高中数学_椭圆经典练习题_配答案解析
高中数学圆锥曲线系统讲解第15讲《椭圆中的两个最大张角结论》练习及答案

第15讲 椭圆中的两个最大张角结论知识与方法1.如图1所示,设A 、B 是椭圆()2222:10x y C a b a b+=>>的左、右顶点,P 是椭圆C 上不与A 、B 重合的一个动点,则APB ∠始终为钝角,且当P 为短轴端点时,APB ∠最大.2如图2所示,设1F 、2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点,P 是椭圆C 上的一个动点,则当P 为短轴端点时,12F PF ∠最大.典型例题【例1】已知椭圆22:13x C y +=的左、右顶点分别为A 、B ,P 为椭圆C 上不与A 、B 重合的动点,则APB ∠的最大值为______.【解析】解法1:如图,不妨设P 在x 轴上方,作PQ x ⊥轴于点Q , 设PAB α∠=,PBA β∠=,则APB παβ∠=−−,设()(),01P x y y <≤,则tan PQ AQα===tan PQ BQβ==,而()()tan tan tan tan tan 1tan tan 1APB αβπαβαβαβ+∠=−−=−+=−==−①,因为点P 在椭圆C 上,所以2213x y +=,从而2233x y =−,代入①得:tan 333APB y y∠==−−−, 显然当1y =时,tan APB ∠取得最大值APB ∠也取得最大值23π. 解法2:如图,不妨设P 在x 轴上方,设PAB α∠=,PBA β∠=,则APB παβ∠=−−由椭圆第三定义,()1tan tan tan tan 3PA PB k k απβαβ⋅=−=−=−,所以1tan tan 3αβ=,而()()()tan tan 3tan tan tan tan tan 1tan tan 2APB αβπαβαβββαβ+∠=−−=−+=−=−+−,显然α、β均为锐角,所以tan 0α>,tan 0β>故()33tan tan tan 22APB ββ∠=−+≤−⨯= 当且仅当tan tan αβ=时取等号,此时αβ=,P 为椭圆的上顶点,所以tan APB ∠的最大值为APB ∠的最大值为23π.【答案】23π 【反思】上面的求解过程给出了两种推导椭圆上的动点对左、右顶点最大张角结论的方法,事实上,这一结论对任意的椭圆都成立,若熟悉了这一结论,小题中就可以直接用了.变式1 椭圆22:13x y C m+=(0m <<的左、右顶点分别为A 和B ,P 为椭圆C 上不与A 、B 重合的动点,若tan APB ∠的最大值为m =______.【解析】tan APB ∠的最大值为APB ⇒∠的最大值为23π, 如图,由最大张角结论,当P 为短轴端点时,APB ∠最大, 所以图中的23APB π∠=,从而3APO π∠=,故tan OA APO OP∠===,解得:1m =.【答案】1变式2 椭圆22:13x y C m+=(0m <的左、右顶点分别为A 和B ,若C 上存在点P ,使得23APB π∠=,则m 的取值范围是______.【解析】椭圆C 上存在点P ,使得23APB π∠=等价于最大张角大于等于23π,如图,2tan 33OA APB APO APO OP ππ∠≥⇒∠≥⇒∠==≥, 解得:01m <≤.【答案】(]0,1【例2】椭圆22:13x C y +=的左、右焦点分别为1F 、2F ,P 为椭圆C 上不与A 、B 重合的动点,则12cos F PF ∠的最小值为______.【解析】如图,由题意,12F F =1PF m =,2PF n =,由椭圆定义,m n +=在12PF F 中,由余弦定理,22222121212128cos 22PF PF F F m n F PF PF PF mn+−+−∠==⋅ ()2228222111232m n mn mn mnmn mn m n +−−−===−≥−=−+⎛⎫⎪⎝⎭, 当且仅当m n =时取等号,此时P 为椭圆的短轴端点,所以12cos F PF ∠的最小值为13−.【答案】13−【反思】上面的求解过程给出了推导椭圆上的动点对左、右焦点最大张角结论的方法,事实上,这一结论对任意的椭圆都成立,若熟悉了这一结论,小题中就可以直接用了.变式 椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若椭圆C 上存在点P ,使1260F PF ∠=︒,则椭圆C 的离心率的取值范围是______.【解析】椭圆C 上存在点P ,使1260F PF ∠=︒等价于最大张角大于等于60°,如图,11211116030sin 2OF c F PF F PO F PO PF a ∠≥︒⇒∠≥︒⇒∠==≥, 即12e ≥,又01e <<,所以112e ≤<.【答案】1,12⎡⎫⎪⎢⎣⎭强化训练l.(★★★)已知椭圆22:142x y C +=的左、右顶点分别为A 、B ,P 为C 上不与A 、B 重合的动点,则cos APB ∠的最小值为______.【解析】由最大张角结论,当P 为短轴端点时,APB ∠最大, 此时,cos APB ∠最小,如图,c os OP APO AP===∠, 所以()2min 1cos 2cos 13APB APO ∠=∠−=−.【答案】13−2.(★★★)已知椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,P 为C 上的动点,则12F PF ∠的最大值为______.【解析】由最大张角结论,当P 为短轴端点时,12F PF ∠大,如图,由题意,2a =,1c =,所以当P 为短轴端点时,12PF F 为正三角形,从而12F PF ∠的最大值为60°.【答案】60°3.(★★★)已知P 为椭圆()2222:10x y C a b a b +=>>上任意一点,1F 、2F 是椭圆C 的两个焦点,当12F PF ∠最大时,121cos 3F PF ∠=,则椭圆C 的离心率为______.【解析】由最大张角结论,当P 为短轴端点时,12F PF ∠最大, 此时,如图,22222212121221241cos 223PF PF F F a a c F PF PF PF a +−+−∠===⋅ 所以椭圆C的离心率c e a ==.【答案】4.(★★★★)已知椭圆()2222:10x y C a b a b +=>>的左、右顶点分别为A 、B ,若椭圆C 上存在点P ,使得3cos 5APB ∠=−,则椭圆C 的离心率的最小值______.【解析】椭圆C 上存在点P ,使得3cos 5APB ∠=−等价于当P 为短轴端点时,3cos 5APB ∠≤−,如图,cos OP APO AP∠==,所以22222222cos 2cos 121b b a APB APO a b a b −∠=∠−=⨯−=++,从而222235b a a b −≤−+,化简得:224a b ≥ 所以22244a ac ≥−,从而2234a c ≤,故2c e a =≥,即椭圆C5.(★★★)椭圆(222:103x y C b b+=>>的左、右顶点分别为A 和B ,P 为椭圆C 上不与A 、B 重合的动点,若cos APB ∠的最小值为13−,则b =______.【解析】由最大张角定理,当P 为短轴端点时,APB ∠最大,此时,cos APB ∠最小, 如图,22221cos 22cos cos 1133b APB APO APO b ==∠−=−=−+∠∠,解得:2b =.6.(2017·新课标Ⅰ卷·★★★★)设A 、B 是椭圆22:13x y C m+=长轴的两个端点,若C 上存在点M 满足120AMB =∠︒,则m 的取值范围是( )A.(][)0,19,+∞B.([)9,+∞C.(][)0,14,+∞D.([)4,+∞【解析】问题等价于当M 为椭圆C 的短轴端点时,120AMB ≥∠︒,即60AMO ∠≥︒,也即tan AMO ∠,当03m <<时,如图1,tan OA AMO OM∠==≥,解得:01m <≤,当3m >时,如图,tan OA AMO OM∠==,解得:9m ≥,综上所述,m 的取值范围是(][)0,19,+∞。
高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆:的左焦点,离心率为,函数,(Ⅰ)求椭圆的标准方程;(Ⅱ)设,,过的直线交椭圆于两点,求的最小值,并求此时的的值.【答案】(Ⅰ);(Ⅱ)的最小值为,此时.【解析】(Ⅰ)利用左焦点F(-1,0),离心率为,及求出几何量,即可求椭圆C的标准方程;(Ⅱ)分类讨论,设直线l的方程来:y=k(x-t)代入抛物线方程,利用韦达定理,结合向量的数量积公式,即可求的最小值,并求此时的t的值.试题解析:(Ⅰ),由得,椭圆方程为(Ⅱ)若直线斜率不存在,则=若直线斜率存在,设直线,由得所以故故的最小值为,此时.【考点】直线与圆锥曲线的综合问题.2.设分别是椭圆的左,右焦点.(1)若是椭圆在第一象限上一点,且,求点坐标;(5分)(2)设过定点的直线与椭圆交于不同两点,且为锐角(其中为原点),求直线的斜率的取值范围.(7分)【答案】(1);(2).【解析】(1)设,求点坐标,即要构建关于的两个方程,第一个方程可根据点在曲线上,点的坐标必须适合曲线的方程得到,即有,第二个方程可由通过坐标化得到,即有,联立方程组,可解得点坐标;(2)求直线的斜率的取值范围,即要构建关于的不等式,可通过为锐角,转化为不等关系,进而转化为关于的不等式,解出的取值范围.注意不要忽略,这是解析几何中常犯的错误.试题解析:(1)依题意有,所以,设,则由得:,即,又,解得,因为是椭圆在第一象限上一点,所以. 5分(2)设直线与椭圆交于不同两点的坐标为、,将直线:代入,整理得:(),则,,因为为锐角,所以,从而整理得:,即,解得,且()方程必须满足:,解得,因此有,所以直线的斜率的取值范围为. 12分【考点】1.直线与椭圆的位置关系;2.方程与不等式思想,3.设而不求的思想与等价转化思想.3.双曲线与椭圆的离心率互为倒数,则()A.B.C.D.【答案】B.【解析】由双曲线与椭圆的离心率的定义知,双曲线的离心率和椭圆的离心率分别为、,然后由题意得,即,将其两边平方化简即可得出结论.【考点】双曲线的几何性质;椭圆的几何性质.4.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。
