2019-2020学年江苏省名校数学高二第二学期期末综合测试试题含解析

合集下载

北京市通州区2019-2020学年数学高二第二学期期末检测试题含解析

北京市通州区2019-2020学年数学高二第二学期期末检测试题含解析

北京市通州区2019-2020学年数学高二第二学期期末检测试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.函数12sin()24y x π=+的周期,振幅,初相分别是( )A .,2,44ππB .4,2,4ππ--C .4,2,4ππD .2,2,4ππ2.图1和图2中所有的正方形都全等,将图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是( )A .B .C .D .3.下列说法中正确的是 ( ) ①相关系数r 用来衡量两个变量之间线性关系的强弱, r 越接近于1,相关性越弱; ②回归直线y bx a =+一定经过样本点的中心(),x y ;③随机误差e 满足()0E e =,其方差()D e 的大小用来衡量预报的精确度; ④相关指数2R 用来刻画回归的效果, 2R 越小,说明模型的拟合效果越好. A .①②B .③④C .①④D .②③4.在三棱锥P ABC -中,平面PAB ⊥平面ABC ,CA ⊥平面PAB ,23PA PB AB ===4AC =,则三棱锥P ABC -的外接球的表面积为( ) A .24πB .32πC .48πD .64π5.若,a b ∈R ,则复数22(610)(45)a a b b i -++-+-在复平面上对应的点在 A .第一象限B .第二象限C .第三象限D .第四象限6.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( ) A .简单随机抽样 B .按性别分层抽样 C .按学段分层抽样D .系统抽样7.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =;则AOB ∆的面积为( ) A .22B .2C .322D .228.在200件产品中有3件次品,现从中任意抽取5件,其中至少有2件次品的抽法有( ) A .233197C C 种B .()5142003197C C C -种 C .233198C C 种D .()233231973197C C C C +种9.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列结论错误的是A .平面11D A P ⊥平面1A APB .1APD ∠的取值范围是(0,2π] C .11B D PC -三棱锥的体积为定值 D .11DC D P ⊥10.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为( )A .0.2B .0.4C .0.5D .0.611.若函数()1sin 2sin 3f x x x a x =-+在R 上单调递增,则a 的取值范围是( ) A .[]1,1-B .11,3⎡⎤-⎢⎥⎣⎦C .11,33⎡⎤-⎢⎥⎣⎦D .11,3⎡⎤--⎢⎥⎣⎦12.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .279二、填空题(本题包括4个小题,每小题5分,共20分) 13.设2(5,2)N ξ~,则(37)P ξ<≤=__________.14.已知π⎰cos 6x dx π⎛⎫+ ⎪⎝⎭,则二项式52a x x ⎛⎫+ ⎪⎝⎭的展开式中的系数为__________. 15.已知函数()42423,0,3,0,x x ax x f x x x ax x ⎧-->=⎨-+<⎩有四个零点,则实数a 的取值范围是__________. 16.若正数a ,b 满足3ab a b =++,则ab 的取值范围是________. 三、解答题(本题包括6个小题,共70分)17.如图,已知三棱柱111ABC A B C -的侧棱与底面垂直,11AA AB AC ===,AB AC ⊥,M 是1CC 的中点,N 是BC 的中点,点P 在11A B 上,且满足111A P AB λ=.(1)证明:PN AM ⊥.(2)当λ取何值时,直线PN 与平面ABC 所成的角θ最大?并求该角最大值的正切值. (3)若平面PMN 与平面ABC 所成的二面角为4π,试确定P 点的位置. 18.已知函数()()263ln f x ax a x x =-++,其中a R ∈. (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当0a >时,若函数()f x 在区间[]1,3e 上的最小值为6-,求a 的取值范围.19.(6分)已知三棱柱111ABC A B C -的侧棱垂直于底面,90BAC ∠=︒,12AB AA ==,1AC =,M ,N 分别是11A B ,BC 的中点.(Ⅰ)证明://MN 平面11ACC A ;(Ⅱ)求二面角M AN B--的余弦值.20.(6分)“过桥米线”是云南滇南地区特有的一种小吃.在云南某地区“过桥米线”有,,A B C三种品牌的店,其中A品牌店50家,B品牌店30家,C品牌店20家.(Ⅰ)为了加强对食品卫生的监督管理工作,该地区的食品安全管理局决定按品牌对这100家“过桥米线”专营店采用分层抽样的方式进行抽样调查,被调查的店共有20家,则,B C品牌的店各应抽取多少家?(Ⅱ)为了吸引顾客,所有品牌店举办优惠活动:在一个盒子中装有形状、大小相同的4个白球和6个红球.顾客可以一次性从盒中抽取3个球,若是3个红球则打六折(按原价的60%付费),2个红球1个白球打八折,1个红球2个白球则打九折,3个白球则打九六折.小张在该店点了价值100元的食品,并参与了抽奖活动,设他实际需要支付的费用为X,求X的分布列与数学期望.x(年)和维修费用y(万元),有以下的统计数据:x 3 4 5 6y 2.5 3 4 4.5(Ⅰ)画出上表数据的散点图;(Ⅱ)请根据上表提供的数据,求出y关于x的线性回归方程ˆˆˆy bx a=+;(Ⅲ)估计使用年限为10年,维修费用是多少万元?(附:线性回归方程中1122211()()()ˆˆˆn ni i i ii in ni ii ix x y y x y nxybx x x nxa y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑,其中11niix xn==∑,11niiy yn==∑).22.(8分)设1()ln+,() 4.af x xg x axx-==-(I)若()f x的极小值为1,求实数a的值;(II)当1a=时,记()()()h x f x g x=⋅,是否存在整数..λ,使得关于x的不等式2()h xλ≥有解?若存在求出λ的最小值,若不存在,说明理由.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.C 【解析】 【分析】 利用2πT ω=求得周期,直接得出振幅为2,在1π24x +中令0x =求得初相. 【详解】 依题意,2π4π12T ==,函数的振幅为2,在1π24x +中令0x =求得初相为π4.故选C.【点睛】本小题主要考查()sin A x ωϕ+中,,A ωϕ所表示的含义,考查三角函数周期的计算.属于基础题.其中A 表示的是振幅,ω是用来求周期的,即2πT ω=,要注意分母是含有绝对值的.x ωϕ+称为相位,其中ϕ称为初相.还需要知道的量是频率1f T=,也即是频率是周期的倒数. 2.C 【解析】分析:将图1的正方形放在图2中①的位置出现重叠的面,不能围成正方体,再根据概率公式求解可得. 详解:由图共有4种等可能结果,其中将图1的正方形放在图2中①的位置出现重叠的面,不能围成正方体,则所组成的图形能围成正方体的概率是.故选:C.点睛:本题考查了概率公式和展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形,注意:只要有“田”字格的展开图都不是正方体的表面展开图. 3.D 【解析】 【分析】运用相关系数、回归直线方程等知识对各个选项逐一进行分析即可 【详解】①相关系数r 用来衡量两个变量之间线性关系的强弱,r 越接近于1,相关性越强,故错误 ②回归直线y bx a =+一定经过样本点的中心()x y ,,故正确③随机误差e 满足()0E e =,其方差()D e 的大小用来衡量预报的精确度,故正确 ④相关指数2R 用来刻画回归的效果,2R 越大,说明模型的拟合效果越好,故错误 综上,说法正确的是②③ 故选D 【点睛】本题主要考查的是命题真假的判断,运用相关知识来进行判断,属于基础题 4.B 【解析】 【分析】 如图,由题意知,AC AB ⊥,BC 的中点E 是球心O 在平面ABC 内的射影,设点O E ,间距离为h ,球心O 在平面PAB 中的射影F 在线段AB 的高上,则有()22743h h +=+-,可得球的半径,即可求出三棱锥P ABC -的外接球的表面积.【详解】由题意知,AC AB ⊥,BC 的中点E 是球心O 在平面ABC 中的射影,设点O E ,间距离为h ,球心O 在平面PAB 中的射影F 在线段AB 的高上,23AB =,4AC =,23PA PB AB ===又平面PAB ⊥平面ABC ,PF AB ⊥,则PF ⊥平面ABC ,BC 27∴=P 到平面ABC 的距离为3,∴()22743h h +=+-,解得:1h =,所以三棱锥P ABC -的外接球的半径1722R =+=,故可得外接球的表面积为2432R ππ=. 故选:B 【点睛】本题主要考查了棱锥的外接球的表面积的求解,考查了学生直观想象和运算求解能力,确定三棱锥P ABC -的外接球的半径是关键.5.D 【解析】分析:利用二次函数的性质可判定复数的实部大于零,虚部小于零,从而可得结果. 详解:因为2610a a -+=()23110a -+≥>,245b b -+-=()21210b ---≤-<,所以复数()()2261045a a b b i -++-+-在复平面上对应的点在第四象限,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分. 6.C 【解析】试题分析:符合分层抽样法的定义,故选C. 考点:分层抽样. 7.C 【解析】 【分析】 【详解】试题分析:抛物线24y x =焦点为()1,0F ,准线方程为1x =-,由3AF =得1(2,(,2A B 或1(2,(2A B -所以12AOB A B S OF y y ∆=⨯⨯-1122=⨯⨯=C . 考点:1、抛物线的定义;2、直线与抛物线的位置关系. 8.D 【解析】分析:据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,由组合数公式分别求得两种情况下的抽法数,进而相加可得答案.详解:根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况, “有2件次品”的抽取方法有C 32C 1973种, “有3件次品”的抽取方法有C 33C 1972种, 则共有C 32C 1973+C 33C 1972种不同的抽取方法, 故选:D .点睛:本题考查组合数公式的运用,解题时要注意“至少”“至多”“最多”“最少”等情况的分类讨论. 9.B 【解析】【分析】根据线面位置关系进行判断. 【详解】∵11D A ⊥平面1AA P ,∴平面11D A P ⊥平面1A AP ,A 正确;若P 是1A B 上靠近1A 的一个四等分点,可证此时1D PA ∠为钝角,B 错;由于1//BP CD ,则//BP 平面11B D C ,因此11P B D C -的底面是确定的,高也是定值,其体积为定值,C 正确;1D P 在平面11CC D D 上的射影是直线1D C ,而11⊥D C DC ,因此11DC D P ⊥,D 正确.故选B . 【点睛】本题考查空间线面间的位置关系,考查面面垂直、线面平行的判定,考查三垂线定理等,所用知识较多,属于中档题. 10.B 【解析】区间[22,31)内的数据共有4个,总的数据共有11个,所以频率为1.4,故选B . 11.C 【解析】试题分析:()21cos 2cos 03f x x a x =-+'对x R ∈恒成立, 故()2212cos 1cos 03x a x --+,即245cos cos 033a x x -+恒成立, 即245033t at -++对[]1,1t ∈-恒成立,构造()24533f t t at =-++,开口向下的二次函数()f t 的最小值的可能值为端点值,故只需保证()()1103{1103f a f a -=-=+,解得1133a -.