晶体振荡器说明书

晶体振荡器说明书
晶体振荡器说明书

《通信电子线路》课程设计说明书

晶体振荡器

学院:电气与信息工程学院

学生姓名:易X

指导教师:伍XX职称/学位讲师

专业:通信工程

班级:通信1301班

学号:13304401XX

完成时间:2016年1月

石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号,晶体振荡器具有正反压电效应。当晶体几何尺寸和结构一定时,它本身有一个固有的机械振荡频率。当外加交流电压的频率等于晶体的固有频率时,晶体片的机械振动最大,晶体表面的电荷量很多,外电路的交流最强,于是产生了谐振。

设计中对利用石英晶体构成的正弦波的振荡器的方法做了较深入的研究,对振荡器的原理及石英晶体振荡器的原理做了详细的介绍并通过Multisim软件设计,仿真出并联型的石英晶体振荡器,最后按照原理图进行实物的连接、调试和参数的计算。

关键词:石英晶体;振荡器;Multisim仿真

1绪论 (1)

1.1设计目的 (1)

1.2设计任务 (1)

1.3主要技术指标 (1)

2设计思路 (2)

3硬件电路设计 (3)

3.1并联型晶体振荡器的设计 (3)

3.1.1并联型晶体振荡器的设计思想 (3)

3.1.2并联型晶体振荡器的设计 (3)

4电路元件及参数确定 (6)

4.1晶体振荡电路元件及参数的确定 (6)

5电路仿真 (7)

5.1晶体振荡器电路仿真原理图 (7)

5.2仿真结果 (7)

6电路的制作与调试 (9)

6.1晶体振荡器电路的制作 (9)

6.2晶体振荡器电路的调试 (9)

6.2.1调试过程及调试结果 (9)

6.2.2误差分析 (9)

6.3调试中注意事项 (10)

6.3.1测试点选择 (10)

6.3.2调试方法 (10)

结束语 (11)

参考文献 (12)

致谢 (13)

附录 (14)

附录A元件清单 (14)

附录B电路原理图 (15)

附录C电路实物图 (16)

1绪论

1.1设计目的

1.通过理论设计和实物制作解决相应的实际问题,巩固和运用在《高频电子线路》中所学到的理论知识和实践技能,掌握常用电路的一般设计方法,提高设计能力和实践动手能力。

2.掌握电子电路分析和设计的基本方法,根据设计任务和指标初选电路,调查研究和设计计算确定电路方案,选择元件,安装电路调试改进,分析实验结果,写出设计总结报告。

3.通过严格的科学训练和设计实践,逐步树立严肃认真,一丝不苟,实事求是的科学作风,能对实验结果独立的进行分析,进而做出恰当的评价。

1.2设计任务

设计一个晶体振荡器。

1.3主要技术指标

已知条件:电源电压V

=

Vcc12

+

主要技术指标:晶振频率10MHz,输出信号幅度≥0.5V(峰-峰值),输出信号电压可调。

2设计思路

石英晶体构成的正弦波振荡器的基本电路有两类,一类是并联型晶体振荡器,石英晶体作为高Q电感元件与回路中的其他元件形成的;另一类是串联型晶体振荡器,石英晶体工作在串联谐振状态,作为高选择性短路元件。设计中首先以NPN型晶体管9014和标称频率为10MHz的石英晶体为基分别设计不同形式的串并联型振荡器,通过对不同形式的串联型振荡器和并联型振荡器做出比较之后,综合设计出一个并联型的石英晶体正弦波振荡器,根据任务书的基本要求设计电路,然后根据设计图的基本形式和设计的主要技术指标计算出各元器件的参数和性能,用Multisim对设计出的电路图进行调试,从而完成整个晶体振荡器的设计。

3硬件电路设计

振荡器电路属于一种信号发生器类型,即表现为没有外加信号的情况下能自动生成具有一定频率、一定波形、一定振幅的周期性交变振荡信号的电子线路。振荡器起振时是将电路自身噪声或电源跳变中频谱很广的信号进行放大选频。此时振荡器的输出幅值是不断增长的,随着振幅的增大,放大器逐渐由放大区进入饱和区或者截止区,其增益逐渐下降,当放大器的增益下降而导致环路增益下降到1时,振幅的增长过程将停止,振荡器达到平衡,进入等幅振荡状态。振荡器进入平衡状态后,直流电源补充的能量刚好抵消整个环路消耗的能量。

3.1并联型晶体振荡器的设计

3.1.1并联型晶体振荡器的设计思想

1.起振条件:为了确保振荡器能够起振,设计的电路参数必须满足1||0>F A 的条件。而后,随着振荡幅度的不断增大,0A 就向A 过渡,直到1=AF 时,振荡达到平衡状态。显然,F A 0越大于1,振荡器越容易起振,并且振荡幅度也较大。但F A 0过大,放大管进入非线性区的程度就会加深,那么也就会引起放大管输出电流波形的严重失真。所以当要求输出波形非线性失真很小时,应使F A 0的值稍大于1。式(1)和(2)分别称为振荡器起振的相位条件和振幅条件:

π

??n 2=+F A (n=0,1,2,...)(1)10>F A (2)

2.平衡条件:振荡建立起来之后,振荡幅度不会无限制地增长下去,因为随着振荡幅度的增长,放大器的动态范围就会延伸到非线性区,放大器的增益将随之下降,振荡幅度越大,增益下降越多,最后当反馈电压正好等于原输入电压时,振荡幅度不再增大而进入平衡状态。平衡条件是研究振荡器的理论基础,利用振幅平衡条件可以确定振荡幅度,利用相位平衡条件可以确定振荡频率。式(3)、

(4)即为相位平衡条件和振幅平衡条件:

π

??n 2=+F A (n=0,1,2,...)(3)1||0==F A T (4)

3.1.2并联型晶体振荡器的设计

并联型晶体振荡器主要有两大类。C —B 型(亦称皮尔斯)晶体振荡器和B —E 型(亦称密勒)晶体振荡器。综合各方面因素,设计中的振荡器采用皮尔斯晶体振荡器。设计电路的原理电路分别如图1所示。

图1皮尔斯晶体振荡电路

由图1可见,石英晶体与外部电容1C 、3C 、4C 并联谐振回路,它在电路中起电感作用,构成改进型的电容三点式LC 振荡器,电路中1C 可用可调电容代替(实际电路用的是固定电容),用来微调电路的振荡频率,使振荡器振荡在石英晶体的标称频率上,1C 、3C 、4C 串联组成石英晶体的负载电容L C 。

射极跟随器

射极跟随器又叫射极输出器,是一种典型的负反馈放大器。其特点为输入阻抗高,输出阻抗低,因而从信号源索取的电流小而且带负载能力强,在此设计中主要用它连接两电路,减少电路间直接相连所带来的影响,起缓冲作用,避免负载变化对振荡电路的影响。设计中的射极跟随器电路图如图2所示。