高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆C:+=1(a>b>0)的离心率是,且点P(1,)在椭圆上.(1)求椭圆的方程;(2)若过点D(0,2)的直线l与椭圆C交于不同的两点E,F,试求△OEF面积的取值范围(O为坐标原点).【答案】(1);(2)【解析】⑴由得,椭圆方程为,又点在椭圆上,所以解得因此椭圆方程为;(2)由题意知直线的斜率存在,设的方程为 ,代入得:,由,解得设,,则,令,则,,所以 .试题解析:⑴,∵∴∴∵点在椭圆上,∴∴∴(2)由题意知直线的斜率存在,设的方程为 ,代入得:由,解得设,,则令,所以所以【考点】1.椭圆的方程;2.用代数法研究直线与椭圆相交;3.基本不等式2.椭圆的焦距是()A.3B.6C.8D.10【答案】B【解析】由椭圆的方程知,∵a2=25,b2=16,∴c=∴的焦距2c=6.故选B.【考点】椭圆的性质.3.已知椭圆的两个焦点坐标分别是,,并且经过点,求它的标准方程.【答案】.【解析】解题思路:根据条件设出椭圆的标准方程,再代点求系数即可.规律总结:求圆锥曲线的标准方程通常用待定系数法,即先根据条件设出合适的标准方程,再根据题意得到关于系数的方程或方程组,解之积得.试题解析:因为椭圆的焦点在x轴上,所以设它的标准方程为,由椭圆的定义知,所以.又因为,所以,所以椭圆的标准方程为.【考点】椭圆的标准方程.4.如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.(1)求椭圆C的方程;(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1);(2)P(,±).【解析】(1)求椭圆标准方程,一般利用待定系数法,利用两个独立条件确定a,b的值. 设椭圆C的方程为,由已知,得,∴∴b=.所以椭圆C的方程为.(2)等腰三角形这个条件,是不确定的,首先需要确定腰. 由=e=,得PF=PM.∴PF≠PM.若PF=FM,则PF+FM=PM,与“三角形两边之和大于第三边”矛盾,∴PF 不可能与FM相等.因此只有FM=PM,然后结合点在椭圆上条件进行列方程求解:设P(x,y)(x≠±2),则M(4,y).∴=4-x,∴9+y2=16-8x+x2,又由,得y2=3-x2.∴9+3-x2=16-8x+x2,∴x2-8x+4=0.∴7x2-32x+16=0.∴x=或x=4.∵x∈(-2,2),∴x=.∴P(,±).综上,存在点P(,±),使得△PFM为等腰三角形.试题解析:解:(1)设椭圆C的方程为由已知,得,∴,∴b=.所以椭圆C的方程为(2)由=e=,得PF=PM.∴PF≠PM.①若PF=FM,则PF+FM=PM,与“三角形两边之和大于第三边”矛盾,∴PF不可能与FM 相等.②若FM=PM,设P(x,y)(x≠±2),则M(4,y).∴=4-x,∴9+y2=16-8x+x2,又由,得y2=3-x2.∴9+3-x2=16-8x+x2,∴x2-8x+4=0.∴7x2-32x+16=0.∴x=或x=4.∵x∈(-2,2),∴x=.∴P(,±).综上,存在点P(,±),使得△PFM为等腰三角形.【考点】椭圆方程,椭圆第二定义5.已知椭圆的离心率为,为椭圆在轴正半轴上的焦点,、两点在椭圆上,且,定点.(1)求证:当时;(2)若当时有,求椭圆的方程;(3)在(2)的椭圆中,当、两点在椭圆上运动时,试判断是否有最大值,若存在,求出最大值,并求出这时、两点所在直线方程,若不存在,给出理由.【答案】(1)详见解析;(2)(3)存在,最大值为,直线方程为,或【解析】(1)设,从而可得各向量的坐标。
《椭圆》方程典型例题20例(含标准答案解析]
![《椭圆》方程典型例题20例(含标准答案解析]](https://img.taocdn.com/s3/m/bd84dbd3f705cc1755270984.png)
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112aa x x x M +=+=,2111a x y M M +=-=,4112===a x y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=. ∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-. 将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=,112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,;(2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b ,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b ,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+ay x ay ,将22222y b a a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b cab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅.∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12F PF,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα ∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα, ∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+= ∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.若,则方程表示的曲线只可能是()A. B. C. D.【答案】C【解析】由得或依次验证各选项中两图形能否同时成立,如A中若直线成立则,就表示双曲线,验证可得C正确【考点】直线椭圆图像点评:通过观察两图像在坐标系下的位置判定系数是否同时成立,若能同时成立则图像可能正确,考查学生的视图能力,较难2.若抛物线的焦点与椭圆的右焦点重合,则的值为________.【答案】4【解析】易知椭圆的右焦点为,因为抛物线的焦点与椭圆的右焦点重合,所以。
【考点】抛物线的简单性质;椭圆的简单性质。
点评:注意椭圆中关系式与双曲线中的不同。
3.已知椭圆的离心率,它的一个焦点与抛物线的焦点重合,过椭圆右焦点作与坐标轴不垂直的直线,交椭圆于两点.(1)求椭圆标准方程;(2)设点,且,求直线方程.【答案】(1)(2)【解析】本试题主要是考查了椭圆方程的求解,以及直线与椭圆的位置关系的综合运用。
(1)结合抛物线的定义和性质得到参数a,b,c的关系式得到结论。
(2)利用直线与椭圆方程联立方程组,得到二次方程,结合韦达定理和向量的关系式得到直线的求解。
解:(1)抛物线焦点为(2,0)椭圆方程为:………………5分(2)设与联立得设 AB中点………………9分均满足方程:…………14分4.(本小题满分12分)已知直线与椭圆相交于、两点,是线段上的一点,,且点M在直线上,(1)求椭圆的离心率;(2)若椭圆的右焦点关于直线的对称点在单位圆上,求椭圆的方程.【答案】解:设、两点的坐标分别为( I);(II)【解析】本试题主要是考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。
(1)结合已知中直线方程与椭圆方程联立,和设出点A,B的坐标,然后得到关于系数a,b的关系式,然后得到椭圆的方程中比例关系,进而研究其性质。
(2)由上可知,椭圆中b,c关系,然后利用对称性,设出点的坐标,借助于坐标关系式得到椭圆的方程。
解:设、两点的坐标分别为( I)由得:…………2分由知是的中点,点的坐标为………………………4分又点在直线上:…………………6分(II)由(1)知,设椭圆的右焦点坐标为,设关于直线的对称点为,则有解得:……………10分由已知,,. ………11分所求的椭圆的方程为……………12分5.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为A.B.C.D.【答案】D【解析】点到椭圆的两个焦点的距离之和为6.已知椭圆的焦点在轴上,点在上,且的离心率,则的方程是()A.B.C.D.【答案】C【解析】的方程是,应选C.7.已知动点到两定点、的距离之和为定值.(1)求的轨迹方程;(2)若倾斜角为的直线经过点,且与的轨迹相交于两点、,求弦长.【答案】(1).(2)的方程是..【解析】(1)由椭圆的定义可得,,∴.即得到P的轨迹方程;(2)写出直线方程与(1)中的椭圆方程联立,利用两点间的距离公式和韦达定理可求得弦长.解:(1)依题意可知的轨迹是以、为焦点的椭圆,设其方程为,则有,,∴,故的轨迹方程是.……7分(2)的方程是.设,,由消去得,故弦长.……14分8.椭圆上有一点P到左焦点的距离是4,则点P到右焦点的距离是A.3B.4C.5D.6【答案】D【解析】解:利用椭圆的定义可知,椭圆上有一点P到左焦点的距离是4,则点P到右焦点的距离是10-4=6,因此选择D.9.如图,已知椭圆的离心率为,且经过点平行于的直线在轴上的截距为,与椭圆有A、B两个不同的交点(Ⅰ)求椭圆的方程;(Ⅱ) 求的取值范围;(III)求证:直线、与轴始终围成一个等腰三角形.【解析】本小题主要考查椭圆的标准方程,直线与椭圆的位置关系,考查转化与化归的思想方法,以及学生的运算能力.解:(Ⅰ)设椭圆方程为………1分离心率为所以,可得由经过点,解得,…………………………3分∴椭圆方程为……………………………4分(Ⅱ)∵直线平行于,且在轴上的截距为又……………………………………………………5分由……………………………………6分∵直线l与椭圆交于A、B两个不同点,(III)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可…………9分设则由……………………………………………………10分而故直线MA、MB与x轴始终围成一个等腰三角形.……………………14分10.已知A(m,0),|m|≤2,椭圆,点P在椭圆上运动,求|PA|的最小值.【答案】见解析.【解析】本试题主要研究椭圆上点到定点距离的最值问题。
高二上学期数学练习题(7)(椭圆的简单几何性质)有详细答案

