列na、nb的通项公式;

(2)设3nnnbca,求数列nc的前n项和为nT. 23.在ABC 中,内角,,ABC的对边分别为,,abc .已知cos2cos2cosACcaBb

(1) 求sinsinCA的值 (2) 若1cos,24Bb ,求ABC的面积. 24.在ABCV中,角A,B,C的对边分别是a,b,c,且3cos23cosaCbcA

(Ⅰ)求角A的大小;

(Ⅱ)若2a,求ABCV面积的最大值.

25.设等差数列na满足35a,

10

9a

(Ⅰ)求na的通项公式; (Ⅱ)求na的前n项和nS及使得nS最大的序号n的值 26.已知向量1sin2A,m与3sin3cosAA,n共线,其中A是△ABC的内角. (1)求角A的大小; (2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.D 解析:D 【解析】

设等比数列na的公比为q,则34118aqa,解得12q,

∴112nna, ∴1121111222nnnnnaa, ∴数列1{}nnaa是首项为12,公比为14的等比数列, ∴1223111(1)21224(1)134314nnnnaaaaaa, ∴23k.故k的取值范围是2[,)3.选D. 2.C 解析:C 【解析】 【分析】 利用nS先求出na,然后计算出结果. 【详解】

根据题意,当1n时,11

224Sa,142a,

故当2n时,112nnnnaSS,

Q数列na是等比数列,

则11a,故412,

解得2,

故选C.

【点睛】 本题主要考查了等比数列前n项和nS的表达形式,只要求出数列中的项即可得到结果,较为基础. 3.C 解析:C 【解析】

试题分析:由余弦定理得229223cos5,54bb.由正弦定理得35sinsin4BAC,解得310sin10BAC.

考点:解三角形. 4.B 解析:B 【解析】 试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B. 考点:等差数列的性质. 5.A 解析:A 【解析】 【分析】 不等式等价转化为(1)()0xxa,当1a时,得1xa,当1a时,得1ax,由此根据解集中恰有3个整数解,能求出a的取值范围。

【详解】 关于x的不等式210xaxa, 不等式可变形为(1)()0xxa,

当1a时,得1xa,此时解集中的整数为2,3,4,则45a; 当1a时,得1ax,,此时解集中的整数为-2,-1,0,则32a

故a的取值范围是3,24,5,选:A。 【点睛】 本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对a和1的大小进行分类讨论。其次在观察a的范围的时候要注意范围的端点能否取到,防止选择错误的B选项。 6.C 解析:C 【解析】 【分析】 根据等差数列前n项和公式,结合已知条件列不等式组,进而求得使前n项和0nS成立的最大正整数n. 【详解】 由于等差数列na满足120182019201820190,0,0aaaaa,所以0d,且

20182019

00aa



,所以1403640362018201914037201940374036201802240374037022aaSaaaaaS,所以使前n项和

0nS成立的最大正整数n是4036.

故选:C

相关文档
最新文档