故选C .【考点】三角变换及导数的应用【名师点睛】本题把导数与三角函数结合在一起进行考查,有所创新,求解的关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,即注意正、余弦函数的有界性. 12.B 【解析】由分步乘法原理知:用0,1,…,9十个数字组成的三位数(含有重复数字的)共有9×10×10=900,组成无重复数字的三位数共有9×9×8=648,因此组成有重复数字的三位数共有900-648=1.二、填空题(本题包括4个小题,每小题5分,共20分) 13.0.6826 【解析】由正态分布中三个特殊区间上的概率知()0.6826P X μσμσ-<≤+=, ∴(37)(5252)0.6826P X P X <≤=-<≤+=. 答案:0.6826 14.【解析】分析:由微积分基本定理求出a ,再写出二项展开式的通项1r T +,令x 的指数为1,求得r ,从而求得x 的系数.详解:02cos()2sin()2066a x dx x ππππ=+=+=-⎰,二项式252()x x-展开式通项为251031552()()(2)rrr r r r r T C x C x x--+=-=-,令1031r -=,则3r =.∴x 的系数为335(2)C 80-=-.故答案为-1.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数. 15.()2,0- 【解析】 【分析】由题意可知()f x 是偶函数,根据对称性问题转化为直线y a =与曲线()330y x x x =->有两个交点.【详解】因为()f x 是偶函数,根据对称性,4230x x ax --=在()0,∞+上有两个不同的实根,即33a x x =-在()0,∞+上有两个不同的实根,等价转化为直线y a =与曲线()330y x x x =->有两个交点,而()()2'33311y x x x =-=+-,则当01x <<时,'0y <,当1x >时,'0y >,所以函数33y x x =-在()0,1上是减函数,在()1,+∞上是增函数,于是min 102,0x x y yy ====-=,故()2,0.a ∈-故答案为:()2,0- 【点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 16.[)9,+∞ 【解析】 【分析】利用基本不等式将3ab a b =++变形为3ab ≥即可求得ab 的取值范围. 【详解】∵0a >,0b >,∴33ab a b =++≥,即30ab -≥3,即9ab ≥,当且仅当3a b ==时,等号成立. 故答案为:[)9,+∞. 【点睛】本题主要考查利用基本不等式求代数式的取值范围问题,属常规考题. 三、解答题(本题包括6个小题,共70分) 17.(1)见解析;(2)见解析;(3)见解析 【解析】 【分析】(1)以AB ,AC ,1AA 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -,求出各点的坐标及对应向量的坐标,易判断 0PN AM ⋅=,即PN AM ⊥;(2)设出平面ABC 的一个法向量,我们易表达出sin θ,然后利用正弦函数的单调性及正切函数的单调性的关系,求出满足条件的λ值,进而求出此时θ的正线值;(3)平面PMN 与平面ABC 所成的二面角为4π,则平面PMN 与平面ABC 法向量的夹角余弦值的绝对值为2,代入向量夹角公式,可以构造一个关于λ的方程,解方程即可求出对应λ值,进而确定出满足条件的点P 的位置. 【详解】(1)证明:如图,以AB ,AC ,1AA 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -.则()01P λ,,,11022N ⎛⎫ ⎪⎝⎭,,,1012M ⎛⎫ ⎪⎝⎭,,,从而11,1 22PNλ⎛⎫=--⎪⎝⎭,,1012AM⎛⎫= ⎪⎝⎭,,,1110110222PN AMλ⎛⎫⋅=-⨯+⨯-⨯=⎪⎝⎭,所以PN AM⊥.(2)平面ABC的一个法向量为()001n=,,,则2sin sin cos21524PN nPN n PN nPN nπθλ⋅⎛⎫=-===⎪⋅⎝⎭⎛⎫-+⎪⎝⎭,,.而[0]2πθ∈,,当θ最大时,sinθ最大,tanθ无意义,2πθ=除外,由(※)式,当12λ=时,()max25sinθ=()maxtan2θ=.(3)平面ABC的一个法向量为()1001n AA==,,.设平面PMN的一个法向量为(),,x y zm=,由(1)得112MPλ⎛⎫=-⎪⎝⎭,,.由m NPm MP⎧⋅=⎨⋅=⎩得11()02212x y zx y zλλ⎧--+=⎪⎪⎨⎪-+=⎪⎩,解得()213213y xz xλλ+⎧=⎪⎪⎨-⎪=⎪⎩,令3x=,得()()32121mλλ=+-,,,∵平面PMN与平面ABC所成的二面角为4π,∴()()()22212cos292141m nm nm nλλλ-⋅===⋅+++-<,>,解得12λ=-. 故点P 在11B A 的延长线上,且112A P =. 【点睛】本题考查的知识点是向量评议表述线线的垂直、平等关系,用空间向量求直线与平面的夹角,用空间向量求平面间的夹角,其中熟练掌握向量夹角公式是解答此类问题的关键. 18. (1)240x y ++=;(1) [3,+∞). 【解析】 【分析】(1)求出函数的导数,计算f (1),f′(1)的值,求出切线方程即可;(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,从而求出a 的范围即可. 【详解】(1)当a =1时,f (x )=x 1﹣7x+3lnx (x >2), ∴()3'27f x x x=-+,∴f(1)=﹣6,f'(1)=﹣1. ∴切线方程为y+6=﹣1(x ﹣1),即1x+y+4=2.(1)函数f (x )=ax 1﹣(a+6)x+3lnx 的定义域为(2,+∞),当a >2时,()()()()()22632133'26ax a x x ax f x ax a x x x-++--=-++==, 令f'(x )=2得12x =或3x a=, ①当301a≤<,即a≥3时,f (x )在[1,3e]上递增, ∴f(x )在[1,3e]上的最小值为f (1)=﹣6,符合题意;②当313e a <<,即13a e <<时,f (x )在31a ⎡⎤⎢⎥⎣⎦,上递减,在33e a ⎡⎤⎢⎥⎣⎦,上递增, ∴f(x )在[1,3e]上的最小值为()316f f a ⎛⎫=- ⎪⎝⎭<,不合题意; ③当33e a ≥,即10a e≤<时,f (x )在[1,3e]上递减, ∴f(x )在[1,3e]上的最小值为f (3e )<f (1)=﹣6,不合题意. 综上,a 的取值范围是[3,+∞). 【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.19. (1)见解析;(2)21.分析:解法一:依题意可知1,,AB AC AA 两两垂直,以A 点为原点建立空间直角坐标系A xyz -, (1)利用直线的方向向量和平面的法向量垂直,即可证得线面平面;(2)求出两个平面的法向量,利用两个向量的夹角公式,即可求解二面角的余弦值. 解法二:利用空间几何体的点线面位置关系的判定定理和二面角的定义求解:(1)设AC 的中点为D ,连接1,DN A D ,证明四边形1A DNM 为平行四边形,得出线线平行,利用线面平行的判定定理即可证得线面平面;(2)以及二面角的平面角,在直角三角形中求出其平面角的余弦值,即可得到二面角的余弦值. 详解:解法一:依条件可知AB 、AC 、1AA 两两垂直, 如图,以点A 为原点建立空间直角坐标系A xyz -.根据条件容易求出如下各点坐标:()0,0,0A ,()0,2,0B ,()1,0,0C -,()10,0,2A ,()10,2,2B ,()11,0,2C -,()0,1,2M ,1,1,02N ⎛⎫- ⎪⎝⎭.(Ⅰ)证明:∵1,0,22MN ⎛⎫=-- ⎪⎝⎭,()0,2,0AB =, 是平面11ACC A 的一个法向量,且10022002MN AB ⋅=-⨯+⨯-⨯=, 所以MN AB ⊥.又∵MN ⊄平面11ACC A ,∴//MN 平面11ACC A ; (Ⅱ)设(),,n x y z =是平面AMN 的法向量, 因为()0,1,2AM =,1,1,02AN ⎛⎫=-⎪⎝⎭, 由00AM n AN n ⎧⋅=⎨⋅=⎩,得020102y z x y ++=⎧⎪⎨-+=⎪⎩. 解得平面AMN 的一个法向量()4,2,1n =-, 由已知,平面ABC 的一个法向量为()0,0,1n =,21cos ,2121m n m n n m ⋅===-⨯, ∴二面角M AN B --的余弦值是21.(Ⅰ)证明:设AC 的中点为D ,连接DN ,1A D , ∵D ,N 分别是AC ,BC 的中点,∴1//2DN AB , 又∵11112A M AB =,11//A B AB , ∴1//A M DN ,∴四边形1A DNM 是平行四边形,∴1//A D MN ,∵1A D ⊂平面11ACC A ,MN ⊄平面11ACC A , ∴//MN 平面11ACC A ;(Ⅱ)如图,设AB 的中点为H ,连接MH ,∴1//MH BB ,∵1BB ⊥底面ABC ,∵1BB AC ⊥,1BB AB ⊥,∴MH AC ⊥,AH AB ⊥, ∴AB AC A ⋂=,∴MH ⊥底面ABC ,在平面ABC 内,过点H 做HG AN ⊥,垂足为G , 连接MG ,AN HG ⊥,AN MH ⊥,HG MH H ⋂=, ∴AN ⊥平面MHG ,则AN MG ⊥, ∴MGH ∠是二面角M AN B --的平面角, ∵12MH BB ==,由AGH BAC ∆~∆,得HG =所以MG ==cos HG MGH MG ∠==,∴二面角M AN B --的余弦值是21. 点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.(Ⅰ)B 品牌店6家,应抽查C 品牌店4家;(Ⅱ)分布列见解析,()80.2E X = 【解析】 【分析】(1)根据分层抽样每层按比例分配,即可求解;(2)求出随机变量X 的可能取值,并求出相应的概率,即可得到分布列,进而根据期望公式求解. 【详解】(Ⅰ)由题意得,应抽查B 品牌店30206100⨯=家, 应抽查C 品牌店20204100⨯=家; (Ⅱ)离散型随机变量X 的可能取值为60,80,90,96.于是()0346310201601206C C P X C ====,()12463104151801202C C P X C ⨯====, ()21463106639012010C C P X C ⨯====,()3046310419612030C C P X C ====.X 的分布列如下所以()11316080909680.2621030E X =⨯+⨯+⨯+⨯= 【点睛】本题考查分层抽样、离散型随机变量的分布列和期望,求出随机变量的概率是解题关键,属于基础题.21. (1)详见解析;(2) ˆ0.70.35yx =+;(3) 当10x =时,ˆ7.35y =万元. 【解析】(1)直接将四个点在平面直角坐标系中描出;(2)先计算4i 1x ii y =∑,42i1xi =∑,再借助()()()1122211ˆˆˆn ni i i i i i n n i i i i x x y y x y nxy b x x x nx a y bx ====⎧---⎪==⎪--⎨⎪=-⎪⎩∑∑∑∑计算出ˆ,b a ,求出回归方程;(3)依据线性回归方程0.70.5ˆ3yx =+求出当10x =时,ˆy 的值: 【试题分析】(1)按数学归纳法证明命题的步骤:先验证1n =时成立,再假设当()*n k k N =∈时,不等式成立,分析推证1n k =+时也成立:(1)(2)4i 1x 66.5ii y==∑; ¯ 4.5,= ¯ 3.5=422222i1x345686i ==+++=∑0.7,0.5ˆ3ba == 所求的线性回归方程:0.70.5ˆ3yx =+ (3)当10x =时,ˆ7.35y=万元 22.(I )2a =;(II )min =0λ 【解析】 【分析】(I )求出()f x 的定义域以及导数,讨论a 的范围,求出单调区间,再结合()f x 的极小值为1,即可求得实数a 的值;(II )求出()h x 的定义域以及导数,利用导数研究()h x 最小值的范围,即可求出λ。