高二上学期数学练习题(7)(椭圆的简单几何性质)班级 姓名 学号一.选择填空题1. 已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为 ( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69) 2. 椭圆x 2+4y 2=1的离心率为 ( ) A.32 B.34 C.22 D.233. 已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为( ) A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 22+y 23=1 4. 已知椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的2倍,则m = ( ).A.14B.12C .2D .4 5. 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 ( ) A.52 B.33 C.12 D.136. 如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B ,该椭圆的离心率为( ). A.15 B.25 C.55 D.2557. 已知椭圆x 23+y 24=1的上焦点为F ,直线x +y -1=0和x +y +1=0与椭圆分别相交于点A ,B 和C ,D ,则AF +BF +CF +DF = ( ). A .2 3 B .4 3 C .4 D .88. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1²k 2的值为 ( ). A.12 B .-12 C.13 D .-139. 已知椭圆C :x 22+y 2=1的右焦点为F ,直线l :x =2,点A ∈l ,线段AF 交C 于点B ,若F A →=3FB →,则|AF →|=A. 2 B .2 C. 3 D .3 ( ) 10. 椭圆x 225+y 29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是( )A .8,2B .5,4C .5,1D .9,1二.填空题11.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________. 12.已知椭圆x 2k +8+y 29=1的离心率为12,则k 的值为________.13.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12, 则椭圆G 的方程为________.14.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为________15.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是________.16.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.17.已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=_______18.如图,在平面直角坐标系xOy 中,A1,A 2,B 1,B 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 则该椭圆的离心率为________. 三.解答题19.求椭圆x 24+y 2=1的长轴和短轴的长、离心率、焦点和顶点的坐标.20.已知椭圆长轴长是短轴长的2倍,且过点A (2,-6).求椭圆的标准方程.21.已知椭圆E 的中心在坐标原点O ,两个焦点分别为A (-1,0),B (1,0),一个顶点为H (2,0). (1)求椭圆E 的标准方程;(2)对于x 轴上的点P (t ,0),椭圆E 上存在点M ,使得MP ⊥MH ,求实数t 的取值范围.22.已知直线l :y =kx +1与椭圆x 22+y 2=1交于M 、N 两点,且|MN |=423.求直线l 的方程.23.已知过点A (-1,1)的直线与椭圆x 28+y24=1交于点B 、C ,当直线l 绕点A (-1,1)旋转时,求弦BC 中点M 的轨迹方程.24.如图所示,点A 、B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF . (1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.高二上学期数学练习题(7)(椭圆的简单几何性质)参考答案班级 姓名 学号 (5-12页)一.选择填空题1. 已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为 ( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:由题意知椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).答案 D 2. 椭圆x 2+4y 2=1的离心率为 ( ). A.32 B.34 C.22 D.23解析:将椭圆方程x 2+4y 2=1化为标准方程x 2+y 14=1,则a 2=1,b 2=14,即a =1,c =a 2-b 2=32,故离心率e =c a =32.答案 A 3. 已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为( ) A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 22+y 23=1 解析 因为c a =63,且c =2,所以a =3,b =a 2-c 2=1.所以椭圆C 的方程为x 23+y 2=1.答案 A4. 已知椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的2倍,则m = ( ).A.14B.12 C .2 D .4 解析 将椭圆方程化为标准方程为x 2+y 21m=1,∵焦点在y 轴上,∴1m >1,∴0<m <1.由方程得a =1m ,b =1.∵a =2b ,∴m =14. 答案 A 5. 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 ( ) A.52 B.33 C.12 D.13解析:记|F 1F 2|=2c ,则由题设条件,知|PF 1|=2c 3,|PF 2|=4c3, 则椭圆的离心率e =2c 2a =|F 1F 2||PF 1|+|PF 2|=2c 2c 3+4c 3=33,故选B.答案 B6. 如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B A.15 B.25 C.55 D.255解析:由条件知,F 1(-2,0),B (0,1),∴b =1,c =2,∴a =22+12=5,∴e =c a =25=255.答案 D7. 已知椭圆x 23+y 24=1的上焦点为F ,直线x +y -1=0和x +y +1=0与椭圆分别相交于点A ,B 和C ,D ,则AF +BF +CF +DF = ( ). A .2 3 B .4 3 C .4 D .8 解析 如图,两条平行直线分别经过椭圆的两个焦点,连接 AF 1、FD .由椭圆的对称性可知,四边形AFDF 1(其中F 1为椭 圆的下焦点)为平行四边形,∴AF 1=FD ,同理BF 1=CF , ∴AF +BF +CF +DF =AF +BF +BF 1+AF 1=4a =8.答案 D8. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1²k 2的值为 ( ). A.12 B .-12 C.13 D .-13解析 设点M (x ,y ),A (x 1,y 1),B (-x 1,-y 1),则y 2=b 2-b 2x 2a 2,y 12=b 2-b 2x 12a2,所以k 1·k 2=y -y 1x -x 1·y +y 1x +x 1=y 2-y 12x 2-x 12=-b 2a 2=c 2a 2-1=e 2-1=-13,即k 1·k 2的值为-13.答案 D 9. 已知椭圆C :x 22+y 2=1的右焦点为F ,直线l :x =2,点A ∈l ,线段AF 交C 于点B ,若F A →=3FB →,则|AF →|=A. 2 B .2 C. 3 D .3 ( ) 解析 设点A (2,n ),B (x 0,y 0).由椭圆C :x 22+y 2=1知a 2=2,b 2=1,∴c 2=1,即c =1,∴右焦点F (1,0).∴由F A →=3FB →得(1,n )=3(x 0-1,y 0).∴1=3(x 0-1)且n =3y 0,∴x 0=43,y 0=13n ,将x 0,y 0代入x 22+y 2=1,得12³(43)2+(13n )2=1.解得n 2=1,∴|AF →|=(2-1)2+n 2=1+1= 2.所以选A.答案 A 10. 椭圆x 225+y 29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是( D )A .8,2B .5,4C .5,1D .9,1二.填空题11.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________. 解析:设椭圆的长半轴长为a ,短半轴长为b ,焦距为2c ,则b =1,a 2+b 2=(5)2,即a 2=4. 所以椭圆的标准方程是x 24+y 2=1或y 24+x 2=1.答案 x 24+y 2=1或y 24+x 2=112.已知椭圆x 2k +8+y 29=1的离心率为12,则k 的值为________.解析:①当k +8>9时,e 2=c 2a 2=k +8-9k +8=14,k =4;②当k +8<9时,e 2=c 2a 2=9-k -89=14,k =-54.答案4或-5413.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12, 则椭圆G 的方程为________.解析:依题意设椭圆G 的方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆上一点到其两个焦点的距离之和为12.∴2a =12,即a =6.∵椭圆的离心率为32,∴e =c a =a 2-b 2a =32,∴36-b 26=32,∴b 2=9.∴椭圆G 的方程为x 236+y 29=1.答案 x 236+y 29=114.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为________解析:由题意知⎩⎪⎨⎪⎧a +b =92,c a =35,a 2=b 2+c 2,解得⎩⎨⎧a =52,b =42.但焦点位置不确定.答案 x 250+y 232=1或x 232+y 250=115.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是________.解析:由⎩⎪⎨⎪⎧y =x +2,x 2m +y 23=1消去y ,整理得(3+m )x 2+4mx +m =0,若直线与椭圆有两个公共点,则⎩⎪⎨⎪⎧3+m ≠0,Δ=(4m )2-4m (3+m )>0,解得⎩⎪⎨⎪⎧m ≠-3,m <0或m >1.由x 2m +y 23=1表示椭圆知,m >0且m ≠3. 综上可知,m 的取值范围是(1,3)∪(3,+∞).答案 (1,3)∪(3,+∞) 16.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.解析:由⎩⎪⎨⎪⎧x 2+4y 2=16,y =12x +1,消去y 并化简得x 2+2x -6=0.设直线与椭圆的交点为M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2,x 1x 2=-6. ∴弦长|MN |=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+(12x 1-12x 2)2=54[(x 1+x 2)2-4x 1x 2]=54(4+24)=35,答案 35。