由图2可知,3R 和4R 是偏置电阻,5C 是耦合电容。信号从基极输入,从发射极输出。晶体管发射极接的电阻5R ,在电路中具有重要作用,它好像一面镜子,反映了输出、输入的跟随特性。

整合并联型晶体振荡器和射极跟随器,最终电路原理图见附录B 。

图2射极跟随器电路图

4电路元件及参数确定

4.1晶体振荡电路元件及参数的确定

高频振荡器的工作点要合适,若偏低、偏高都会使振荡波形产生严重失真,甚至停振。实际中取CQ I =0.5~5mA 之间,若取CQ I =2mA ,V 6V CEQ =,则有:Ω=-=-=+k mA V I V V R CQ CEQ

CC c e 32)612(R (5)

为提高电路的稳定性,Re 值可适当增大,取Re=Ωk 1,则Rc=2Ωk ,则有:2v k 1mA 2R I V e CQ EQ =Ω?=?=(6)

mA mA 033.0602/I I CQ BQ ≈==β若取流过b2R 的电流b2I 为10BQ I ,则

b2I =10,BQ I =0.33mA ,则取:

V V V V V R R EQ CC b b b 7.27.027.0R V 2

12BQ =+=+≈?+=(7)Ω=Ω≈==k R k mA V I V R b b BQ b 2.28,833.07.2/122(8)

实际电路中,b1R 采用10K 的电阻和50K 的电位器(方便静态工作点的调节),b2R 采用用10K 的电阻。

对于振荡器,当电路接为并联型振荡器时,晶体起到等效电感的作用,输出频率应为10MHZ,则由0f =1/2πLC 知负载电容CL=33.3pF,即C1,C3,

C4串联后的总电容为33.3pF,则取C1=100pF,C3=100pF,C4=100pF。

信号通过C5耦合出来,在经过一个射极跟随器输出,提高带负载能力。

5电路仿真

5.1晶体振荡器电路仿真原理图

按照设计的电路图及设计要求,用Multisim 仿真软件画出的晶体振荡器的仿真图如图3所示。

图3晶体振荡器仿真图

5.2仿真结果

(1)晶体振荡器的输出频率0f 称为主振频率或载波频率。用数字频率计测量回路的谐振频率0f ,用万用表交流档测量输出信号幅度p p V -,示波器监测振荡波形。起振波形如图4所示:

图4晶体振荡器起振波形

测得起振波形频率为10.577z MH 和输出幅度为735.74mV(2520

),如图

5和图6所示:

图5晶体振荡起振波形的频率

图6输出信号幅度

由图4、图5和图6可知,设计结果尽管存在误差,但基本满足技术指标中的要求,主要是软件的缺陷以及晶振用的是10z MH 的。

6电路的制作与调试

6.1晶体振荡器电路的制作

根据计算出的参数,从市场上买回所需的元器件,然后参照电路原理图,焊接在万用板上(因为时间问题以及其他客观原因实物没有用PCB 板制作),焊接好的板子见附录C 。

6.2晶体振荡器电路的调试

6.2.1调试过程及调试结果

用直流稳压电源供+12V 的直流电压,用示波器接晶体振荡器的输出端观察其输出波形、记录其输出电压及频率,并观察输出波形的稳定度。示波器的输出结果如图7所示。

图7示波器输出波形

从图7可知,晶体振荡器的输出波形稳定,晶振频率9.9989MHZ,和任务书要求很接近,输出电压幅度640mV ,满足输出信号幅度≥0.5V (峰-峰值),可通过电位器1R 和5R 来调节输出电压。

6.2.2误差分析

(1)设计器件,实验材料自身误差,不是十分精确。

(2)在焊接时,不能做到所有器件的线路都很合理,在操作是会有相互影响。

(3)参数设计不合理,使得功能不能更好的体现。

(4)实验用的元器件,如芯片易受温度的影响,实验时间过长,即会产生误差。(5)仪器的精度不够,无法精确的检验结果。

6.3调试中注意事项

由于晶体振荡器的工作频率较高,晶体管的结电容、引起分布电容及测量仪器对电路的性能影响均不能忽略。因此,在电路装调及测试时应尽量减少这些分布参数的影响。

6.3.1测试点选择

正确选择测试点,减小仪器对被测电路的影响。在高频情况下,测量仪器的输入阻抗(包含电阻和电容)及连接电缆的分布参数都有可能影响被测电路的谐振频率及谐振回路的Q值,为尽量减小这种影响,应正确选择测试点,使仪器的输入阻抗远大于电路测试点的输出阻抗。所有测量仪器如高频电压表、示波器、扫频仪、数字频率计等的地线及输入电缆的地线都要与被测电路的地线连接好,接线应尽量短。

6.3.2调试方法

一般高频电路的实验板应为印刷电路板,以保证元器件可靠焊接及连接导线固定,使电路的分布参数基本固定。高频电路的调试方法与低频电路的调试基本相同,也是先调整静态工作点,然后观测动态波形并测量电路的性能参数。所不同的是按照理论公式计算的电路参数与实际参数可能相差较大,电路的调试要复杂一些。

结束语

为期两周的课程设计让我在挥洒汗水的同时学到了很多的知识,痛并快乐着。

接到任务书之后,我将课本石英晶体振荡器这一小节看了好几遍,大概知道了晶体振荡器的基本概念和原理,然后针对课程设计任务书上的要求认真思考,从图书馆借了与晶体振荡器有关的参考书,也从网上下载了一些别人的设计方案,最后综合课本、参考书及网上资料进行原理设计。最开始设计时,我直接采用书上的皮尔斯晶体振荡器的电路图,通过振荡器的起振条件和平衡条件,计算出各元器件的参数以及性能,然后在Multisim上进行仿真并调试发现基本满足技术指标中的要求,但是输出波形极其不稳定,而且输出电阻带负载能力很弱。通过查阅参考书和阅读网上资料,我发现射极跟随器,带负载能力强,输入电压幅度与输出电压幅度近似相等,而且相位也相同,所以我在皮尔斯振荡器后加了射极跟随器,通过任务书要求很振荡器起振的原理,最终设计出了性能优良的晶体振荡器

这次让我认识到团队合作的重要性,许多东西,一个人能想到的往往有限,大家在一起则可以集思广益,发现许多新问题想出许多新解决方法。同时也让我意识到自己的不足,这次课程设计时间虽然不长,但是让我学到了很多东西,因为这两周每天几乎就是查资料、看资料。尽管累,但我觉得很快乐,因为过得很充实。

参考文献

[1]康华光.电子技术基础(模拟部分)[M].北京:高等教育出版社,2006.

[2]张肃文,陆兆熊.高频电子线路[M].北京:高等教育出版社,1992.

[3]路勇.电子电路实验及仿真[M].北京:清华大学出版社,2004.