湖南省永州市重点名校2019-2020学年高二下学期期末统考数学试题含解析.docx

湖南省永州市重点名校2019-2020学年高二下学期期末统考数学试题含解析.docx

在点P (1, 1)处的切线相互垂直,所以r (1) »g' (1) =-1,即—1,所以a=-l.故选A. 考点:利用导数研究曲线上某点切线方程.3. 用反证法证明命题“若。

>2,则方程必+心+ 1 = o 至少有一个实根,,时,应假设() A.方程J+破+ 1 = 0没有实根湖南省永州市重点名校2019-2020学年高二下学期期末统考数学试题 一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列等式不正确的是( ) 777 + 1 A. C —C1 c. A';*: 【答案】A【解析】 【分析】 根据排列组合数公式依次对选项,整理变形,分析可得答案. 【详解】 n\ A,根据组合数公式,a,;" = - ., = ^x (^+1)!= n + 1 (m + l)!(n-m)! n + 1 tn + 1 八 m+l . 一 . —x" A不正确; B, - A^1 = (〃 +1)〃(〃-1)(〃 - 2)— m + 1) —〃—1)(〃 —2)(〃_所 + 1) = 〃2(〃_])(〃_2){n — m + \),W = w (” T)3-1) 3 - m +1)故 Cl 1 - 4':'=必4'目 B 正确;c, »Cf=n(n-1)(» - 2) (” - /« + !) = 故 C 正确; D, nC ; - kC : = (n - k)C : = (n - k)n(n - § (〃一上 + 1) = 〃(〃一1) (〃_上 + 1)("_上)=Cf*】故 D 正确; 【点睛】 本题考查排列组合数公式的计算,要牢记公式,并进行区别,属于基础题. 2.若曲线f(x) = $ , g ⑴=芝在点尸(1,1)处的切线分别为1撰2,且«上,2,则a 的值为() B. 2 1 D.—— 2 【答案】A 【解析】 试题分析:因为「3* 衣)妇,则 f' (1)=-2,g ,(l) =a,又曲线f(x) = Mg(x) = x"B.方程x2 +ov + l = 0至多有一个实根C. ^x- +ax + l = o至多有两个实根D. 方程x2+ax + \ = 0恰好有两个实根【答案】A【解析】分析:直接利用命题的否定写出假设即可,至少的反面是一个都没有。

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。

哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题文含解析

哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题文含解析
9. 若某10人一次比赛得分数据如茎叶图所示,则这组数据的中位数是( )
A。 82。5B。 83C。 93D. 72
【答案】A
【解析】
【分析】
由茎叶图得出所有数据并从小到大排序,由于偶数个,则中位数为中间两个数之和再除以2。
【详解】将这组数据从小到大排列为72,74,76,81,82,83,86,93,93,99,则这组数据的中位数是 ,即82。5
A. 3B. 4C。 6D。 7
【答案】B
【解析】
【分析】
类比二分法,将16人均分为两组,选择其中一组进行检测,再把认定的这组的8人均分两组,选择其中一组进行检测,以此类推,即可得解.
【详解】先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了1次检测。继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查,为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了2次检测。继续把认定的这组的4人均分两组,选其中一组2人的样本混合检查,为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了3次检测。选认定的这组的2人中一人进行样本混合检查,为阴性则认定是另一个人;若为阳性,则认定为此人,此时进行了4次检测。所以,最终从这16人中认定那名感染者需要经过4次检测。
【解析】
【分析】
分析图形中火柴数 变化是以3位首项2为公差的等差数列,由此可算第100个图形所用火柴棒数。
【详解】由图形可知,第一个图形用3个火柴,以后每一个比前一个多两个火柴,则第n个使用火柴为 ,则第100个图形所用火柴棒数为2×100+1=201.
故答案为:201
【点睛】本题考查合情推理的应用,属于基础题.
70 29 17 12 13 40 33 12 38 26 13 89 51 03

吉林省四平市第一高级中学2019-2020学年高二上学期期中考试数学(文)试题(含答案解析)

吉林省四平市第一高级中学2019-2020学年高二上学期期中考试数学(文)试题(含答案解析)