高三数学椭圆试题答案及解析
高三数学椭圆试题答案及解析1.椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点.(1)求椭圆C的方程;(2)当的面积为时,求直线的方程.【答案】(1);(2)直线方程为:或.【解析】本题主要考查椭圆的标准方程及其几何性质、直线的标准方程、直线与椭圆相交问题、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由于椭圆过点A,将A点坐标代入得到a和b的关系式,再利用椭圆的离心率得到a与c的关系式,从而求出a和b,得到椭圆的标准方程;第二问,过的直线有特殊情况,即当直线的倾斜角为时,先讨论,再讨论斜率不不为的情况,将直线方程与椭圆方程联立,利用韦达定理得到和,代入到三角形面积公式中,解出k的值,从而得到直线方程.试题解析:(1)因为椭圆过点,所以①,又因为离心率为,所以,所以②,解①②得.所以椭圆的方程为:(4分)(2)①当直线的倾斜角为时,,,不适合题意。
(6分)②当直线的倾斜角不为时,设直线方程,代入得:(7分)设,则,,,所以直线方程为:或(12分)【考点】椭圆的标准方程及其几何性质、直线的标准方程、直线与椭圆相交问题、三角形面积公式.2.如图,椭圆的左焦点为,过点的直线交椭圆于两点.的最大值是,的最小值是,满足.(1) 求该椭圆的离心率;(2) 设线段的中点为,的垂直平分线与轴和轴分别交于两点,是坐标原点.记的面积为,的面积为,求的取值范围.【答案】(1);(2).【解析】本题主要考查椭圆的标准方程、椭圆的离心率、椭圆与直线相交问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,设出F点坐标,数形结合,根据椭圆的性质,得到代入已知中,得到,计算出椭圆的离心率;第二问,根据题意,设出椭圆方程和直线方程,两方程联立,消参,利用韦达定理,得到和,利用三角形相似得到所求的比例值,最后求范围.试题解析:(1) 设,则根据椭圆性质得而,所以有,即,,因此椭圆的离心率为. (4分)(2) 由(1)可知,,椭圆的方程为.根据条件直线的斜率一定存在且不为零,设直线的方程为,并设则由消去并整理得从而有,(6分)所以.因为,所以,.由与相似,所以. (10分)令,则,从而,即的取值范围是. (12分)【考点】椭圆的标准方程、椭圆的离心率、椭圆与直线相交问题.3.椭圆的离心率为,其左焦点到点的距离为.(1) 求椭圆的标准方程;(2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.【答案】(1);(2)证明详见解析,.【解析】本题主要考查椭圆的标准方程及其几何性质、直线与椭圆相交问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的离心率和左焦点到点P 的距离列出方程组,解出基本量a,b,c,从而得到椭圆的标准方程;第二问,用直线与椭圆联立,消参得到关于x的方程,利用韦达定理得到和,由于AB为直径的圆过椭圆右顶点A2(2,0) ,所以,利用向量的数量积的运算公式,将前面的式子都代入,得到或 m = -2k,经验证都符合题意,则分别求出定点坐标,再验证,最终得到结论.试题解析:(1)由题:①左焦点 (-c,0) 到点 P(2,1) 的距离为:② 2分由①②可解得c =" 1" , a =" 2" , b 2 = a 2-c 2 = 3. 3分∴所求椭圆 C 的方程为. 4分(2)设 A(x1,y1)、B(x2,y2),将 y =" kx" + m代入椭圆方程得(4k 2 + 3) x 2 + 8kmx + 4m 2-12 = 0.∴,, 6分且y1 = kx1+ m,y2= kx2+ m.∵AB为直径的圆过椭圆右顶点 A2(2,0) ,所以. 7分所以 (x1-2,y1)·(x2-2,y2) = (x1-2) (x2-2) + y1y2= (x1-2) (x2-2) + (kx1+ m) (kx2+ m)= (k 2 + 1) x1x2+ (km-2) (x1+ x2) + m 2 + 4= (k 2 + 1)·-(km-2)·+ m 2 + 4 =" 0" . 10分整理得 7m 2 + 16km + 4k 2 = 0.∴或 m = -2k 都满足△ > 0. 12分若 m = -2k 时,直线 l 为 y = kx-2k =" k" (x-2) ,恒过定点 A2(2,0),不合题意舍去; 13分若时,直线 l 为,恒过定点. 14分【考点】椭圆的标准方程及其几何性质、直线与椭圆相交问题.4.已知△ABC的周长为12,顶点A,B的坐标分别为(-2,0),(2,0),C为动点.(1)求动点C的轨迹E的方程;(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.【答案】(1)+=1(x≠±4)(2)16【解析】(1)由题意知|CA|+|CB|=12-4=8>|AB|,所以C的轨迹E为椭圆的一部分.由a=4,c=2,可得b2=12.故曲线E的方程为+=1(x≠±4).(2)设两直线的方程为y=kx与y=-kx(k>0).记y=kx与曲线E在第一象限内的交点为(x0,y),由,可得x2=.结合图形的对称性可知:四交点对应的四边形为矩形,且其面积S=2x0·2y=4kx2=.因为k>0,所以S=≤=16 (当且仅当k=时取等号).故四边形面积的最大值为16.5.椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.(1)求椭圆C的标准方程;(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.【答案】(1)+y2=1 (2)见解析【解析】(1)设椭圆的标准方程为+=1(a>b>0),因为|F1F2|=2,所以c=,由S△PF1F2=1,得|PF1||PF2|=2,又由PF1⊥PF2,得|PF1|2+|PF2|2=|F1F2|2=12,即(|PF1|+|PF2|)2-2|PF1||PF2|=12,即4a2-4=12,a2=4,b2=a2-3=1,所以椭圆C的标准方程为+y2=1.(2)由方程组,得(1+4k2)x2+8kmx+4m2-4=0,Δ=(8km)2-4(1+4k2)(4m2-4)>0,整理得4k2-m2+1>0.设M(x1,y1),N(x2,y2),则x1+x2=-,x1x2=.由AM⊥AN且椭圆的右顶点为A(2,0),得(x1-2)(x2-2)+y1y2=0,因为y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,所以(1+k2)x1x2+(km-2)(x1+x2)+m2+4=0,即(1+k2)·+(km-2)·+m2+4=0,整理得:5m2+16mk+12k2=0,解得m=-2k或m=-,均满足4k2-m2+1>0.当m=-2k时,直线的l方程为y=kx-2k,过定点(2,0),与题意矛盾,舍去;当m=-时,直线l的方程为y=k(x-),过定点(,0),符合题意.故直线l过定点,且定点的坐标为(,0).6.已知P是圆M:x2+y2+4x+4-4m2=0(m>0且m≠2)上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.(1)求出轨迹C的方程,并讨论曲线C的形状;(2)当m=时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,为定值?若存在,求出定点和定值;若不存在,请说明理由.【答案】(1)当m>2,,轨迹是以、为焦点的椭圆,其方程为;当m<2,轨迹是以、为焦点的双曲线,其方程为;(2)定点,定值为6.【解析】(1)利用线段的垂直平分线交直线于点,当时,根据椭圆的定义,即可求出轨迹的方程;当时,根据双曲线的定义,即可求出轨迹的方程;(2)当时,轨迹必为椭圆方程,设,分别过E取两垂直与坐标轴的两条弦CD,,根据求出E若存在必为定值为6.再进行证明.存在性问题,先猜后证是关键.再设设过点E的直线方程,代入椭圆方程,消去,设,,利用一元二次方程的根与系数的关系,求得为定值6.(1)由题意,,所以,所以轨迹是以、为焦点,以为长轴的椭圆,当m>2,,轨迹是以、为焦点的椭圆,其方程为;当m<2,轨迹是以、为焦点的双曲线,其方程为(4分)(2)由(1)当时,曲线C为,设,分别过E取两垂直于坐标轴的两条弦CD,,则,即解得,∴E若存在必为定值为6.(6分)下证满足题意.设过点E的直线方程为,代入C中得:,设、,则,,(8分).同理可得E也满足题意.综上得定点为E,定值为(13分)【考点】直线和圆的方程的应用,圆锥曲线的定义、性质与方程,轨迹方程的问题.7.已知椭圆的焦点为,点是椭圆上的一点,与轴的交点恰为的中点, .(1)求椭圆的方程;(2)若点为椭圆的右顶点,过焦点的直线与椭圆交于不同的两点,求面积的取值范围.【答案】(1)(2)【解析】(1)根据已知分析可得点横坐标为1,纵坐标为,,即点。
2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)