[4]胡燕如.高频电子线路[M].北京:高等教育出版社,1993.

[5]顾宝良.通信电子线路[M].第二版.北京:电子工业出版社,2007.

[6]高吉祥.通信电子线路[M].北京:电子工业出版社,2003.

首先感谢伍麟君老师在设计中给予的指导,在整个设计过程中,不管是遇到基础知识上的问题还是技术上的问题,老师都细心给我们指导,让我们顺利的完成课程设计。其次,是感谢我的同学和队友,如果没有他们的对我的帮助和共同努力,我想我是做不出来的。通过这次课程设计让我明白了理论与实际操作的差距,理论学得好并不意味着你能灵活应用你所学,关键要在实践中去检验,这样才能更好的消化吸收所学。

同时,我要感谢我们学院和我们授课的各位老师,正是由于他们的传道、授业、解惑,让我学到了专业知识,并从他们身上学到了如何求知治学、如何为人处事。我也要感谢我的母校湖南工学院,是她提供了良好的学习环境和生活环境,让我的大学生活丰富多姿,为我的人生留下精彩的一笔。

最后感谢我的家人,你们的支持和关心是我学习的动力。

附录A元件清单

名称型号数量

三极管90142

晶振10MHz1

电容100P4

电容500P1

电容0.1μF2

电阻10K2

电阻1K1

电阻2K1

电阻50K1

电阻20K1

电位器50K1

电位器1K1

晶体振荡器课程设计

1石英晶体及其特性 (1) 1.1 石英晶体简介............................................... . ... 1.2石英晶体的阻抗频率特性...................................... 1 ... 2晶体管的部工作原理 (3) 3.晶体振荡器电路的类型及其工作原理 (4) 3.1串联型谐振晶体振荡器........................................ 4…??… 3.2并联谐振型晶体振荡器........................................ 6…??… 3.3泛音晶体振荡器................................................ 8 .. 4 确定工作点和回路参数(以皮尔斯电路为例) (10) 4.1主要技术指标 (10) 4.2确定工作点 (10) 4.3交流参数的确定 (11) 5提高振荡器的频率稳定度........................................... 1 2 6.总结 (13) 参考文献:........................................................ 1.4

Word 文档

1石英晶体及其特性 1.1石英晶体简介 石英是矿物质硅石的一种,化学成分是Sio2,形状是呈角锥形的六棱结晶体,具有各向异性的物理特性。按其自然形状有三个对称轴,电轴X,机械轴丫光轴Z。石英谐振器中的各种晶片,就是按与各轴不同角度,切割成正方形、长方形、圆形、或棒型的薄片,如图1的AT、BT、CT、DT 等切型。不同切型的晶片振动型式不,性能不同 1.2石英晶体的阻抗频率特性 石英谐振器的电路符号和等效电路如图121。C0称为静态电容,即晶体不振动时两极板间的等效电容,与晶片尺寸有关,一般约为几到几十pF。晶体作机械振动时的惯性以Lq、弹性用Cq振动时因磨擦造成的损耗用Rq来等效,它们的数值与晶片切割方位、形状和大小有关, 一般Lq为10 3102H,Cq为10 410 1pF,Rq 在几一几百欧之间。它

晶振基础知识

晶振基础知识(第一版) 摘要:本文简单介绍了晶体谐振器和晶体振荡器的结构,工作原理,振荡器电路的分类,晶体振荡器的分类,晶振类器件的主要参数指标和石英晶体基本生产工艺流程。 一、振荡电路的定义,构成和工作原理 (2) 二. 晶体振荡器分类: (16) 三、石英晶体谐振器主要参数指标 (19) 四、石英晶体振荡器主要参数指标 (20) 五.石英晶体基本生产工艺流程 (26)

一、振荡电路的定义,构成和工作原理 1. 振荡器:不需外加输入信号,便能自行产生输出信号的电路,通常也被成为。 2. 振荡器构成:谐振器(选频或滤波)+驱动(谐振)电路构成振荡器电路。 3. 谐振器的种类有:RC 谐振器,LC 并联谐振器,陶瓷谐振器,石英(晶体)谐振器,原子谐振器,MEMS (硅)振荡器。本文只讨论石英晶体谐振器。 石英谐振器的结构 石英谐振器,它由石英晶片、电极、支架和外壳等部分组成。它的性能与晶片的切割方式、尺寸、电极的设置装架形式,以及加工工艺等有关。其中,晶片的切割问题是设计时首先要考虑的关键问题。由于石英晶体不是在任何方向都具有单一的振动模式(即单频性)和零温度系数,因此只有沿某些方向切下来的晶片才能满足设计要求。 Mounting clips Top view of cover Resonator

普通晶振内部结构 石英晶体振荡器主要由基座、晶片、IC 及外围电路、陶瓷基板(DIP OSC )、上盖组成。 普通晶体振荡器原理图 胶点 基座 晶片 Bonding 线 IC

4. 振荡电路的振荡条件: (1)振幅平衡条件是反馈电压幅值等于输入电压幅值。根据振幅平衡条件,可以确定振荡幅度的大小并研究振幅的稳定。 (2)相位平衡条件是反馈电压与输入电压同相,即正反馈。根据相位平衡条件可以确定振荡器的工作频率和频率的稳定。 (3)振荡幅度的稳定是由器件非线性保证的,所以振荡器是非线性电路。 (4)振荡频率的稳定是由相频特性斜率为负的网络来保证的。 (5)振荡器的组成必须包含有放大器和反馈网络,它们必须能够完成选频、稳频、稳幅的功能。(6)利用自偏置保证振荡器能自行起振,并使放大器由甲类工作状态转换成丙类工作状态。

晶振作用分类

1、晶振的作用 晶振是晶体振荡器的简称,分为有源晶振和无源晶振两种,有源晶振无需外接匹配电容,只要加电即可输出一定频率的周期波形,所以有源晶振一般是四个引脚;无源晶振严格来说不能叫晶振,只能算是晶体,因为它需要外接匹配电容才可起振,由于其起振不需要电源供电,因此称为无源晶振。晶振的作用就是为电路系统提供时钟或者时序。 2、晶振的分类 根据晶振的功能和实现技术的不同,可以将晶振分为以下四类: (1) 恒温晶体振荡器(以下简称OCXO):这类晶振对温度稳定性的解决方案采用了恒温槽技术,将晶体置于恒温槽内,通过设置恒温工作点,使槽体保持恒温状态,在一定范围内不受外界温度影响,达到稳定输出频率的效果。这类晶振主要用于各种类型的通信设备,包括交换机、SDH传输设备、移动通信直放机、G PS接收机、电台、数字电视及军工设备等领域。根据用户需要,该类型晶振可以带压控引脚。OCXO的工作原理如下图所示: 图1恒温晶体振荡器原理框图 OCXO的主要优点是,由于采用了恒温槽技术,频率温度特性在所有类型晶振中是最好的,由于电路设计精密,其短稳和相位噪声都较好。主要缺点是功耗大、体积大,需要5分钟左右的加热时间才能正常工作等。 (2) 温度补偿晶体振荡器(以下简称TCXO):其对温度稳定性的解决方案采用了一些温度补偿手段,主要原理是通过感应环境温度,将温度信息做适当变换后控制晶振的输出频率,达到稳定输出频率的效果。传统的TCXO是采用模拟器件进行补偿,随着补偿技术的发展,很多数字化补偿TCXO开始出现,这种数字化补偿的TCXO又叫DTCXO,用单片机进行补偿时我们称之为MCXO,由于采用了数字化技术,这一类型的晶振在温度特性上达到了很高的精度,并且能够适应更宽的工作温度范围,主要应用于军工领域和使用环境恶劣的场合。 (3) 普通晶体振荡器(SPXO):这是一种简单的晶体振荡器,通常称为钟振,其工作原理为图1中去除“压控”、“温度补偿”和“AGC”部分,完全是由晶体的自由振荡完成。这类晶振主要应用于稳定度要求不高的场合。