吉林省四平市第一高级中学2019-2020学年高二上学期期中考试数学(文)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.椭圆2214x y +=的焦点坐标是()A .()B .()C .(0,D .(0,2.抛物线2y ax =的准线方程为1y =,则a 的值为()A .12-B .2-C .14-D .4-3.已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =±D .y x=±4.若直线1x ya b-=过第一、二、三象限,则实数,a b 满足()A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><5.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中正视图中的曲线为14圆弧,则该几何体的体积为()A .π42-B .π82-C .4π-D .8π-6.若P 为椭圆22195x y +=上的任意一点,F 是椭圆的一个焦点,则PF 的最大值是()A .2B .3C .4D .57.已知正方形ABCD PA ⊥平面,2ABCD PA =,则PC 与平面ABCD 所成角是()A .30B .45C .60D .908.双曲线221259x y -=的两个焦点分别是12,F F ,双曲线上一点P 到1F 的距离是12,则P到2F 的距离是()A .17B .7C .7或17D .2或229.已知α、β是两个平面,直线l α⊄,l β⊄,若以①l α⊥;②//l β;③αβ⊥中两个为条件,另一个为结论构成三个命题,则其中正确的命题有()A .①③⇒②;①②⇒③B .①③⇒②;②③⇒①C .①②⇒③;②③⇒①D .①③⇒②;①②⇒③;②③⇒①10.设12,F F 是椭圆2212516x y +=的两个焦点,点M 在椭圆上,若12MF F △是直角三角形,则12MF F △的面积等于()A .485B .365C .16D .485或1611.一束光线从点()2,3射出,经x 轴反射后与圆()()22321x y ++-=相切,则入射光线所在直线的斜率为()A .65或56B .54或45C .43或34D .32或2312.设1F 、2F 分别为双曲线()222210,0x ya b a b-=>>的左、右焦点,双曲线上存在一点P使得123PF PF b +=,1294PF PF ab ⋅=,则该双曲线的离心率为()A .43B .53C .94D .3二、填空题13.经过点()2,1P 且与直线240x y -+=平行的直线方程为______.14.在正方体1111ABCD A B C D -中,过11,,A C B 三点的平面与底面ABCD 的交线为l ,则直线l 与11A C 的位置关系为______.(填“平行”“相交”或“异面”)15.已知抛物线24y x =的弦AB 的中点的横坐标为2,则AB 的最大值为__________.16.如图,半径为R 的球的两个内接圆锥有公共的底面,若两个圆锥的体积之和为球的体积的18,则这两个圆锥高之差的绝对值为______.三、解答题17.如图,已知圆锥的顶点为P ,O 是底面圆心,AB 是底面圆的直径,5PB =,3OB =.(1)求圆锥的表面积;(2)经过圆锥的高PO 的中点O '作平行于圆锥底面的截面,求截得的圆台的体积.18.已知直线:4320l ax y a --+=.(1)求证:无论实数a 为何值,直线l 总经过第一象限;(2)若直线l 不经过第二象限,求a 的取值范围.19.已知直线1:210l x y ++=,2:280l ax y a +++=,12l l ⊥且垂足为A .(1)求点A 的坐标;(2)若圆C 与直线2l 相切于点A ,且圆心C 的横坐标为2,求圆C 的标准方程.20.如图,在多面体ABCDGE 中,已知四边形ABCD 为矩形,ABEG 为平行四边形,⊥AE 平面,ABCD AG 的中点为,F CD 的中点为P ,且24AB AE AD ===.(1)求证:EF ⊥平面BCE ;(2)求三棱锥P ACF -的体积.21.已知曲线M 由抛物线2x y =-及抛物线24x y =组成,直线l :3y kx =-(0k >)与曲线M 有m (N m ∈)个公共点.(1)若3m ≥,求k 的最小值;(2)若3m =,记这3个交点为A ,B ,C ,其中A 在第一象限,()0,1F ,证明:2FB FC FA⋅=22.已知椭圆2222:1(0)x y C a b a b+=>>,三点()()1230,2,,0,1A A A -中恰有两点在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 交椭圆C 于,M N 两点,且线段MN 的中点P 的横坐标为-,过P 作直线l l '⊥,证明:直线l '恒过定点,并求出该定点的坐标.参考答案:1.A【分析】根据椭圆方程写出焦点坐标即可.【详解】由题设方程,椭圆焦点在x 轴上且c ==∴焦点坐标为().故选:A.2.C【分析】先求得抛物线的标准方程,可得其准线方程,根据题意,列出方程,即可得答案.【详解】由题意得抛物线的标准方程为21x y a =,准线方程为14y a=-,又准线方程是1y =,所以114a-=,所以14a =-.故选:C 3.C【详解】c e a ==2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±.【考点】本题考查双曲线的基本性质,考查学生的化归与转化能力.4.C【分析】将直线1x ya b-=过第一、二、三象限,转化为直线在x 轴上的截距为负,在y 轴上的截距为正,可得答案.【详解】将直线1x y a b -=化为+1x y a b=-,又直线过第一、二、三象限,所以它在x 轴上的截距为负,在y 轴上的截距为正,所以a<0,0b ->.所以0,0a b <<.故选:C.5.B【分析】根据三视图判断出几何体的结构,由此求得几何体的体积.【详解】根据三视图可知,该几何体是正方体截去四分之一的圆柱所得,所以体积为()21π222π12842⨯⨯-⨯⨯⨯=-.故选:B6.D【分析】先求得,a c ,由此求得PF 的最大值.【详解】22195x y += ,29a ∴=,2254b c =⇒=,即3,2a c ==.所以PF 的最大值为325a c +=+=.故选:D 7.B【分析】根据线面角的知识求得正确答案.【详解】由于PA ⊥平面ABCD ,AC ⊂平面ABCD ,所以PA AC ⊥,故PCA ∠是PC 与平面ABCD 所成角,由于正方形ABCD ,所以2AC PA ==,所以45PCA ∠=︒.故选:B8.D【分析】讨论P 点位置,结合1PF 求2PF .【详解】当P 在双曲线左支上时,根据双曲线的定义得2121210PF PF PF -=-=,解得222PF =,当P 在双曲线右支上时,根据双曲线的定义得1221210PF PF PF -=-=,解得22PF =,因为225PF c a =≥-=,所以22PF =满足题意.所以22PF =或22,故选:D.9.A【解析】对三个命题逐个分析,可采用判定定理、定义、作图的方法进行说明,由此可确定出正确选项.【详解】(1)证明:①②⇒③为真命题因为l α⊥,//l β,设l 平行于β内一条直线l ',所以l α'⊥,根据面面垂直的判定定理可知:αβ⊥,所以①②⇒③为真命题;(2)证明:①③⇒②为真命题因为l α⊥,αβ⊥,所以l ⊂α或l //β,又因为l β⊄,所以l //β,所以①③⇒②为真命题;(3)证明:②③⇒①为假命题作出正方体如下图所示:记直线AD 为l ,平面1111D C B A 为α,平面11BB C C 为β,所以αβ⊥,//l β,但//l α,所以②③⇒①为假命题;故选:A.【点睛】本题考查空间中关于线、面的命题的真假判断,主要考查学生对空间中位置关系的理解,难度一般.说明位置关系不成立也可以举反例.10.D【分析】对12MF F △的直角进行分类讨论,结合椭圆的定义以及标准方程求得正确答案.【详解】依题意,5,4,3a b c ===,不妨设()()13,0,3,0F F -,对于直角三角形12MF F ,若12π2F MF ∠=,由1222212210436PF PF a PF PF c ⎧+==⎪⎨+==⎪⎩,整理得1232PF PF ⋅=,所以12121162MF F S PF PF =⨯⨯= .若12MF F ∠或21MF F ∠为直角,由()22312516M y ±+=得225616,255M M y y ==,所以121211164862255MF F M S F F y =⨯⨯=⨯⨯= .所以,12MF F △的面积等于485或16.故选:D 11.C【解析】设入射光线所在的直线方程为()32y k x -=-,根据对称性可知,直线与圆()()22321x y ++-=关于x 轴的对称圆相切,即可求出斜率k .【详解】由题意可知,点()2,3在入射光线上,设入射光线所在的直线方程为()32y k x -=-,即2kx y k --30+=.圆()()22321x y ++-=关于x 轴对称的圆为()()22321x y +++=,则入射光线与该圆相切.1=,化为21225120k k -+=,解得34k =或43.故选:C【点睛】本题主要考查了直线与圆的相切,圆的对称性,考查了运算能力,属于中档题.12.B【解析】利用双曲线的定义结合已知条件可得出22949b b ab -=,可求得ba,再由公式e =可求得双曲线的离心率的值.【详解】由双曲线的定义得122PF PF a -=,又123PF PF b +=,()()2222121294PFPF PFPF b a +--=-,即1249PF PF ab ⋅=,因此22949b a ab -=,即29940b ba a ⎛⎫--= ⎪⎝⎭,则33140b b a a ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,解得43b a =,13b a =-(舍去),因此,该双曲线的离心率为53c e a ===.故选:B.【点睛】本题考查双曲线离心率的求解,解题的关键就是利用双曲线的定义建立a 、b 所满足的齐次等式,考查计算能力,属于中等题.13.20x y -=.【解析】设经过点()2,1P 且与直线240x y -+=平行的直线方程为20x y c -+=,然后将()2,1P 求解.【详解】设经过点()2,1P 且与直线240x y -+=平行的直线方程为20x y c -+=,把()2,1P 代入,得:2210c -⨯+=,解得0c =,∴经过点()2,1P 且与直线240x y -+=平行的直线方程为20x y -=.故答案为:20x y -=.【点睛】本题主要考查平行直线的求法,属于基础题.14.平行【分析】根据线面平行的性质定理和判定定理确定正确答案.【详解】根据正方体的性质可知:11//A C AC ,由于11A C ⊄平面ABCD ,AC ⊂平面ABCD ,所以11//A C 平面ABCD ,由于平面11AC B ⋂平面ABCD l =,11AC ⊂平面11A C B ,所以11//l AC .故答案为:平行15.6【分析】利用抛物线的定义可知,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=4,那么|AF |+|BF |=x 1+x 2+2,所以|AF |+|BF |≥|AB |⇒|AB |≤6,当AB 过焦点F 时取最大值为6.16【分析】根据体积的公式求出两个圆锥体积之和,进而求出圆锥的底面圆的半径,求出两圆锥的高,求出答案.【详解】球的体积为3344ππ33R R ⨯=,则两个圆锥的体积之和为3314π=π8316R R ⨯,设两个圆锥的高分别为12,h h ,则122h h R +=,设圆锥底面圆半径为r ,则()2231212π1ππ336r h h r R R ⋅+==⋅,解得:2R r =,即2PD R =,所以222232AP R R R R ⎛⎫=--= ⎪⎝-⎭,222232BP R R R R ⎛⎫=+-= ⎪⎝+⎭所以这两个圆锥的高之差的绝对值为2232233R --=3R17.(1)24π;(2)21π2.【分析】(1)由题意可知,该圆锥的底面半径3r =,母线5l =,从而可求出锥的表面积,(2)先求出大圆锥的高,从而可求出小圆锥的高,进而可得圆台的体积等于大圆锥的体积减去小圆锥的体积【详解】解:(1)由题意可知,该圆锥的底面半径3r =,母线5l =.∴该圆锥的表面积22πππ3π3524πS r rl =+=⨯+⨯⨯=.(2)在Rt POB △中,2222534PO PB OB =-=-=,∵O '是PO 的中点,∴2PO '=.∴小圆锥的高2h '=,小圆锥的底面半径1322r r '==,∴截得的圆台的体积2211321π34π2π3322V V V ⎛⎫=-=⨯⨯⨯-⨯⨯⨯= ⎪⎝⎭小台大.18.(1)证明见解析;(2)2a ≥.【分析】(1)将含有a 的项整理在一起,令a 的系数为0,余下的项为零,进而解得定点坐标,得到答案;(2)将直线化为斜截式,进而限制斜率和纵截距的范围得到答案.【详解】(1)直线:4320l ax y a --+=化为(41)230a x y -+-=,令410,230,x y -=⎧⎨-=⎩1,42,3x y ⎧=⎪⎪∴⎨⎪=⎪⎩即直线:4320l ax y a --+=恒过定点12,43⎛⎫ ⎪⎝⎭,∴直线l 总经过第一象限.(2)直线:4320l ax y a --+=化为4233ax a y -=+,当0a =时,得23y =,直线经过第二象限;要使l 不经过第二象限,须有403203a a ⎧>⎪⎪⎨-⎪≤⎪⎩,解得2a ≥.19.(1)()1,3-;(2)()()22255x y -++=.【解析】(1)根据题意,由直线垂直的判断方法可得220a +=,解可得a 的值,即可得直线2l 的方程,联立两个直线的方程,解可得A 的坐标,即可得答案.(2)根据题意,分析可得圆心C 在直线1l 上,设C 的坐标为(2,)b ,将其代入直线1l 的方程,计算可得b 的值,即可得圆心的坐标,求出圆的半径,即可得答案.【详解】解:(1)根据题意,直线1:210l x y ++=,2:280l ax y a +++=,若12l l ⊥,则有220a +=,解可得1a =-,则直线2l 的方程为270x y -++=,即270x y --=;联立两直线的方程:210270x y x y ++=⎧⎨--=⎩,解可得13x y =⎧⎨=-⎩,即A 的坐标为()1,3-;(2)根据题意,若圆C 与直线2l 相切于点A 且12l l ⊥且垂足为A ,则圆心C 在直线1l 上,设C 的坐标为()2,b ,则有2210b ⨯++=,解可得=5b -,则圆心C 的坐标为()2,5-,圆的半径r CA ===则圆C 的标准方程为()()22255x y -++=.【点睛】本题考查直线与圆的位置关系,涉及圆的标准方程以及直线垂直的判断,属于基础题.20.(1)证明见解析(2)43【分析】(1)通过证明EF BC ⊥、EF BE ⊥来证得EF ⊥平面BCE ;(2)根据锥体体积计算方法,求得三棱锥P ACF -的体积.【详解】(1)因为⊥AE 平面,ABCD AE ⊂平面ABED ,所以平面ABCD ⊥平面ABEG .因为四边形ABCD 是矩形,所以BC AB ⊥.又BC ⊂平面ABCD ,平面ABCD ⋂平面ABEG AB =,所以BC ⊥平面ABEG .因为EF ⊂平面ABEG ,所以EF BC ⊥.因为四边形ABEG 为平行四边形,AB AE =,所以AE GE =.又F 为AG 中点,所以EF AG ⊥.易知//BE AG ,所以EF BE ⊥.又,,BC BE B BC BE ⋂=⊂平面BCE ,所以EF ⊥平面BCE .(2)因为⊥AE 平面,ABCD AG 的中点为,F ABEG 为平行四边形,GE AE ⊥,所以三棱锥F ACP -的高为122AE =.又PAC △的面积12222PAC S =⨯⨯= ,所以三棱锥P ACF -的体积142233P ACF F PAC V V --==⨯⨯=.21.(2)证明见解析【分析】(1)联立2x y =-与3y kx =-,21=120k ∆+>,故l 与抛物线2x y =-恒有两个交点.所以24x y =与3y kx =-,至少有一个交点,故令22=16480k ∆-≥,可求得k 的最小值;(2)由(1)知,k =A x =3A y =,142A FA y =+= ,即可证明22FB FC FA FA ⋅== .【详解】(1)联立2x y =-与3y kx =-,得230x kx +-=,∵21=120k ∆+>,∴l 与抛物线2x y =-恒有两个交点;联立24x y =与3y kx =-,得24120x kx -+=,∵直线l 与曲线M 有m 个公共点,且3m ≥,∴l 与抛物线24x y =至少有1个交点,∴22=16480k ∆-≥,∵0k >,∴k ≥∴k(2)由(1)知,k =且24120A A x kx -+=,∴24A x k =,∴2A x k ==,∴(24A y =,∴3A y =,故()A ,易知()0,1F 为抛物线24x y =的焦点,则23142A FA y =+=+= ,设()11,B x y ,()22,C x y ,由230x kx +-=可得12x x k +=-=123x x =-,∴()121269y y k x x +=+-=-,()()()21212121233399y y kx kx k x x k x x =--=-++=,∴()()()121212*********FB FC x x y y x x y y y y ⋅=+--=+-++= ,∵2216FA FA == ,∴2FB FC FA⋅= 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.22.(1)221124x y +=(2)证明见解析,3⎛⎫- ⎪ ⎪⎝⎭【分析】(1)分别讨论即可确定12,A A 在C 上,即可求解;(2)利用点差法表示出l 的斜率,再表示出l '的直线方程,即可求出定点.【详解】(1)显然13,A A 不能同时在C 上,若23,A A 在C 上,则2223331,31b a b a =+=+≠.故12,A A 在C 上,则22332,1b a b=+=,所以212a =.所以椭圆C 的方程为221124x y +=.(2)设()00,P y y ⎛-∈ ⎝⎭.当00y ≠时,设()()1122,,,M x y N x y ,显然12x x ≠.联立2211222211241124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,则222212120124x x y y --+=,即1212121213y y x x x x y y -+=-⋅-+.又P 为线段MN 的中点,故直线MN的斜率为0013-.又l l '⊥,所以直线l '的方程为0y y x -=+,即3y x ⎛=+⎭,显然l '恒过定点⎛⎫ ⎪ ⎪⎝⎭.当00y =时,l '过点,03⎛⎫- ⎪ ⎪⎝⎭.综上所述,l '恒过定点3⎛⎫- ⎪ ⎪⎝⎭.。