2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。
人教A版高中数学选修第一册同步练习3.1.1 椭圆及其标准方程-A基础练(详细解析版)
3.1.1椭圆及其标准方程 -A 基础练一、选择题1.(2020·全国高二课时练习)下列说法正确的是( ) A .到点12(4,0),(4,0)F F -的距离之和等于8的点的轨迹是椭圆 B .到点12(4,0),(4,0)F F -的距离之和等于6的点的轨迹是椭圆 C .到点12(4,0),(4,0)F F -的距离之和等于12的点的轨迹是椭圆 D .到点12(4,0),(4,0)F F -距离相等的点的轨迹是椭圆 【正确答案】C【详细解析】对于选项A ,128F F =,故到点12,F F 的距离之和等于8的点的轨迹是线段12F F ,所以该选项错误;对于选项B ,到点1,2,F F 的距离之和等于6的点的轨迹不存在,所以该选项错误;对于选项C ,根据椭圆的定义,知该轨迹是椭圆,所以该选项正确;对于选项D ,点的轨迹是线段12F F 的垂直平分线,所以该选项错误.故选:C2.(2020·沙坪坝·重庆一中月考)若椭圆22:184x y C +=的右焦点为F ,过左焦点F '作倾斜角为60︒的直线交椭圆C 于P ,Q 两点,则PQF △的周长为( ) A.B.C .6D .8【正确答案】B【详细解析】由椭圆方程可知28a a =⇒= 根据椭圆的定义可知'2PF PF a +=,'2QF QF a +=,PQF △的周长为''4PQ PF QF PF QF PF QF a ++=+++==3.(2020·天津一中期中)若椭圆2a 2x 2-ay 2=2的一个焦点是(-2,0),则a =( ) ABCD【正确答案】C【详细解析】由原方程可得222y 112x a a -=,因为椭圆焦点是(-2,0),所以2124a a ⎛⎫--= ⎪⎝⎭,解得a =,因为20a ->,即0a <,所以a =,故选:C 4.(2020·浙江丽水高二月考)已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .2213620x y +=(x≠0)B .2212036x y +=(x≠0)C .221620x y +=(x≠0)D .221206x y +=(x≠0)【正确答案】B【详细解析】∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC =8,AB +AC =20﹣8=12,∵12>8,∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵a =6,c =4,∴b 2=20,∴椭圆的方程是()22102036x y x +=≠,故选B .5.(多选题)已知椭圆22:13620x y E +=的左、右焦点分别为12,F F ,定点(1,4)A ,若点P 是椭圆E 上的动点,则1||PA PF +的值可能为( ) A .7B .10C .17D .19【正确答案】ABC【详细解析】由题意可得2(4,0)F ,则25AF ==,故22|||5PA PF AF -=|.因为点P 在椭圆E 上,所以12212PF PF a +==,所以1212F PF P =-,故1||12||PA PF PA +=+2PF -,由于25||5PA PF --,所以17||17PA PF +,故1||PA PF +的可能取值为7,10,17.6.(多选题)(2020全国高二课时练习)已知P 是椭圆2214x y +=上一点,12,F F 是其两个焦点,则12F PF ∠的大小可能为( )A .34π B .23π C .2π D .4π 【正确答案】BCD【详细解析】设12,PF m PF n ==,则0,0m n >>,且24m n a +==,在12FPF △中,由余弦定理可得2221212()2122cos 122m n m n mn F PF mn mn mn +-+--∠===-,因为242m n mn +⎛⎫= ⎪⎝⎭,所以121cos 2F PF ∠-,当且仅当m n =时取等号,故12F PF ∠的最大值为23π,所以12F PF ∠的大小可能为2,,324πππ.故选:BCD 二、填空题7.(2020全国高二课时练)已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为2√15,则此椭圆的标准方程为 . 【正确答案】y 216+x 2=1【详细解析】由已知2a=8,2c=2√15,所以a=4,c=√15,所以b 2=a 2-c 2=16-15=1.又椭圆的焦点在y 轴上,所以椭圆的标准方程为y 216+x 2=1. 8.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则点M 的纵坐标为.【正确答案】±√34【详细解析】∵线段PF 1的中点M 在y 轴上且O 是线段F 1F 2的中点,∴OM 为△PF 1F 2的中位线,∴PF 2⊥x 轴,∴点P 的横坐标是3或-3,∵点P 在椭圆上,∴912+y 23=1,即y 2=34,∴y=±√32.∴点M 的纵坐标为±√34.9.(2020河北石家庄二中高二月考)已知椭圆()222:1024x y C b b +=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______.【正确答案】32【详细解析】根据椭圆的定义:2231PF a =-=,在焦点12PF F △中,由余弦定理可得:222212121242cos73c F F PF PF PF PF π==+-⋅=,274c ∴=,则22279444b ac =-=-=,所以,32b =.10.(2020·江西南昌二中高二月考)如图所示,12F F 分别为椭圆2222x y 1a b+=的左右焦点,点P 在椭圆上,2POF ,则2b 的值为 .【正确答案】【详细解析】2POF ,2=解得2c =.(P ∴代入椭圆方程可得:22131a b+=,与224a b =+联立解得:2b = 三、解答题11.求满足下列条件的椭圆的标准方程. (1)焦点在y 轴上,焦距是4,且经过点M (3,2);(2)c ∶a=5∶13,且椭圆上一点到两焦点的距离的和为26. 【详细解析】 (1)由焦距是4可得c=2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,2a=√32+(2+2)2+√32+(2-2)2=8, 所以a=4,所以b 2=a 2-c 2=16-4=12.又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1. (2)由题意知,2a=26,即a=13,又c ∶a=5∶13,所以c=5, 所以b 2=a 2-c 2=132-52=144,因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1.12. (2020·富平县富平中学高二月考)已知某椭圆C,它的中心在坐标原点,左焦点为F (﹣,0),且过点D (2,0).(1)求椭圆C 的标准方程;(2)若已知点A(1,),当点P在椭圆C上变动时,求出线段PA中点M的轨迹方程.【详细解析】(1)由题意知椭圆的焦点在x轴上,∵椭圆经过点D(2,0),左焦点为F(﹣,0),∴a=2,c=,可得b=1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,∴线段PA中点M的轨迹方程是.。
高中数学选择性必修一精讲精炼 1 椭圆的简单几何性质(精讲)(教师含解析)
3.1.2 椭圆的简单几何性质(精讲)考点一离心率【例1】(1)(2021·四川高二期末(文))椭圆()222210x ya ba b+=>>的左右焦点分别是1F,2F,以2F为圆心的圆过椭圆的中心,且与椭圆交于点P,若直线1PF恰好与圆2F相切于点P,则椭圆的离心率为( ).A B C1D(2)(2021·黄冈天有高级中学高二月考)已知12,F F是椭圆的两个焦点,过1F且与椭圆长轴垂直的直线交椭圆于,A B两点,若2ABF是等腰直角三角形,则这个椭圆的离心率是( )A B.2C1D【答案】(1)C(2)C【解析】(1)由题意2PF c=,12PF PF⊥,所以1PF===,所以122PF PF c a++=,所以离心率为1cea=.故选:C.(2)不妨设椭圆方程为()222210x ya ba b+=>>,焦点()()12,0,,0F c F c-,离心率为e,将x c =代入22221c y a b +=可得2b y a =±,所以22bAB a =,又2ABF 是等腰直角三角形,所以212224bAB F F c a===,所以22b c a =即2220c a ac -+=,所以2210e e +-=,解得1e =(负值舍去).故选:C. 【一隅三反】1.(2021·河北石家庄二中高一期末)若焦点在x 轴上的椭圆 22116x y m +=+m = A .31 B .28 C .25 D .23【答案】D【解析】焦点在x 轴上,所以221,6a m b =+= 所以2165c m m =+-=-离心率e =,所以2225314c m e a m -===+解方程得m=23 所以选D2.(2021·江苏高二期末)设1F ,2F 为椭圆2222:1(0)x y C a b a b +=>>的两个焦点,点P 在C 上,且1122,,PF F F PF 成等比数列,则C 的离心率的最大值为( ) A .12 B .23C .34D .1【答案】A【解析】设()2120F F c c =>,122PF PF a +=, 因为1122,,PF F F PF 成等比数列, 所以2212124F F PF PF c =⨯=,由12PF PF +≥2a ≥ 即12c e a =≤,当且仅当12PF PF =等号成立, 所以椭圆C 的离心率最大值为12. 故选:A.3.(2021·全国高二课时练习)在Rt ABC 中,1AB AC ==,如果一个椭圆通过A 、B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率e =( )A B 1C 1D -【答案】D【解析】设另一个焦点为F ,如图所示,∵||||1AB AC ==,||BC42AB AC BC a ++==a =,设FA x =,则12x a +=,12x a -=,∴x =2214c +=,c =c e a ==故选:D.