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

晶振

百科名片 晶振有着不同使用要求及特点,通分为以下几类:普通晶振、温补晶振、压控晶振、温控晶振等。在测试和使用时所供直流电源应没有足以影响其准确度的纹波含量,交流电压应无瞬变过程。测试仪器应有足够的精度,连线合理布置,将测试及外围电路对晶振指标的影响降至最低。以下内容将逐项为您解答有关晶振的相关知识。 目录 基本概述 主要参数 基本分类 工作原理 功能作用 发展趋势 1种类详介石英晶体振荡器 1温度补偿晶体振荡器 1电压控制晶体振荡器 1恒温控制晶体振荡器 1选用指南频率稳定性的考虑 1输出 1封装 1工作环境 1检测 1总结 展开 编辑本段基本概述 晶振全称为晶体振荡器,其作用在于产生原始的时钟频率,这个频率 晶振 经过频率发生器的放大或缩小后就成了电脑中各种不同的总线频率。以声卡为例,要实现对模拟信号44.1kHz或48kHz的采样,频率发生器就必须提供一个44.1kHz或48kHz的时钟频率。如果需要对这两种音频同时支持的话,声卡就需要有两颗晶振。

但是娱乐级声卡为了降低成本,通常都采用SRC将输出的采样频率固定在48kHz,但是SRC会对音质带来损害,而且现在的娱乐级声卡都没有很好地解决这个问题。晶振一般叫做晶体谐振器,是一种机电器件,是用电损耗很小的石英晶体经精密切割磨削并镀上电极焊上引线做成。这种晶体有一个很重要的特性,如果给它通电,它就会产生机械振荡,反之,如果给它机械力,它又会产生电,这种特性叫机电效应。他们有一个很重要的特点,其振荡频率与他们的形状,材料,切割方向等密切相关。由于石英晶体化学性能非常稳定,热膨胀系数非常小,其振荡频率也非常稳定,由于控制几何尺寸可以做到很精密,因此,其谐振频率也很准确。根据石英晶体的机电效应,我们可以把它等效为一个电磁振荡回路,即谐振回路。他们的机电效应是机-电-机-电..的不断转换,由电感和电容组成的谐振回路是电场-磁场的不断转换。在电路中的应用实际上是把它当作一个高Q值的电磁谐振回路。由于石英晶体的损耗非常小,即Q值非常高,做振荡器用时,可以产生非常稳定的振荡,作滤波器用,可以获得非常稳定和陡削的带通或带阻曲线。 编辑本段主要参数 参数基本描述 频率准确度在标称电源电压、标称负载阻抗、基准温度(252℃)以及其他条件保持不变,晶体振荡器的频率相对与其规定标称值的最大允许偏 差,即(fmax-fmin)/f0; 温度稳定度其他条件保持不变,在规定温度范围内晶体振荡器输出频率的最大变化量相对于温度范围内输出频率极值之和的允许频偏值,即 (fmax-fmin)/(fmax+fmin); 频率调节范围通过调节晶振的某可变元件改变输出频率的范围。 调频(压控)特性包括调频频偏、调频灵敏度、调频线性度。①调频频偏:压控晶体振荡器控制电压由标称的最大值变化到最小值时输出频率差。②调频灵敏度:压控晶体振荡器变化单位外加控制电压所引起的输出频率的变化量。③调频线性度:是一种与理想直线(最小二乘法)相比较的调制系统传输特性的量度。 负载特性其他条件保持不变,负载在规定变化范围内晶体振荡器输出频率相对于标称负载下的输出频率的最大允许频偏。 电压特性其他条件保持不变,电源电压在规定变化范围内晶体振荡器输出频率相对于标称电源电压下的输出频率的最大允许频偏。 杂波输出信号中与主频无谐波(副谐波除外)关系的离散频谱分量与主频的功率比,用dBc表示。 谐波谐波分量功率Pi与载波功率P0之比,用dBc表示。 频率老化在规定的环境条件下,由于元件(主要是石英谐振器)老化而引起的输出频率随时间的系统漂移过程。通常用某一时间间隔内的频差

教你选择合适的晶体振荡器

教你选择合适的晶体振荡器 给大家介绍一些足以表现出一个晶体振荡器性能高低的技术指标,了解这些指标的含义,将有助于通讯设计工程师顺利完成设计项目,同时提高电路的质量。 总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大频差。 说明:总频差包括频率温度稳定度、频率温度准确度、频率老化率、频率电源电压稳定度和频率负载稳定度共同造成的最大频差。一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。例如:精密制导雷达。 频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或带隐含基准温度的最大允许频偏。 fT=±(fmax-fmin)/(fmax+fmin) fTref =±MAX[|(fmax-fref)/fref|,|(fmin-fref)/fref|] fT:频率温度稳定度(不带隐含基准温度) fTref:频率温度稳定度(带隐含基准温度) fmax :规定温度范围内测得的最高频率 fmin:规定温度范围内测得的最低频率 fref:规定基准温度测得的频率 说明:采用fTref指标的晶体振荡器其生产难度要高于采用fT指标的晶体振荡器,故fTref指标的晶体振荡器售价较高。 频率稳定预热时间:以晶体振荡器稳定输出频率为基准,从加电到输出频率小于规定频率允差所需要的时间。 说明:在多数应用中,晶体振荡器是长期加电的,然而在某些应用中晶体振荡器需要频繁的开机和关机,这时频率稳定预热时间指标需要被考虑到(尤其是对于在苛刻环境中使用的军用通讯电台,当要求频率温度稳定度≤±0.3ppm(-45℃~85℃),采用OCXO作为本振,频率稳定预热时间将不少于5分钟,而采用DTCXO只需要十几秒钟)。 频率老化率:在恒定的环境条件下测量振荡器频率时,振荡器频率和时间之间的关系。这种长期频率漂移是由晶体元件和振荡器电路元件的缓慢变化造成的,可用规定时限后的最大变化率(如±10ppb/天,加电72小时后),或规定的时限内最大的总频率变化(如:±1ppm/(第一年)和±5ppm/(十年))来表示。 说明:TCXO的频率老化率为:±0.2ppm~±2ppm(第一年)和±1ppm~±5ppm(十年)(除特殊情况,TCXO很少采用每天频率老化率的指标,因为即使在实验室的条件下,温度变化引起的频率变化也将大大超过温度补偿晶体振荡器每天的频率老化,因此这个指标失去了实际的意义)。OCXO的频率老化率为:±0.5ppb~±10ppb/天(加电72小时后),±30ppb~±2ppm(第一年),±0.3ppm~±3ppm(十年)。 频率压控范围:将频率控制电压从基准电压调到规定的终点电压,晶体振荡器频率的最小峰值改变量。 说明:基准电压为+2.5V,规定终点电压为+0.5V和+4.5V,压控晶体振荡器在+0.5V 频率控制电压时频率改变量为-110ppm,在+4.5V频率控制电压时频率改变量为+130ppm,则VCXO电压控制频率压控范围表示为:≥±100ppm(2.5V±2V)。