2019-2020学年贵阳市名校七年级第二学期期末学业质量监测数学试题含解析

2019-2020学年贵阳市名校七年级第二学期期末学业质量监测数学试题含解析
【详解】
解:0.0007=7×10﹣4
故选C.
【点睛】
本题考查科学计数法,难度不大.
二、填空题
11.“b的 与c的和是负数”用不等式表示为_________.
【答案】 b+c<0
【解析】
“b的 与c的和是负数”用不等式表示为: .
故答案为: .
12.如图,△ABC中,AP垂直∠ABC的平分线BP于点P.若△ABC的面积为32cm2,BP=6cm,且△APB的面积是△APC的面积的3倍.则AP=________cm.
三、解答题
18.解不等式组 并写出它的整数解.
【答案】不等式组的解集为 ,整数解为:2,3和1
【解析】
【分析】
先求出不等式组的解集,再求出不等式组的整数解即可.
【详解】
解:
由①得
由②得
该不等式组的解集为: ,
该不等式组的整数解为:2,3和1.
【点睛】
本题考查解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解题的关键.
19.△ABC中,∠C=60°,点D,E分别是边AC,BC上的点,点P是直线AB上一动点,连接PD,PE,设∠DPE=α.
(1)如图①所示,如果点P在线段BA上,且α=30°,那么∠PEB+∠PDA=___;
(2)如图②所示,如果点P在线段BA上运动,
①依据题意补全图形;
②写出∠PEB+∠PDA的大小(用含α的式子表示);并说明理由。
∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;
故答案为﹣2≤m≤1.
【点睛】
本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.