考点二 点与椭圆的位置关系【例2】(1)(2021·广西平果二中(理))点(1,1)与椭圆22132x y +=的位置关系为( )A .在椭圆上B .在椭圆内C .在椭圆外D .不能确定(2)(【新教材精创】3.1.2 椭圆的简单几何性质(2) 导学案-人教A 版高中数学选择性必修第一册)若点(),1P a 在椭圆22123x y +=的外部,则a 的取值范围为( )A .⎛ ⎝⎭B .,⎫⎛+∞⋃-∞⎪ ⎪ ⎝⎭⎝⎭C .4,3⎛⎫+∞ ⎪⎝⎭D .4,3⎛⎫-∞- ⎪⎝⎭【答案】(1)B(2)B【解析】(1)1151326+=<,可知点(1,1)在椭圆内.故选:B.(2)因为点(),1P a 在椭圆22123x y +=的外部,所以221123a +>,即243a >,解得a >a <.故选:B. 【一隅三反】1.(2021·安徽定远二中)点()1,0.7P 与椭圆2212x y +=的位置关系为( )A .在椭圆内B .在椭圆上C .在椭圆外D .不能确定【答案】A【解析】2210.70.9912+=<,所以,点P 在椭圆2212x y +=内.故选:A.2.(2021·甘肃省民乐县第一中学高三二模(理))若直线9mx ny +=和圆229x y +=没有交点,则过点(,)m n 的直线与椭圆221916x y +=的交点个数为( )A .1个B .至多一个C .2个D .0个【答案】C【解析】因为直线9mx ny +=和圆229x y +=没有交点, 3>,即229m n +<,所以2222191699m n m n +≤+<,即点(,)m n 在椭圆221916x y +=内, 所以过点(,)m n 的直线与椭圆221916x y +=的交点个数为2个. 故选:C考点三 直线与椭圆的位置关系【例3】(2021·安徽省泗县第一中学)已知椭圆的长轴长是(,. (1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于两不同的点,求m 的取值范围.【答案】(1)2213x y +=;(2)22m -<<.【解析】(1)由已知得2a =c = 解得a =2321b ∴=-=,∴椭圆的标准方程为2213x y +=. (2)由2213y x m x y =+⎧⎪⎨+=⎪⎩,解方程组并整理得2246330x mx m ++-=, 有两个不同的交点∴222(6)44(33)12(4)0m m m ∆=-⨯⨯-=-->.解不等式得22m -<<. m ∴的取值范围(2,2)-.【一隅三反】1.(2021·上海市长征中学)设直线与椭圆的方程分别为 2y x b =+与2217525x y +=,问b 为何值时,(1)直线与椭圆有一个公共点; (2)直线与椭圆有两个公共点; (3)直线与椭圆无公共点.【答案】(1)b =±(2)b -<(3)b <-b >【解析】设直线与椭圆的方程分别为 2y x b =+与2217525x y +=,问b 为何值时, 由22217525y x b x y =+⎧⎪⎨+=⎪⎩得2213172530x bx b ++=-.(1)当()()22124133075b b =--∆⨯⨯=,即b =±(2)当()()22124133075b b =--∆⨯⨯>,即b -<(3)()()22124133075b b =--∆⨯⨯<即b <-b >时直线与椭圆无公共点.2.(2021·广东高二期末)在平面直角坐标系xOy 中,已知点P到两点(M N 的距离之和等于4,设点P 的轨迹为曲线C .(1)求曲线C 的方程.(2)若直线2y kx =+与曲线C 有公共点,求实数k 的取值范围. 【答案】(1)2214x y +=;(2)|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.【解析】(1)由己知得4PM PN MN +=>=由椭圆定义可知,轨迹C 是以M ,N为焦点,焦距长2c =24a =的椭圆. 所以222431b a c =-=-=,所以曲线C 的方程是2214x y +=.(2)由22214y kx x y =+⎧⎪⎨+=⎪⎩得()221416120k x kx +++=. ()()22216412146448k k k ∆=-⨯⨯+=-,因为直线2y kx =+与曲线C 有公共点, 所以0∆≥,即264480k -≥,解得k ≤k ≥故实数k的取值范围是|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.3.(2021·莆田第十五中学高二期末)直线0x y m --=与椭圆2219xy +=有且仅有一个公共点,求m 的值.【答案】m =【解析】将直线方程0x y m --=代入椭圆方程2219x y +=, 消去x 得到:2210290y my m -++=,令0∆=,即()22441090m m -⨯-=解得m =考点四 弦长【例4-1】(2021·全国高二课时练习)直线x -y +1=0被椭圆23x +y 2=1所截得的弦长|AB |等于( )A.2BC.D.【答案】A【解析】由2210,1,3x y x y -+=⎧⎪⎨+=⎪⎩得交点为(0,1),31(,)22--,则|AB |故选:A.【例4-2】(2021·陕西高二期末(理))已知椭圆()2222:10y x E a b a b +=>>的焦距为⎫⎪⎪⎝⎭在椭圆E 上.(1)求椭圆E 的标准方程;(2)设直线1y kx =+与椭圆E 交于M 、N 两点,O 为坐标原点,求OMN 面积的取值范围. 【答案】(1)2214y x +=;(2)⎛ ⎝⎦. 【解析】(1)因为焦距为2c =c =因为点⎫⎪⎪⎝⎭在椭圆E 上,所以221314a b +=,联立222221314c a b a b c ⎧=⎪⎪+=⎨⎪=+⎪⎩,解得24a =,21b =,椭圆E 的标准方程为2214y x +=. (2)设()11,M x y ,()22,N x y ,联立22141y x y kx ⎧+=⎪⎨⎪=+⎩,整理得()224230k x kx ++-=,0∆>,则12224k x x k +=-+,12234x x k =-+,原点到直线1y kx =+,则MON △的面积12S ==令t =t ≥,22211t S t t t==++,令1y t t =+,则221t y t-'=,函数1yt t =+在)+∞上单调递增,故1t t +≥,201t t <≤+OMN 面积的取值范围为⎛ ⎝⎦. 【一隅三反】1.(2021·安徽省泗县第一中学高二开学考试(理))已知椭圆的长轴长是(),).(1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于A 、B两不同的点,若2AB =,求m 的值. 【答案】(1)2213x y +=;(2)1m =±.【解析】(1)由已知得2a =a =c =2221b a c =-=所以椭圆的标准方程2213x y +=(2)由2213y x m x y =+⎧⎪⎨+=⎪⎩消除y 得2246330x mx m ++-= 因为有两个不同的交点,所以()222(6)44(33)1240m m m ∆=-⨯⨯-=-->得m 的取值范围为()2,2- 由韦达定理得:126342m m x x --+== ,212334m x x -=所以2AB ==解得1m =±2.(2021·四川高二期末(文))已知椭圆1C 以直线0x my +=所过的定点为一个焦点,且短轴长为4. (1)求椭圆1C 的标准方程;(2)过点()1,0C 的直线l 与椭圆1C 交于A ,B 两个不同的点,求OAB 面积的最大值. 【答案】(1)22194x y +=;【解析】(1)直线0x my +过定点),即椭圆的一个焦点为),依题意:椭圆1C 的半焦距c =2b =,长半轴长a 有2229a b c =+=, 所以椭圆1C 的标准方程为22194x y +=; (2)显然点()1,0C 在椭圆内部,即直线l 与椭圆必有两个不同的交点, 由题意得直线l 不垂直于y 轴,设直线l 的方程为1x ky =+,由2214936x ky x y =+⎧⎨+=⎩消去x 整理得()22498320k y ky ++-=, 设()11,A x y ,()22,B x y ,则122849k y y k -+=+,1223249y y k -=+, 从而有1212111||||222△△△OAB AOC BOC S S S OC y OC y y y =+=⋅⋅+⋅⋅=-421k =++121=,t 1()4f t t t=+在)+∞单调递增, 则t 0k=时,14t t =+≥=于是有129AOB S ≤△0k =时等号成立, 所以OAB 3.(2021·重庆字水中学高二期末)已知椭圆22:1y E x m +=的下焦点为1F 、上焦点为2F ,其离心率e =过焦点2F 且与x 轴不垂直的直线l 交椭圆于A 、B 两点 (1)求实数m 的值;(2)求ABO (O 为原点)面积的最大值. 【答案】(1)2m =;【解析】(1)由题意可得:21b =,2a m =,可得1b =,a =因为c e a ==c = 因为222a b c =+,所以12mm =+,可得2m =,(2)由(1)知:椭圆22:12y E x +=,上焦点()20,1F ,设()11,A x y ,()22,B x y ,直线:l 1y kx =+, 由22112y kx y x =+⎧⎪⎨+=⎪⎩可得:()222210k x kx ++-=,所以12222k x x k -+=+,12212-=+x x k ,所以()()()()222222121212222222442248842222k k k k x x x x x x k k k k ++-+⎛⎫-=+-=+== ⎪++⎝⎭++,可得:12x x -=所以12211122ABOSx x OF =⨯-⨯==≤即0k =时等号成立,所以ABO (O 为原点)面积的最大值为2. 