石英晶体振荡器设计方案

石英晶体振荡器 第一章研究意义 金融危机以来,国家围绕“保增长、调结构”采取了一系列调控政策,为我国石英晶体振荡器行业提供了较为宽松的国内发展环境,使石英晶体振荡器行业从2008年下半年以来的困境中得到了缓解和恢复。我国石英晶体振荡器行业也在加快产业结构调整、转变发展方式,为行业持续发展提供了动力和支撑。在全球经济不景气、国际市场持续低迷的情况下,我国石英晶体振荡器行业仍然呈现出了企稳回升、发展逐渐向好的良好局面。 虽然石英晶体振荡器行业发展很快,但是市场存在的一些问题不容忽视,如市场无序竞争、产品质量下降、创新乏力等。石英晶体振荡器行业的规划和发展需要建立在充分市场调研的基础之上,石英晶体振荡器市场管理需要认清市场经济条件下政府和企业的角色定位,石英晶体振荡器市场有序运行需要完善市场交易规则和各项制度。 第二章发展现状 石英的化学成分为SiO2,晶体属三方晶系的氧化物矿物,即低温石英(a-石英),是石英族矿物中分布最广的一个矿物种。广义的石英还包括高温石英(b-石英)。 低温石英常呈带尖顶的六方柱状晶体产出,柱面有横纹,类似于六方双锥状的尖顶实际上是由两个菱面体单形所形成的。石英集合体通常呈粒状、块状或晶簇、晶腺等。纯净的石英无色透明,玻璃光泽,贝壳状断口上具油脂光泽,无解理。受压或受热能产生电效应。 发展趋势 1、小型化、薄片化和片式化:为满足移动电话为代表的便携式产品轻、薄、短小的要求,石英晶体振荡器的封装由传统的裸金属外壳覆塑料金属向陶瓷封装转变。例如TCXO这类器件的体积缩小了30~100倍。采用SMD 封装的TCXO厚度不足2mm,目前5×3mm尺寸的器件已经上市石英晶体振荡器。 2、高精度与高稳定度,无补偿式晶体振荡器总精度也能达到±25ppm,VCXO的频率稳定度在10~7℃范围内一般可达±20~100ppm,而OCXO在同一温度范围内频率稳定度一般为±0.0001~5ppm,VCXO控制在±25ppm以下。

protel石英晶体振荡器课程设计

题目:基于protel 99的石英晶体 振荡器设计 学生姓名:刘菲 学生学号: 1214030219 系别:电气信息工程学院 专业:通信工程 年级: 12级 任课教师:井田 电气信息工程学院制

基于Protel99的石英晶体振荡器 学生:刘菲 指导老师:井田 电气信息工程学院12级通信工程2班 摘要 Protel设计系统是世界上第一套将EDA环境引入到Windows环境中的EDA开发工具,是具有强大功能的电子设计CAD软件,它具有原理图设计、印刷电路板(PCB)、设计层次原理图设计、报表制作、电路仿真以及逻辑器件设计等功能,是进行电子设计最有用的软件之一。是个完整的板级全方位电子设计系统,它包含了电路原理图绘制、模拟电路与数字电路混合信号仿真、多层印制电路板设计(包含印制电路板自动布线)、可编程逻辑器件设计、图表生成、电子表格生成、支持宏操作等功能,并具有Client/Server(客户/服务器)体系结构,同时还兼容一些其它设计软件的文件格式,如ORCAD,PSPICE,EXCEL等,其多层印制线路板的自动布线可实现高密度PCB的100%布通率。在国内PROTEL软件较易买到,有关PROTEL软件和使用说明的书也有很多,这为它的普及提供了基础。想更多地了解PROTEL的软件功能或者下载PROTEL99的试用版,可以在INTERNET上。 石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。 本次实验课设是设计一个简易的石英晶体振荡器,并利用Protel 99 SE对其原理图进行绘制,PCB图制作 关键字:Protel设计;石英晶体振荡;原理图绘制;PCB制作

晶振的分类

晶振的分类 根据晶振的功能和实现技术的不同,可以将晶振分为以下四类: 1)恒温晶体振荡器(以下简称OCXO) 这类型晶振对温度稳定性的解决方案采用了恒温槽技术,将晶体置于恒温槽内,通过设置恒温工作点,使槽体保持恒温状态,在一定范围内不受外界温度影响,达到稳定输出频率的效果。这类晶振主要用于各种类型的通信设备,包括交换机、SDH传输设备、移动通信直放机、GPS接收机、电台、数字电视及军工设备等领域。根据用户需要,该类型晶振可以带压控引脚。OCXO的工作原理如下图3所示: OCXO的主要优点是,由于采用了恒温槽技术,频率温度特性在所有类型晶振中是最好的,由于电路设计精密,其短稳和相位噪声都较好。主要缺点是功耗大、体积大,需要5分钟左右的加热时间才能正常工作等。 2)温度补偿晶体振荡器(以下简称TCXO)。 其对温度稳定性的解决方案采用了一些温度补偿手段,主要原理是通过感应环境温度,将温度信息做适当变换后控制晶振的输出频率,达到稳定输出频率的效果。传统的TCXO是采用模拟器件进行补偿,随着补偿技术的发展,很多数字化补偿大TCXO开始出现,这种数字化补偿的TCXO又叫DTCXO,用单片机进行补偿时我们称之为MCXO,由于采用了数字化技术,这一类型的晶振再温度特性上达到了很高的精度,并且能够适应更宽的工作温度范围,主要应用于军工领域和使用环境恶劣的场合。在广大研发人员的共同努力下,我公司自主开发出了高精度的MCXO,其设计原理和在世界范围都是领先的,配以高度自动化的生产测试系统,其月产可以达到5000只,其设计原理如图4。 3)普通晶体振荡器(SPXO)。 这是一种简单的晶体振荡器,通常称为钟振,其工作原理为图3中去除“压控”、“温度补偿”和“AGC”部分,完全是由晶体的自由振荡完成。这类晶振主要应用于稳定度要求不高的场合。 4)压控晶体振荡器(VCXO)。 这是根据晶振是否带压控功能来分类,带压控输入引脚的一类晶振叫VCXO,以上三种类型的晶振都可以带压控端口。