广西省玉林市2019-2020学年数学高二下期末经典试题含解析

广西省玉林市2019-2020学年数学高二下期末经典试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知随机变量8X ξ+=,若()~10,0.6X B ,则()E ξ,()D ξ分别为( ) A .6和2.4 B .6和5.6C .2和2.4D .2和5.6【答案】C 【解析】 【分析】利用二项分布的数学期望和方差公式求出()E X 和()D X ,然后利用期望和方差的性质可求出()E ξ和()D ξ的值.【详解】()~10,0.6X B ,()100.66E X ∴=⨯=,()100.60.4 2.4D X =⨯⨯=.8X ξ+=,8X ξ∴=-,由期望和方差的性质可得()()()882E E X E X ξ=-=-=,()()()8 2.4D D X D X ξ=-==.故选:C. 【点睛】本题考查均值和方差的求法,是基础题,解题时要认真审题,注意二项分布的性质的合理运用. 2.在三棱柱1111,ABC A B C AA -⊥面ABC ,23BAC π∠=,14AA =,AB AC ==,则三棱柱111ABC A B C -的外接球的表面积为( )A .32πB .48πC .64πD .72π【答案】C 【解析】 【分析】利用余弦定理可求得BC ,再根据正弦定理可求得ABC ∆外接圆半径r;由三棱柱特点可知外接球半径R =R 后代入球的表面积公式即可得到结果.【详解】AB AC ==23BAC π∠=22222cos363BC AB AC AB AC π∴=+-⋅= 6BC ∴=由正弦定理可得ABC ∆外接圆半径:622sin 2sin 3BC r BAC π===∠∴三棱柱111ABC A B C -的外接球半径:221112442R r AA ⎛⎫=+=+= ⎪⎝⎭ ∴外接球表面积:2464S R ππ==本题正确选项:C 【点睛】本题考查多面体外接球表面积的求解问题,关键是能够明确外接球球心的位置,从而利用底面三角形外接圆半径和三棱柱的高,通过勾股定理求得外接球半径.3.已知非空集合,A B ,全集U A B =⋃,集合M A B =⋂, 集合()()UU N B A =⋃则( )A .MN M = B .M N ⋂=∅ C .M ND .M N ⊆【答案】B 【解析】分析:根据题意画出图形,找出M 与 N 的并集,交集,判断M 与 N 的关系即可 详解:全集U A B =⋃,集合M A B =⋂, 集合()()UU N B A =⋃M N U ∴⋃=,M N ⋂=∅,M N ≠故选B点睛:本题主要考查的是交集,并集,补集的混合运算,根据题目画出图形是解题的关键,属于基础题。

选修2-1学霸必刷题 空间向量与立体几何(选择题、填空题)