考点五 中点弦与点差法【例5】(1)(2021·全国高二专题练习)已知椭圆2219x y +=,过点11,22P ⎛⎫ ⎪⎝⎭的直线与椭圆相交于A 、B 两点,且弦AB 被点P 平分,则直线AB 的方程为( ) A .950x y +-= B .940x y --= C .950x y +-=D .940x y -+=(2)(2021·南京市中华中学高二期中)已知椭圆C :22221x y a b +=(0a b >>)的左焦点为F ,过点F的直线0x y -与椭圆C 相交于不同的两点A ,B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( )A .22132x y +=B .2214x y +=C .22142x y +=D .22163x y +=【答案】(1)C(2)D【解析】(1)设点()11,A x y 、()22,B x y ,由已知可得121211x x y y +=⎧⎨+=⎩, 因为点A 、B 都在椭圆上,则221122221919x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差可得()()()()1212121209x x x x y y y y -++-+=,即()121209x x y y -+-=, 所以,直线AB 的斜率为121219AB y y k x x -==--,因此,直线AB 的方程为111292y x ⎛⎫-=-- ⎪⎝⎭,即950x y +-=. 故选:C.(2)直线0x y -过点F ,令0y =则x =()F,即c =设()()1122,,,A x y B x y ,则2222112222221,1x y x y a b a b +=+=,两式相减并化简得2121221212y y y y b a x x x x +--=⋅+-,所以222222111222b b a b a a ⎛⎫-=-⋅⇒=⇒= ⎪⎝⎭,22223,c a b b b a =-====所以椭圆C 的方程为22163x y +=.故选:D 【一隅三反】1.(2021·浙江嘉兴·高二期中)已知点P Q M ,,是椭圆2222:1(0)x y C a b a b +=>>上的三点,坐标原点O 是PQM的重心,若点M ⎫⎪⎪⎝⎭,直线PQ 的斜率恒为12-,则椭圆C 的离心率为( ) ABCD【答案】D【解析】设()()1122,,,P x y Q x y,又,M ⎫⎪⎪⎝⎭由原点O 是PQM的重心,得1212220,033x x y y ++==,即1212,x x y y +=+=, 又P Q ,是椭圆2222:1(0)x y C a b a b+=>>上的点,2222112222221,1x y x y a b a b∴+=+=, 作差可得:()()()()1212121222x x x x y y y y a b -+-+=-,即()()2212122121212b b x x y y x x a y y ⎛⎫⋅ ⎪+-=-=-=-+⎝⎭,即12b a =,∴c e a===, 故选:D2.(2021·河南新乡·高二期末(理))已知椭圆()2222:10x y G a b a b+=>>的右焦点为()F ,过点F 的直线交椭圆于A 、B 两点.若AB的中点坐标为,则G 的方程为( )A .2213214+=x yB .2213820+=x yC .2214830+=x yD .2213618x y +=【答案】D【解析】设点()11,A x y 、()22,B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两个等式作差得22221212220x x y y a b --+=, 整理可得2221222212y y b x x a-=--, 设线段AB的中点为M,即2121221212AB OMy y y y b k k x x x x a-+⋅=⋅=--+,另一方面12AB MFk k ==,1OM k =-,所以,()2211122b a -=⨯-=-,所以,22222182c a b a b ⎧=-=⎨=⎩,解得223618a b ⎧=⎨=⎩, 因此,椭圆G 的方程为2213618x y +=.故选:D.3.(2021·江苏)已知椭圆C 的方程为2214x y +=,直线AB 与椭圆C 交于A ,B 点,且线段AB 的中点坐标为1(1,)2,则直线AB 的方程为( )A .3220x y --=B .4230--=x yC .2230x y +-=D .+220x y -=【答案】D【解析】设,A B 两点的坐标分别为1122(,),(,)x y x y ,则有221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得12121212()()()()04x x x x y y y y -++-+=, ∴121212124()y y x xx x y y -+=--+. 又12122,1x x y y +=+=, ∴121221412y y x x -=-=--⨯,即直线AB 的斜率为12-, ∴直线AB 的方程为11(1)22y x -=--,即+220x y -=. 故选:D.4.(2021·河北辛集中学高二期中)过椭圆216x +24y =1内一点M (2,1)引一条弦,使弦被M 点平分.(1)求此弦所在的直线方程; (2)求此弦长.【答案】(1)x +2y -4=0;【解析】(1)设所求直线方程为y -1=k (x -2).代入椭圆方程并整理,得 (4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0,① 又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程的两个根,于是x 1+x 2=228(2)41k k k -+.又M 为AB 的中点,∴122x x +=224(2)41k k k -+=2,解得k =-12,直线方程为11(2)2y x -=--,即x +2y -4=0.(2)由(1)将k =-12代入①得,x 2-4x =0, ∴120,4x x ==, ∴|AB |12|x x -=考点六 最值【例6】(1)(2021·浙江高二期末)点P 、Q 分别在圆(222x y +=和椭圆2214x y +=上,则P 、Q 两点间的最大距离是( )A .B .C .D .(2)(2021·江苏高二开学考试)已知椭圆22:194x y C +=的右顶点为2A ,直线:l x m =与椭圆C 相交于A ,B 两点,当2∠AA B 为钝角时,m 的取值范围是( ). A .150,13⎛⎫⎪⎝⎭B .15,313⎛⎫ ⎪⎝⎭C .1515,00,1313⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .15153,,31313⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭【答案】(1)C(2)B【解析】(1)圆(222x y +=的圆心为(C ,半径为r =设点(),Q x y ,则2244x y =-且11y -≤≤,CQ ==,当且仅当3y =-时,等号成立,所以,max max PQ CQ r =+=故选:C.(2)易知33m -<<,x m=代入22194x y +=得y =±AB =由对称性知2AA B 是等腰三角形,AB 是底,设AB 与x 轴交点为M ,如图, 2∠AA B 为钝角,则24AA M π∠>,∴2AM MA >,即3m >-,解得15313m <<.故选:B .【一隅三反】1.(【新东方】高中数学20210429—004【2020】【高二上】)已知P 为椭圆22221x y a b+=上一点,12,F F 是焦点,12F PF ∠取最大值时的余弦值为13,则此椭圆的离心率为_______.【解析】依题意12122,2PF PF a F F c +==,222a b c =+,当12F PF ∠取最大值时,即12cos F PF ∠最小,即12cos F PF ∠的最小值为13.而()222221212121212121224cos 22PF PF PF PF c PF PF F F F PF PF PF PF PF +-⋅-+-∠==⋅⋅222121212424212a PF PF c b PF PF PF PF -⋅-==-⋅⋅, 而()2122124PF PF PF PF a +⋅≤=,当且仅当12PF PF a ==时等号成立,故21222cos 1b F PF a∠≥-,当且仅当12PF PF a ==时等号成立,所以12cos F PF ∠的最小值为222113b a -=,即2223ba =,故c e a ===2.(2021·重庆西南大学附中高二期末)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点为1F 、2F ,离心率为12,过2F 的直线l 交C于A 、B 两点,若1AF B △的周长为8.(1)求椭圆C 的标准方程;(2)若椭圆上存在两点关于直线4y x m =+对称,求m 的取值范围.【答案】(1)22143x y +=;(2)m <<【解析】(1)1AF B △周长为8,即48a =,2a ∴=.又因为12e =,1c ∴=,b =椭圆方程22143x y C +=:,(2)设椭圆上两点11(,)A x y ,22(,)B x y 关于4y x m =+对称,则AB 的方程为14y x t =-+,由2214143y x t x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 有:2213816480x tx t -+-= 由22(8)413(1648)0.t t ∆=--⨯⨯->得213,4t <① 又1212128124,()213413t tx x y y x x t +=+=-++=因为AB 的中点在直线4y x m =+上,所以1212422y y x x m ++=+,即12441313t tm =⨯+ 所以1340m t +=②,由①②得:2413m <,即m <<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆练习题一.选择题:1.已知椭圆上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D )A .2B .3C .5D .72.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C )A. B. C. D. 3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为4的椭圆方程是( B )A4.椭圆的一个焦点是,那么等于( A )A. B.C.D.5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A.B.C.D.6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B )A.B .C .D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( C )。