实验 石英晶体振荡器(严选材料)

实验四石英晶体振荡器 一、实验目的 1、熟悉石英晶体振荡器的基本工作原理; 2、掌握静态工作点对晶体振荡器工作的影响。 3、掌握晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的 方法。 二、实验原理 1、电路与工作原理 一种晶体振荡器的交流通路如图4-1所示。若将晶体短路,则L1、C2、C3就构成了典型的电容三点式振荡器(考毕兹电路)。因此,图4-1的电路是一种典型的串联型晶体振荡器电路(共基接法)。若取L1=4.3μH、C2=820pF、C3=180pF,C4=20nF,则可算得LC并联谐振回路的谐振频率f≈6MHz,与晶体工作频率相同。图中,C4是微调电容,用来微调振荡频率 C5是耦合电容,R5是负载电阻。很显然,R5越小,负载越重,输出振荡幅度将越小。 图4-1 晶体振荡器交流通路 2、实验电路

如图4-2所示。1R03、1C02为去耦元件,1C01为旁路电容,并构成共基接法。1W01用以调整振荡器的静态工作点(主要影响起振条件)。1C05为输出耦合电容。1Q02为射随器,用以提高带负载能力。实际上,图4-2电路的交流通路即为图4-1所示的电路。 三、实验内容 1、观察振荡器输出波形,测量振荡频率和振荡电压峰值Vp-p。 2、观察静态工作点等因素对晶体振荡器振荡幅度和频率的影响。 四、实验步骤 (一)模块上电 将晶体振荡器模块⑤,接通电源,此时电源指示灯点亮。 (二)测量晶体振荡器的振荡频率 把示波器接到1P01端,顺时针调整电位器1W01,以改变晶体管静态工作点,读取振荡频率(应为6MHZ)。 (三)观察静态工作点变化对振荡器工作的影响

晶体振荡器电路+PCB布线设计指南

AN2867 应用笔记 ST微控制器振荡器电路 设计指南 前言 大多数设计者都熟悉基于Pierce(皮尔斯)栅拓扑结构的振荡器,但很少有人真正了解它是如何工 作的,更遑论如何正确的设计。我们经常看到,在振荡器工作不正常之前,多数人是不愿付出 太多精力来关注振荡器的设计的,而此时产品通常已经量产;许多系统或项目因为它们的晶振 无法正常工作而被推迟部署或运行。情况不应该是如此。在设计阶段,以及产品量产前的阶 段,振荡器应该得到适当的关注。设计者应当避免一场恶梦般的情景:发往外地的产品被大批 量地送回来。 本应用指南介绍了Pierce振荡器的基本知识,并提供一些指导作法来帮助用户如何规划一个好的 振荡器设计,如何确定不同的外部器件的具体参数以及如何为振荡器设计一个良好的印刷电路 板。 在本应用指南的结尾处,有一个简易的晶振及外围器件选型指南,其中为STM32推荐了一些晶 振型号(针对HSE及LSE),可以帮助用户快速上手。

目录ST微控制器振荡器电路设计指南目录 1石英晶振的特性及模型3 2振荡器原理5 3Pierce振荡器6 4Pierce振荡器设计7 4.1反馈电阻R F7 4.2负载电容C L7 4.3振荡器的增益裕量8 4.4驱动级别DL外部电阻R Ext计算8 4.4.1驱动级别DL计算8 4.4.2另一个驱动级别测量方法9 4.4.3外部电阻R Ext计算 10 4.5启动时间10 4.6晶振的牵引度(Pullability) 10 5挑选晶振及外部器件的简易指南 11 6针对STM32?微控制器的一些推荐晶振 12 6.1HSE部分12 6.1.1推荐的8MHz晶振型号 12 6.1.2推荐的8MHz陶瓷振荡器型号 12 6.2LSE部分12 7关于PCB的提示 13 8结论14

晶体振荡原理

石英晶体、晶振介绍 文摘2010-10-25 23:36:39 阅读50 评论0 字号:大中小订阅 石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器、手机等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。可以说只要需要稳定时钟的地方,就必需要有晶体振荡器。一:认识晶体、晶振 常见晶体振荡器有两类,一类是无源晶体,也叫无源晶振,另一类是有源晶振,也叫钟振。 无源晶体外形如下图: (HC-49S 插脚) (HC-49S/SMD 贴片) 无源晶体以以上两种封装的晶体最为常用,广泛应用于普通设备上,尤其是嵌入式设备,若对体积大小有要求,可以选择更小的贴片封装,如下图: (XG5032 贴片)(XS3225 贴片1,3脚有效,2,4脚为空脚) 当前消费类电子如手机,MP4,笔记本等,XS3225封装最为常用。具体关于晶体的封装及参数信息,请参考国内最大的高端晶体晶振厂家:浙江省东晶电子股份有限公司网站提供的信息:https://www.360docs.net/doc/ec12734464.html,/product.aspx/23 无源晶体说穿了就是封装了一下晶体,在晶体两面镀上电极引出两根线即可,那么有源晶振就是在无源晶体的基础上加了一个晶体振

荡电路,,比如采用一个74HC04或者54HC04之类的非门与晶体勾通三点式电容振荡电路,所以它具有电源,地,时钟输出三个脚,有些还会增加一个脚,就是晶振工作控制脚,当不需要工作的时候,可以关掉晶振降低功耗。如下图: (OS3225 与XS3225外形一样,只是脚位定义不同1:EN控制脚,2:GND地,3:OUT信号输出,4:VCC电源,一般为3.3V 或者5V)。 晶振内部振荡电路等效图如下: 非门5404的输出脚2就是信号输出脚。 二:晶体振荡电路原理分析(本篇由东晶电子网上独家代理创易电子提供技术文档https://www.360docs.net/doc/ec12734464.html,) 我们以最常见得MCU振荡电路为例,参考电路如下:

石英晶体振荡器设计报告

石英晶体振荡器设计报告 张炳炎 09微电03 目录 1 设计要求 2 设计方案论证 a.电路形式的选取 b.参数的设计、估算 c. 设计内容的实现 3 电路的工作原理 4 晶体振荡器的特点 5 电路设计制作过程中遇到的主要 问题及解决方法、心得和建议 6 参考文献 7 附录