空间向量与立体几何(选择题、填空题)一、单项选择题1.(江西省赣州市赣县第三中学2020-2021学年高二8月入学考试)已知点(,1,2)A x 和点(2,3,4)B ,且AB =x 的值是( )A .6或2-B .6或2C .3或4-D .3-或4【答案】A【解析】AB ==()2216x -=,解得:2x =-或6x =.故选A2.(2020江西省新余期末质量检测)在空间直角坐标系中,已知P(-1,0,3),Q(2,4,3),则线段PQ 的长度为( )A B .5C D 【答案】B【解析】由题得2(3,4,0),35PQ PQ =∴=+=,所以线段PQ 的长度为5. 故答案为B3.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知空间向量()3,1,3m =,()1,,1n λ=--,且//m n ,则实数λ=( )A .13- B .-3 C .13D .6【答案】A【解析】因为//m n ,所以,m n R μμ=∈,即:()3,1,3m ==(),,n μλμμμ--=, 所以3,1μλμ=-=,解得13λ=-.故选A .4.(江西省新余一中、宜春一中2021届高二联考)如图所示,在正方体1111ABCD A B C D -中,O 是底面正方形ABCD 的中心,M 是1D D 的中点,N 是11A B 的中点,则直线NO ,AM 的位置关系是( )A .平行B .相交C .异面垂直D .异面不垂直【答案】C【分析】建立空间直角坐标系,写出NO 与AM 的坐标,即可判断位置关系.【解析】建立空间直角坐标系,如图所示.设正方体的棱长为2,则(2,0,0)A ,(0,0,1)M ,(1,1,0)O ,(2,1,2)N ,∴(1,0,2)NO =--,(2,0,1)AM =-.∵0NO AM ⋅=,∴直线NO ,AM 的位置关系是异面垂直. 故选: C5.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,则AE AF ⋅的值为( ) A .2aB .212aC .214a D 2 【答案】C【分析】由题意可得11()22AB AC AE AF AD ⋅=+⋅,再利用两个向量的数量积的定义求得结果.【解析】11()22AB AC AE AF AD ⋅=+⋅1()4AB AD AC AD =⋅+⋅ ()22211cos60cos6044a a a ︒︒=+=,故选C. 6.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知M ,N 分别是四面体OABC 的棱OA ,BC 的中点,点P 在线段MN 上,且2MP PN =,设向量OA a =,OBb =,OC c =则OP =( )A .111666a b c ++B .111333a b c ++C .111633a b c ++D .111366a b c ++【答案】C【解析】如图所示,连接ON ,∵OP ON NP =+,1()2ON OB OC =+,所以13NP NM =,NM OM ON =-,12OM OA =,∴13OP ON NP ON NM =+=+121()333ON OM ON ON OM =+-=+21()32OB OC =⨯+1132OA +⨯111633OA OB OC =++111633a b c =++.故选C . 7.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)若两条不重合直线1l 和2l 的方向向量分别为()11,0,1ν=-,()22,0,2ν=-,则1l 和2l 的位置关系是( ) A .平行 B .相交 C .垂直D .不确定【答案】A【解析】因为两条不重合直线1l 和2l 的方向向量分别为()11,0,1ν=-,()22,0,2ν=-, 所以212v ν=-,即2ν与1v 共线,所以两条不重合直线1l 和2l 的位置关系是平行,故选A8.(山东省滕州市第一中学2020-2021学年高二9月开学收心考试)设,x y R ∈,向量()()(),1,1,1,,1,2,4,2,a x b y c ===-且,//a c b c ⊥,则a b +=( )A .BC .3D .4【答案】C【分析】根据向量垂直和平行的坐标表示求得参数,x y ,再求向量模长即可. 【解析】()//,241,2,1,21b c y y b ∴=-⨯∴=-∴=-,,(),1210,1a b a b x x ⊥∴⋅=+⋅-+=∴=,()()1,112,1,2a a b ∴=∴+=-,,(2213a b ∴+=+-=,故选C .9.(江西省宜春市2016-2017学年高二上学期期末统考理)如图所示,在空间四边形OABC 中,OA a OB b OC c ===,,,点M 在OA 上,且2,OM MA N =为BC 中点,则MN =( )A .121232a b c -+B .211322a b c -++ C .111222a b c +-D .221b 332a c -+-【答案】B【解析】由向量的加法和减法运算:12211()23322MN ON OM OB OC OA a b c =-=+-=-++.故选B10.(陕西省商洛市商丹高新学校2019-2020学年高二下学期4月学情质量检测数学(理))如图,已知正方体ABCD A B C D ''''-,点E 是A C ''的中点,点F 是AE 的三等分点,且12AF EF =,则AF =( )A .1122AA AB AD '++ B .111222AA AB AD '++ C .111266AA AB AD '++D .111366AA AB AD '++【答案】D【解析】∵点E 是A C ''的中点,点F 是AE 的三等分点,且12AF EF =, ∴111111()333236AF AE AA A E AA A C AA A C ⎛⎫''''''''==+=+=+ ⎪⎝⎭ 11()36AA A B A D '''''=++111366AA AB AD '=++,故选D . 11.(安徽省六安市舒城中学2020-2021学年高二上学期开学考试数学(文)试题)如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为( )A .8B .4C .2D .1【答案】D【解析】()2i i i AB AP AB AB BP AB AB BP ⋅=⋅+=+⋅,AB ⊥平面286BP P P ,i AB BP ∴⊥,i AB BP ∴⋅=,21i AB AP AB ∴⋅==,则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为1个,故选D .12.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)点P (1,2,3)关于xOy 平面的对称点的坐标为( ) A .(-1,2,3) B .(1,-2,-3) C .(-1,-2,-3) D .(1,2,-3)【答案】D【分析】关于xOy 平面对称的点的,x y 坐标不变,只有z 坐标相反. 【解析】点P (1,2,3)关于xOy 平面的对称点的坐标为(1,2,)3-.故选D .13.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)若向量(2,0,1)a =-,向量(0,1,2)b =-,则2a b -=( )A .(4,1,0)-B .(4,1,4)--C .(4,1,0)-D .(4,1,4)--【答案】C【分析】根据题意求出2(4,0,2)a=-,再根据向量的减法坐标运算,由此即可求出结果.【解析】因为向量(2,0,1)a =-,向量(0,1,2)b =-,则2(4,0,2)a =-,则2(4,0,2)(0,1,2)(4,1,0)a b -=---=-,故选C .14.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知正方体1111ABCD A B C D -,点E 是上底面11A C 的中心,若1AE AA xAB yAD =++,则x y +等于( ) A .13B .12C .1D .2【答案】C【解析】如图,()111111112AE AA A E AA A B A D =+=++ ()11111222AA AB AD AA AB AD =++=++,所以12x y ==,所以1x y +=.故选C15.(江苏省南京市秦淮区2019-2020学年高一下学期期末)空间直角坐标系O xyz -中,已知两点()11,2,1P -,()22,1,3P -,则这两点间的距离为( )A BC .D .18【答案】B【解析】根据题意,两点()11,2,1P -,()22,1,3P -,则12||PP =B .16.(湖北省恩施高中2020届高三下学期四月决战新高考名校交流卷(B ))已知向量()1,2a =,()3,b x =,()1,1c y =--,且//a b ,b c ⊥,则x y ⋅的值为( )A .6B .32 C .9D .132-【答案】C【解析】∵//a b ,∴60x -=,6x =,∴向量()3,6b =, ∵b c ⊥,∴()3610y -+-=,∴32y =,∴9x y ⋅=.故选C . 17.(四川省绵阳市2019-2020学年高二下学期期末教学质量测试数学(理)试题)在空间直角坐标系中,若()1,1,0A ,()13,0,12AB =,则点B 的坐标为( ) A .()5,1,2-- B .()7,1,2- C .()3,0,1 D .()7,1,2【答案】D【分析】首先设出点(,,)B x y z ,利用向量坐标公式以及向量相等的条件得到等量关系式,求得结果. 【解析】设(,,)B x y z ,所以(1,1,)2(3,0,1)(6,0,2)AB x y z =--==,所以16102x y z -=⎧⎪-=⎨⎪=⎩,所以712x y z =⎧⎪=⎨⎪=⎩,所以点B 的坐标为(7,1,2),故选D .18.(广东省云浮市2019-2020学年高二上学期期末)如图,在三棱锥P ABC -中,点D ,E ,F 分别是AB ,PA ,CD 的中点,设PA a =,PB b =,PC c =,则EF =( )A .111442a b c --B .111442a b c -+ C .111442a b c +-D .111442a b c -++【答案】D 【解析】点D ,E ,F 分别是AB ,PA ,CD 的中点,且PA a =,PB b =,PC c =,∴()11112224EF EP PC CF PA PC CD PA PC CA CB =++=-++=-+++()1111124442PA PC PA PC PB PC PA PB PC =-++-+-=-++111442a b c =-++.故选D .19.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)一个向量p 在基底{},,a b c 下的坐标为()1,2,3,则p 在基底{},,a b a b c +-下的坐标为( )A .31322⎛⎫- ⎪⎝⎭,,B .31322⎛⎫- ⎪⎝⎭,, C .13322⎛⎫- ⎪⎝⎭,,D .13322⎛⎫- ⎪⎝⎭,,【答案】B【解析】因为向量p 在基底{},,a b c 下的坐标为()1,2,3,所以23p a b c =++, 设p 在基底{},,a b a b c +-下的坐标为(),,x y z ,所以()()()()p x a b y a b zc x y a x y b zc =++-+⇒++-+,有13223x y x y x z +=⎧⎪-=⇒=⎨⎪=⎩,12y,3z =,p 在基底{},,a b a b c +-下的坐标为31,,322⎛⎫- ⎪⎝⎭.故选B .20.(湖北省武汉襄阳荆门宜昌四地六校考试联盟2020-2021学年高三上学期起点联考)如图,直四棱柱1111ABCD A B C D -的底面是菱形,12AA AB ==,60BAD ∠=︒,M 是1BB 的中点,则异面直线1A M 与1B C所成角的余弦值为( )A. B .15- C .15D.5【答案】D【分析】用向量1,,AB BC BB 分别表示11,AM BC ,利用向量的夹角公式即可求解. 【解析】由题意可得221111111111,5,2A M AB B M AB BB A M A B B M=+=-=+=221111,2BC BC BB B C BC BB =-=+=,()211111111111cos ,AB BB BC BB AB BC BB A M B C A M B C A M B C⎛⎫-⋅-⋅+ ⎪⋅⎝〈〉===0122cos604⨯⨯+⨯==故选D21.(河北省石家庄市第二中学2020-2021学年高二上学期8月线上考试(二))长方体1111ABCD A B C D -中,11,2,AB AD AA E ===为棱1AA 的中点,则直线1C E 与平面11CB D 所成角的余弦值为( ) A.9 B.9CD .23【答案】A【解析】根据题意,建立如图所示直角坐标系:则1C E (1,1,1)=--,设平面11B D C 的法向量为n (,,)x y z =,则100n B D n BC ⎧⋅=⎪⎨⋅=⎪⎩可得:020x y x z --=⎧⎨--=⎩,取n (2,2,1)=--,则1,cos n C E =11n C E nC E⋅9==,设直线1C E 与平面11B D C 的夹角为θ,则9sin θ=,9cos θ==.故选A . 22.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知点()1,1,A t t t --,()2,,B tt ,则A ,B 两点的距离的最小值为A.10 B.5C.5D .35【答案】C【分析】由两点之间的距离公式求得AB 之间的距离用t 表示出来,建立关于t 的函数,转化为求函数的最小值.【解析】因为点()1,1,A t t t --,()2,,B t t ,所以22222(1)(21)()522AB t t t t t t =++-+-=-+,有二次函数易知,当15t =时,取得最小值为95,AB ∴,故选C .23.(湖南省邵阳市邵东县第十中学2020届高三下学期模拟考试数学(文)试题)如图,在正方体1111ABCD A B C D -中,M ,N 分别是棱AB ,1BB 的中点,点P 在对角线1CA 上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A .线段1CA 的三等分点,且靠近点1AB .线段1CA 的中点C .线段1CA 的三等分点,且靠近点CD .线段1CA 的四等分点,且靠近点C【答案】B【解析】设正方体的棱长为1,以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立空间直角坐标系,如图所示:则1(,0,0)2M ,1(1,0,)2N ,MN 的中点31(,0,)44Q ,1(0,0,1)A ,(1,1,0)C ,则1(1,1,1)AC =-,设(,,)P t t z ,(1,1,)PC t t z =---, 由1AC 与PC 共线,可得11111t t z---==-,所以1t z =-,所以(1,1,)P z z z --,其中01z ≤≤,因为||(1PM ==||(11)(1PN z =--+=所以||||PM PN =,所以PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,由空间两点间的距离公式可得||PQ ===12c =时,||PQ 取得最小值4,此时P 为线段1CA 的中点,由于||4MN =为定值,所以当△PMN 的面积取得最小值时,P 为线段1CA 的中点.故选B24.(云南省梁河县第一中学2019-2020学年高二7月月考数学(理)试题)长方体1111ABCD A B C D -中,12AB AA ==,1AD =,E 为1CC 的中点,则异面直线1BC 与AE 所成角的余弦值为( )A BCD .【答案】B【分析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得异面直线1BC 与AE 所成角的余弦值.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,则()0,0,0A 、()2,0,0B 、()12,1,2C 、()2,1,1E ,()2,1,1AE =,()10,1,2BC =,111cos ,6AE BC AE BC AEBC ⋅<>===⋅. 