A +=1B +=1C +=1D +=18.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C )(A)450 (B)600 (C)900 (D)1209.椭圆上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D .1162522=+y x 22143x y +=22134x y +=2214x y +=2214y x +=51858014520125201202522222222=+=+=+=+y x D y x C y x B y x 2255x ky -=(0,2)k 1-1512221(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=221254x y +=16x 29y 216x 212y 24x 23y 23x 24y 2221259x y +=2310.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 ( C )(A )2 3 (B )6 (C )4 3 (D )12二、填空题:11.方程表示焦点在轴的椭圆时,实数的取值范围_____12.过点且与椭圆有共同的焦点的椭圆的标准方程为_13.设,,△的周长是,则的顶点的轨迹方程为14.如图:从椭圆上一点向轴作垂线,恰好通过椭圆的左焦点,且它的长轴端点及短轴的端点的连线∥,则该椭圆的离心率等于_____________三、解答题:15.已知椭圆的对称轴为坐标轴,离心率,短轴长为,求椭圆的方程。
或 16.已知点和圆:,点在圆上运动,点在半径上,且,求动点的轨迹方程。
17.已知A 、B 为椭圆+=1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=a ,AB 中点到椭圆左准线的距离为,求该椭圆方程.设,,由焦半径公式有 =,∴221||12x y m +=-y m (1,3)(3,1)m ∈--(2,3)-229436x y +=2211510y x +=(5,0)M -(5,0)N MNP 36MNP ∆P 221(0)169144x y y +=≠M x 1F AB ABOM 232=e 5818014422=+y x 11448022=+y x ()3,0A 1O ()16322=++y x M 1O P M O 1PA PM =P 1422=+y x 22a x 22925a y 5823)y ,A(x 11)y ,B(x 22,54=e 21ex a ex a -+-a 5821x x +=, 即AB 中点横坐标为,又左准线方程为,∴,即=1,∴椭圆方程为x 2+y 2=1.18.(10分)根据条件,分别求出椭圆的方程: (1)中心在原点,对称轴为坐标轴,离心率为,长轴长为; (1)或 (2)中心在原点,对称轴为坐标轴,焦点在轴上,短轴的一个顶点与两个焦点组成的三角形的周长为,且。
19.(12分)已知为椭圆的左、右焦点,是椭圆上一点。
(1)求的最大值;(2)若且,求的值;(当且仅当时取等号), (2), ① 又 ② 由①②得一、选择题(本大题共10小题,每小题5分,共50分)2.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( D )A.14822=+x y B .161022=+x y C .18422=+x y D .161022=+y x3.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为 ( D )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1) 4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF ,则点P 的轨迹是( D ) A .椭圆B .线段C .不存在D .椭圆或线段a 21a 41a x 45-=234541=+a a a 9251282211612x y +=2211612y x +=x B 12,F F 4+1223F BF π∠=22141x y +=12,F F 2221(010)100x y b b +=<<P 12||||PF PF ⋅1260F PF ∠=12F PF ∆b 21212||||||||1002PF PF PF PF +⎛⎫≤= ⎪⎝⎭12||||PF PF =()12max |||100PF PF ∴⋅=12121||||sin 6023F PF S PF PF ∆=⋅=12256||||3PF PF ∴⋅=22212122221212||||2||||4||||42||||cos60PF PF PF PF a PF PF c PF PF ⎧++⋅=⎨+-=⋅⎩2123||||4004PF PF c ⇒⋅=-68c b =∴=5.椭圆12222=+by a x 和k b y a x =+2222()0>k 具有 ( A )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴 6.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为 ( D )A .41B .22 C .42 D .21 7.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是 ( B )A .16B .66 C .75 D .778.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( D )A .3 B.11 C .22D.1022x y +=14cos 2sin 164+0d 4P P ααα⎛⎫⎪⎝⎭试题分析:∵椭圆方程,可设椭圆上任意一点坐标(,)∴到直线的距离π∵≤≤方法二:由题意只需求于直线2y =14相切的点取到最大值或最小值设此直线为x+2y+c=0,x=-2y-c2y =14化简得228y +4cy+c -16=0()()22=-484c c -06=1∆⋅⋅c=±解两直线的距离max d9.在椭圆13422=+y x 内有一点P(1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是( C )A .25 B .27 C .3D .4()22a c01(M )a x==41e=2c4-1=3.e e MF MN MP MF P PN N PN MP MF <<=++到定点(焦点)距离与到定直线(准线)的距离的比等于定值的点的轨迹叫椭圆。
可知2点到准线距离所以2的最小值,就是由作垂直于椭圆的准线于。
的长即为所求解:由已知,椭圆的离心率由椭圆的第二定义,。
椭圆右准线方程2的最小值: 10.过点M (-2,0)的直线m 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为 ( )A .2B .-2C .21D .-211222211122111222112111112221112121-2,0y=k x+22k +1x 8k 8k 20-8k -4k x +x =2k +12k +12k -4k 2k k x +2)2k +12k +12k +1-11k =k k =-2k 2M x P P P ++-==解析:设过()的直线方程为()代入椭圆方程整理得()∴,∴的横坐标的纵坐标为(得(,)OP 斜率,二、填空题(本题共4小题,每小题6分,共24分)11.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 1273622=+x y .12.与椭圆4 x 2+ 9 y 2= 36 有相同的焦点,且过点(-3,2)的椭圆方程为_1101522=+y x ___.13.已知()y x P ,是椭圆12514422=+y x 上的点,则y x +的取值范围是__]13,13[-____ .14.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于____54_ 高考及模拟题:1. (文科)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( B ) A.12 B.22 C. 2 D.322. (理科)如果一个椭圆的长轴长是短轴长的2倍,那么这个椭圆的离心率为( B ) A.54B.32C.22D.123.若椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,抛物线y 2=2bx 的焦点为F .若F 1F →=3FF 2→,则此椭圆的离心率为( B ) A.12B.22C.13D.334.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( C )A .(0,1)B .(0,12]C.⎝ ⎛⎭⎪⎫0,22 D.⎣⎢⎡⎭⎪⎫22,1解:由向量垂直可知M 点轨迹是以原点为圆心,半径等于半焦距的圆。
所以圆在椭圆内部,222222c 1c b c a -c e =0e a 2<,即<,解<,所以<5.过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( B ) A.22B.33C.12D.136.(2008年全国卷Ⅰ)在△ABC 中,AB =BC ,cos B =-718.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e =____.38_______.(余弦定理)7.(2009年田家炳中学模拟)设椭圆x 2a 2+y 2b 2=1(a >b >0)的四个顶点分别为A 、B 、C 、D,若菱形ABCD 的内切圆恰好经过椭圆的焦点,则椭圆的离心率为_(只能求出e 的平方)_______.4224422(a b x y+=1a ba -3a c +c =0e -3e +1=0e 0e 1A 解:设,0),B (0,)则直线AB 的方程为,由内切圆恰好经过交点得整理得,即,解得∵<<,所以 8.(2008年江苏卷)在平面直角坐标系中,椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2,以O 为圆心,a 为半径作圆,过点⎝ ⎛⎭⎪⎫a 2c ,0作圆的两切线互相垂直,则离心率e =__22______.(利用45度的余弦值求e )。