1设计要求 (1)晶体振荡器的工作频率在100MHZ以下 (2)振荡器工作可调,反馈元件可更换 (3)具有三组不同的负载阻抗 (4)电源电压为12V (5)在10K负载上输出目测不失真电压波形Vopp>=4V,振荡器频率读出5为有效数字 2设计方案论证 a.电路形式的选取: 串联型石英晶体振荡器 串联型石英晶体振荡器交流等效电路 石英晶体的物理和化学性能都十分稳定,等效谐振回路具有很高的标准性,Q值很高,对频率变化具有极灵敏的补偿能力具有.利用石英晶体作为串联谐振元件,在谐振时阻抗接近于零,此时正反馈最强,满足振荡条件.因此,电路的振荡频率和频率稳定度都取决于石英晶体的串联谐振频率.

b.参数的设计、估算 选用石英晶体(6M)作为串联谐振元件,提高振荡器的标准性,三极管为高频中常用的小功率管9018,作为放大电路的主要器件,选用阻值较大的可调电阻Rp(50k)来调节电路的静态工作点,使输出幅值达到最大而不失真,在LC 组成的谐振回路加可变电容(100p)调节谐振频率。三组负载分别为1k、10k、110k,用来比较对振荡器频率及幅值的影响。 c. 设计内容的实现 ○1输入电源电压12V,测试电路的静态工作点, 三极管 Vbe>,Vc>Vb>Ve,三极管工作在放大区。 ○2输出端接上示波器,观察到正弦波,通过改电位器、可变电容使输出的幅值达到最大。 ○3改变负载值,测量不同负载下电路输出的频率及幅值大小。可知,负载几乎对频率没有影响,因为输出的频 率主要由石英晶体决定,而幅值随着负载的减小而略 微下降,当空载时幅值最大。

实验2 正弦波振荡器(LC振

实验2 正弦波振荡器(LC振荡器和晶体振荡器) 一.实验目的 1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC振荡器幅频特性的测量方法; 3.熟悉电源电压变化对振荡器振荡幅度和频率的影响; 4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。二.实验内容 1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率; 2.测量LC振荡器的幅频特性; 3.测量电源电压变化对振荡器的影响; 4.观察并测量静态工作点变化对晶体振荡器工作的影响。 三.实验步骤 1.实验准备 插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。 2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。) (1)西勒振荡电路幅频特性的测量 3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。调整电位器3W02,使输出最大。开关3K05拨至“P”,此时振荡电路为西勒电路。四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。四个开关接通的不同组合,可以控制电容的变化。例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。 表2-1 根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并

石英晶体振荡器电路设计

辽宁工业大学 高频电子线路课程设计(论文)题目:石英晶体振荡器电路设计 院(系):电子与信息工程学院 专业班级: 学号: 学生姓名: 指导教师: 起止时间: 2014.6.16-2014.6.27

课程设计(论文)任务及评语 院(系):电子与信息工程学院 教研室: 电子信息工程 注:成绩:平时20% 论文质量50% 答辩30% 以百分制计算 学 号 学生姓名 专业班级 课程设计(论文)题目 石英晶体振荡器电路设计 课 程设计(论文)任务 要求:1.设计一个石英晶体振荡器 2.能够观察输入输出波形。 3.观察振荡频率。 参数:振荡频率10000HZ 左右。 设计要求: 1 .分析设计要求,明确性能指标。必须仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。 2 .确定合理的总体方案。对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。 3 .设计各单元电路。总体方案化整为零,分解成若干子系统或单元电路,逐个设计。 4 .组成系统。在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。 指导教师评语及成绩 平时成绩(20%): 论文成绩(50%): 答辩成绩(30%): 总成绩: 学生签字: 年 月 日

目录 第1章绪论 (1) 1.1石英晶体振荡器 (1) 1.2设计要求 (1) 第2章石英晶体振荡器设计电路 (2) 2.1石英晶体振荡器总体设计方案 (2) 2.2具体电路设计 (2) 2.2.1串联型晶体振荡器 (2) 2.2.2并联型晶体振荡器 (4) 2.2.3输出缓冲级设计 (5) 2.3元件参数的计算 (5) 2.4Multisim软件仿真 (6) 2.4.1串联型振荡器输出测试 (6) 2.4.2并联型振荡器输出测试 (7) 第3章课程设计总结 (9) 参考文献 (10) 附录Ⅰ总体电路图 (11) 附录Ⅱ元器件清单 (12)

晶体振荡器的设计.

1.课程设计的目的 (3) 2.课程设计的内容 (3) 3.课程设计原理 (3) 4.课程设计的步骤或计算 (5) 5.课程设计的结果与结论 (11) 6.参考文献 (16)

一、设计的目的 设计一个晶振频率为20MHz,输出信号幅度≥5V(峰-峰值),可调的晶体振荡器 二、设计的内容 本次课程设计要求振荡器的输出频率为20Mhz,属于高频范围。所以选择LC振荡器作为参考对象,再考虑输出频率和振幅的稳定性,最终选择了克拉泼振荡器。通过ORCAD 的设计与仿真,Protel绘制PCB版图,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 三、设计原理 1.振荡器的概述 在电子线路中,除了要有对各种电信号进行放大的电子线路外,还需要有在没有激励信号的情况下产生周期性振荡信号的电子线路,这种电子线路就是振荡器。 振荡器是一种能量转换器,它不需要外部激励就能自动地将直流电源共给的功率转换为制定频率和振幅的交流信号功率输出。振荡器一般由晶体管等有源器件和某种具有选频能力的无源网络组成。 振荡器的种类很多,根据工作原理可分为反馈型振荡器和负阻型振荡器,根据所产生的波形可分为正弦波振荡器和非正弦波振荡器;根据选频网络可分为LC振荡器﹑晶体振荡器﹑RC振荡器等。 2.振荡器的振荡条件 反馈型振荡器的原理框图如下:

图1.1 反馈型振荡器的原理框图 如图1,放大器的电压放大倍数为K(s),反馈网络的电压反馈系数为F(s),则闭环电压放大倍数Ku(s)的表达式为[1]: K u (s)= ) () (s Us s Uo ( 1—1) 由 K(s)= ) () (s Ui s Uo (1—2) F(s)=) ()(s Uo s i U ' (1—3) U i(s)=U s (s)+)(s i U ' (1—4) 得 K u (s)= )()(1)(s F s K s K -=) (1) (s T s K - (1—5) 其中T(s)=K(s)F(s)= ) () (s Ui s i U ' (1—6) 称为反馈系统的环路增益。用s=j ω带入就得到稳态下的传输系数和环路增益。由式(1—5)可知,若在某一频率ω=ω1上T(j ω),Ku (j ω)将趋近于无穷大,这表明即使没有外加信号,也可以维持振荡输出。因此自激振荡的条件就是环路增益为1,即 T(j ω)=K(j ω)F((j ω)=1 (1—7) 通常称为振荡器的平衡条件。 由式(1—6)还可知|T(j ω)|>1,|)(ωj i U '|>|Ui (j ω)|,形成增幅振荡。 |T(j ω)|<1, |)(ωj i U '|<|Ui (j ω)|,形成减幅振荡。 综上,正弦波振荡器的平衡条件为: T(j ω)=K(j ω)F((j ω)=1 也可表示为|T(j ω)|=KF=1 (1—8a)

晶振基础知识

晶振基础知识

晶振基础知识(第一版) 摘要:本文简单介绍了晶体谐振器和晶体振荡器的结构,工作原理,振荡器电路的分类,晶体振荡器的分类,晶振类器件的主要参数指标和石英晶体基本生产工艺流程。 一、振荡电路的定义,构成和工作原理 (3) 二. 晶体振荡器分类: (23) 三、石英晶体谐振器主要参数指标 (27) 四、石英晶体振荡器主要参数指标 (30) 五.石英晶体基本生产工艺流程 (43)

一、振荡电路的定义,构成和工作原理 1. 振荡器:不需外加输入信号,便能自行产生输出信号的电路,通常也被成为。 2. 振荡器构成:谐振器(选频或滤波)+驱动(谐振)电路构成振荡器电路。 3. 谐振器的种类有:RC谐振器,LC并联谐振器,陶瓷谐振器,石英(晶体)谐振器,原子谐振器,MEMS(硅)振荡器。本文只讨论石英晶体谐振器。石英谐振器的结构 石英谐振器,它由石英晶片、电极、支架和外壳等部分组成。它的性能与晶片的切割方式、尺寸、电极的设置装架形式,以及加工工艺等有关。其中,晶片的切割问题是设计时首先要考虑的关键问题。由于石英晶体不是在任何方向都具有单一的振动模式(即单频性)和零温度系数,因此只有沿某些方向切下来的晶片才能满足设计要求。

普通晶振内部结构 Base Mounting clips Bonding area Electrodes Quartz blank Cover Seal Pins Top view of cover Metallic electrodes Resonator plate substrate (the “blank”)

高性能晶体振荡器的选用

高效能石英振盪器的選擇 Phil Callahan, Silicon Laboratories Inc. 今日的網路設備必須支援數目不斷增多的各種資料速率,包括10G乙太網路、10G光纖通道 (Fibre Channel)、SONET OC-192和相關的前向錯誤更正 (FEC) 速率。傳統的時序子系統架構必須為每種頻率使用一顆石英晶體或SAW諧振器,這會導致每張線路卡上出現許多不同的振盪器。使用多個石英振盪器或SAW諧振器可能為網路設備設計人員帶來問題,包括很長的石英晶體採購前置作業時間、頻率穩定性、長期老化現象、溫度漂移和機械完整性。相形之下,只要將DSP為基礎的高效能時脈合成元件搭配低頻石英晶體就能發展出多頻率輸出的石英振盪器 (XO) 或壓控石英振盪器 (VCXO),同時大幅改善元件採購前置作業時間和機械強固性等使用高基波 (HFF) 石英晶體或表面聲波 (SAW) 振盪器時常見的問題。 以DSP為基礎的鎖相迴路架構優點 精密CMOS技術的進步提高了電路的速度和運算能力,廠商因此能以DSP為基礎發展出強大的時脈合成元件,並利用它們設計高頻率、低抖動的新型石英振盪器和壓控石英振盪器。這種把時脈合成元件與固定低頻率石英諧振器結合在一起的做法既可提供相當於傳統石英振盪器或壓控石英振盪器的功能,又可在使用者指定的多個頻率下操作。 以DSP為基礎的鎖相迴路技術 (DSPLL?) 為振盪器提供傳統設計無法實現的許多獨特功能。例如傳統做法須為不同頻率製造不同的HFF石英晶體或SAW諧振器,以DSPLL架構為基礎的振盪器(圖1所示) 則能在所有產品中利用一顆規格較寬鬆的低頻石英晶體提供多頻操作能力,並將固定頻率振盪器的輸出倍頻為使用者在10 MHz到1.4 GHz之間所指定的頻率。以SAW或HFF為基礎的現有解決方案需要電鍍和蝕刻等複雜的生產步驟來調校最終頻率,這使得產品交貨的前置作業時間最長達到八週。DSPLL技術則可透過電子調校來產生客戶所要的頻率,不但解析度超過 1 ppb,產品供應的前置作業時間也減少至一週左右。另外,把頻率產生和調諧功能移到混合訊號元件還能提供傳統技術所無法提供的效能與功能。 圖1:以DSP為基礎的鎖相迴路振盪器架構

石英晶体振荡器

石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。 一、石英晶体振荡器的基本原理 1、石英晶体振荡器的结构 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。下图是一种金属外壳封装的石英晶体结构示意图。 2、压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 3、符号和等效电路 石英晶体谐振器的符号和等效电路如图2所示。当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF到几十PF。当晶体振荡时,机械振动的惯性可用电感L来等效。一般L的值为几十mH 到几百mH。晶片的弹性可用电容C来等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因摩擦而造成的损耗用R来等效,它的数值约为100Ω。由于晶片的等效电感很大,而C很小,R 也小,因此回路的品质因数Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。 4、谐振频率 从石英晶体谐振器的等效电路可知,它有两个谐振频率,即(1)当L、C、R支路发生串联谐振时,它的等效阻抗最小(等于R)。串联揩振频率用fs表示,石英晶体对于串联揩振频率fs呈纯阻性,(2)当频率高于fs时L、C、R支路呈感性,可与电容C。发生并联谐振,其并联频率用fd表示。 根据石英晶体的等效电路,可定性画出它的电抗—频率特性曲线如图2e所示。可见当频率低于串联谐振频率fs或者频率高于并联揩振频率fd时,石英晶体呈容性。仅在fs<f<fd 极窄的范围内,石英晶体呈感性。 二、石英晶体振荡器类型特点 石英晶体振荡器是由品质因素极高的石英晶体振子(即谐振器和振荡电路组成。晶体的品质、切割取向、晶体振子的结构及电路形式等,共同决定振荡器的性能。国际电工委员会(IEC)将石英晶体振荡器分为4类:普通晶体振荡(TCXO),电压控制式晶体振荡器(VCXO),温度补偿式晶体振荡(TCXO),恒温控制式晶体振荡(OCXO)。目前发展中的还有数字补偿式晶体损振荡(DCXO)等。 普通晶体振荡器(SPXO)可产生10^(-5)~10^(-4)量级的频率精度,标准频率1—100MHZ,频率稳定度是±100ppm。SPXO没有采用任何温度频率补偿措施,价格低廉,通常用作微处理器的时钟器件。封装尺寸范围从21×14×6mm及5×3.2×1.5mm。

相关文档
最新文档