因此,异面直线1BC 与AE .故选B . 25.(广西桂林市2019-2020学年高二下学期期末质量检测数学(理))在正方体ABCD --A 1B 1C1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( ) A.5-B.5C .D 【答案】B【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值.【解析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,, ∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,, 设平面1B BD 的法向量为() ,,x n y z =,∵ n BD ⊥,1n BB ⊥, ∴22020x y z --=⎧⎨=⎩,令y 1=,则() 110n =-,,,∴10cos ,n BE n BE n BE ⋅==⋅,设直线BE 与平面1B BD 所成角为θ,则10sin cos ,5n BE θ==,故选B .26.(陕西省商洛市商丹高新学校2020届高三下学期考前适应性训练理科)如图在平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,侧棱12AA =且1160A AD A AB ∠=∠=︒,则1AC =( )A . BC .D 【答案】B【解析】因为底面ABCD 是边长为1的正方形,侧棱12AA =且1160A AD A AB ∠=∠=︒,则2=1AB ,2=1AD ,21=4AA ,0AB AD ⋅=,111cos 1AB AA AB AA A AB ⋅=⋅⋅∠=,111cos 1AD AA AD AA A AD ⋅=⋅⋅∠=,则1AC 1AB AD AA =++()1222111222AB AD AA AB AA AB AD AD AA =+++⋅+⋅+⋅==,故选B .27.(2020届上海市七宝中学高三高考押题卷)已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM PN →→⋅的取值范围为( ) A .[]0,4 B .[]0,2 C .[]1,4D .[]1,2【答案】B【分析】利用向量的线性运算和数量积运算律可将所求数量积化为21PO →-,根据正方体的特点可确定PO →的最大值和最小值,代入即可得到所求范围.【解析】设正方体内切球的球心为O ,则1OM ON ==,2PM PN PO OM PO ON PO PO OM ON OM ON →→→→→→→→→→→→⎛⎫⎛⎫⎛⎫⋅=+⋅+=+⋅++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,MN 为球O 的直径,0OM ON →→∴+=,1OM ON →→⋅=-,21PM PN PO →→→∴⋅=-,又P 在正方体表面上移动,∴当P 为正方体顶点时,PO →P 为内切球与正方体的切点时,PO →最小,最小值为1,[]210,2PO →∴-∈,即PM PN →→⋅的取值范围为[]0,2.故选B .【点睛】本题考查向量数量积的取值范围的求解问题,关键是能够通过向量的线性运算将问题转化为向量模长的取值范围的求解问题.28.(湖北省荆门市2019-2020学年高二下学期期末)在平行六面体ABCD A B C D ''''-中,若2AC x AB y BC z CC →→→→''=++,则x y z ++=( )A .52B .2C .32D .116【答案】A【解析】由空间向量的线性运算,得AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝, 由题可知,2AC x AB y BC z CC →→→→''=++,则1,1,21x y z ===,所以11,2y z ==, 151122x y z ∴++=++=.故选A .29.(安徽省六校教育研究会2020-2021学年高三上学期第一次素质测试理科)如图,在直三棱柱111ABC A B C -中,已知90ABC ∠=︒,P 为侧棱1CC 上任意一点,Q 为棱AB 上任意一点,PQ 与AB 所成角为α,PQ 与平面ABC 所成的角为β,则α与β的大小关系为( )A .αβ=B .αβ<C .αβ>D .不能确定【答案】C【分析】建立空间直角坐标系设()()(),0,,0,,00,0,0P x z Q y x y z >≥≥,利用空间向量法分别求得cos ,cos αβ,然后根据(0,],0,22ππαβ⎡⎤∈∈⎢⎥⎣⎦,利用余弦函数的单调性求解.【解析】建立如图所示空间直角坐标系:设()()(),0,,0,,00,0,0P x z Q y x y z >≥≥,则()(),,,0,,0QP x y z QB y =-=-, 所以2222,,QP QB y QP x y z QB y ⋅==++=,所以2cos QP QB QP QBx zα⋅==⋅+又(0,],0,22ππαβ⎡⎤∈∈⎢⎥⎣⎦,sin QP CP QPβ⋅==所以cos β=cos cos βα>,因为cos y x = 在0,2π⎛⎫⎪⎝⎭上递减,所以αβ>,故选C 30.(江西省赣州市赣县第三中学2019-2020学年高二6月份考试数学(理)试题)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53 C .2D .259【答案】B【分析】建立空间直角坐标系,利用向量法能求出线面角的正切值的最大值. 【解析】以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系, 设(,3,)P x z ,则1(3,3,),(3,3,4)AP x z BD =-=--,11,0AP BD AP BD ⊥∴⋅=,33(3)3340,4x z z x ∴---⨯+=∴=,||BP ∴==9255=, ||5tan ||3AB BP θ∴=,tan θ∴的最大值为53.故选B .31.(江西省赣州市赣县第三中学2019-2020学年高二6月份考试数学(理)试题)如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大【答案】D【解析】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤, 设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA 所在的直线分别为,y z 轴建立空间直角坐标系,则(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-,设平面BDE 的法向量(,,)m s t k =,则m BD m ED⎧⊥⎨⊥⎩,即02(1)0t k t x k ⎧++=⎪⎨+-=⎪⎩,令k =33,1t x s x =-=+,所以平面BDE的一个法向量(m x=+-,底面ABC的一个法向量为(0,0,1)n =,cos|cos,|m nα=<>==当1(0,)2x∈,cosα随着x增大而增大,则α随着x的增大而减小,当1(,2)2x∈,cosα随着x增大而减小,则α随着x的增大而增大.故选D.32.(山东省滕州市第一中学2020-2021学年高二9月开学收心考试)已知空间直角坐标系O xyz-中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q在直线OP上运动,则当QA QB⋅取得最小值时,点Q 的坐标为()A.131,,243⎛⎫⎪⎝⎭B.133,,224⎛⎫⎪⎝⎭C.448,,333⎛⎫⎪⎝⎭D.447,,333⎛⎫⎪⎝⎭【答案】C【分析】设(,,)Q x y z,根据点Q在直线OP上,求得(,,2)Qλλλ,再结合向量的数量积和二次函数的性质,求得43λ=时,QA QB⋅取得最小值,即可求解.【解析】设(,,)Q x y z,由点Q在直线OP上,可得存在实数λ使得OQ OPλ=,即(,,)(1,1,2)x y zλ=,可得(,,2)Qλλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+, 根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q . 故选C .【点睛】本题主要考查了空间向量的共线定理,空间向量的数量积的运算,其中解答中根据向量的数量积的运算公式,得关于λ的二次函数是解答的关键,着重考查运算与求解能力.33.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为( )A .16+8πB .32+16πC .32+8πD .16+16π【答案】A【解析】设D 在底面半圆上的射影为1D ,连接1AD 交BC 于O ,设1111A D B C O ⋂=. 依题意半圆柱体底面直径4,,90BC AB AC BAC ==∠=︒,D 为半圆弧的中点, 所以1111,AD BC A D B C ⊥⊥且1,O O 分别是下底面、上底面半圆的圆心.连接1OO , 则1OO 与上下底面垂直,所以11,,OO OB OO OA OA OB ⊥⊥⊥,以1,,OB OA OO 为,,x y z 轴建立空间直角坐标系,设几何体的高为()0h h >,则()()()()12,0,0,0,2,,0,2,0,2,0,B D h A B h -,所以()()12,2,,2,2,BD h AB h =--=-,由于异面直线BD 和1AB 所成的角的余弦值为23,所以11238BD AB BD AB ⋅==⋅,即2222,16,483h h h h ===+.所以几何体的体积为2112442416822ππ⨯⨯⨯+⨯⨯⨯=+.故选A.34.(安徽省阜阳市太和第一中学2020-2021学年高二(平行班)上学期开学考试)在正方体1111ABCD A B C D -中,直线1BC 与平面1A BD 所成角的余弦值为( )A .24B .23 C .3 D .3 【答案】C【分析】分别以1,,DA DC DD 为,,x y z 轴建立如图所示空间直角坐标系,求出直线的方向向量和平面的法向量后可得所求线面角的余弦值. 【解析】分别以1,,DA DC DD 为,,x y z轴建立如图所示空间直角坐标系,设正方体的棱长为1,可得()()()()110,0,0,1,1,0,0,1,1,1,0,1D B C A ∴()()()111,0,1,1,0,1,1,1,0BC A D BD =-=--=--, 设(),,n x y z =是平面1A BD 的一个法向量,∴100n A D n BD ⎧⋅=⎨⋅=⎩,即00x z x y +=⎧⎨+=⎩,取1x =,得1y z ==-,∴平面1A BD 的一个法向量为()1,1,1n =--,设直线1BC 与平面1A BD 所成角为θ, ∴11126sin cos ,323BC nBC n BC nθ⋅-=〈〉===⨯, ∴23cos 1sin θθ=-1BC 与平面1A BD 所成角的余弦值是33, 故选C.【点睛】用向量法求二面角大小的两种方法:(1)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小即为二面角的大小;(2)分别求出二面角的两个半平面的法向量,然后通过两个法向量的夹角得到二面角大小,解题时要注意结合图形判断出所求的二面角是锐角还是钝角.35.(2020届重庆市第一中学高三下学期6月模拟数学(理)试题)如图所示,在正方体1111ABCD A B C D -中,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则异面直线1A P 与BD 所成角的取值范围为( )A .3,44ππ⎡⎤⎢⎥⎣⎦B .,42ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎡⎤⎢⎥⎣⎦D .2,33ππ⎡⎤⎢⎥⎣⎦【答案】C【解析】过A 作平面α平面1DBC ,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则P ∈平面α,即P 在α与平面1111D C B A 的交线上,连接111,,AB AD B D ,11DD BB =,则四边形11BDD B 是平行四边形,11B D BD ∴,11B D ∴平面1DBC ,同理可证1AB ∥平面1DBC ,∴平面11AB D ∥平面1DBC ,则平面11AB D 即为α,点P 在线段11B D 上,以D 为坐标原点,1,,DA DC DD 建立如图坐标系,设正方体棱长为1, 则()0,0,0D ,()1,1,0B ,()1,0,0A ,设(),,1P λλ,[]0,1λ∈, ()1,1,0DB ∴=,()1,,1AP λλ=-,21DB AP λ∴⋅=-,2DB =,2AP λ=,设1A P 与BD 所成角为θ,则cos 2DB APDB APθ⋅===⋅ ==12λ=时,cos θ取得最小值为0, 当0λ=或1时,cos θ取得最大值为12,10cos 2θ∴≤≤,则32ππθ≤≤.故选C . 36.(重庆市第八中学2020届高三下学期第五次月考数学(理)试题)如图,矩形ABCD 中,2AB AD ==E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.在翻折过程中,直线1A C 与平面ABCD 所成角的正弦值最大为()A.4B .6C.14D【答案】A【解析】分别取DE ,DC 的中点O ,F ,则点A 的轨迹是以AF 为直径的圆, 以,OA OE 为,x y 轴,过O 与平面AOE 垂直的直线为z 轴建立坐标系,则()2,1,0C -,平面ABCD 的其中一个法向量为n = (0,0.1), 由11A O =,设()1cos ,0,sin A αα,则()1cos 2,1,sin CA αα=+-,记直线1A C 与平面ABCD 所成角为θ,则11sin 4cos ||CA nCAn θ⋅===⋅设315cos ,,sin 222t αθ⎡⎤=+∈=≤=⎢⎥⎣⎦ 所以直线1A C 与平面ABCD ,故选A . 二、多项选择题37.(江苏省南京市秦淮中学2019-2020学年高二(美术班)上学期期末)对于任意非零向量()111,,a x y z =,()222,,b x y z =,以下说法错误的有( )A .若a b ⊥,则1212120x x y y z z ++=B .若//a b ,则111222x y z x y z == C .cos ,a b =><D .若1111===x y z ,则a为单位向量 【答案】BD【解析】对于A 选项,因为a b ⊥,则1212120a b x x y y z z ⋅=++=,A 选项正确;对于B 选项,若20x =,且20y ≠,20z ≠,若//a b ,但分式12x x 无意义,B 选项错误; 对于C 选项,由空间向量数量积的坐标运算可知cos ,a b =><,C 选项正确;对于D 选项,若1111===x y z,则211a =+=,此时,a 不是单位向量,D 选项错误.故选BD .38.(2020届百师联盟高三开学摸底大联考山东卷)下面四个结论正确的是( ) A .向量(),0,0a b a b ≠≠,若a b ⊥,则0a b ⋅=.B .若空间四个点P ,A ,B ,C ,1344PC PA PB =+,则A ,B ,C 三点共线. C .已知向量()1,1,a x =,()3,,9b x =-,若310x <,则,a b 为钝角.D .任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅. 【答案】AB【解析】由向量垂直的充要条件可得A 正确;1344PC PA PB =+,∴11334444PC PA PB PC -=-即3AC CB =,∴A ,B ,C 三点共线,故B 正确;当3x =-时,两个向量共线,夹角为π,故C 错误;由于向量的数量积运算不满足结合律,故D 错误.故选AB.39.(广东省中山市2019-2020学年高一下学期期末)在空间直角坐标系中,下列结论正确的是( ) A .点()2,1,4-关于x 轴对称的点的坐标为()2,1,4 B .到()1,0,0的距离小于1的点的集合是()(){}222,,11x y z x y z -++<C .点()1,2,3与点()3,2,1的中点坐标是()2,2,2D .点()1,2,0关于平面yOz 对称的点的坐标为()1,2,0- 【答案】BCD【解析】对于选项A :点()2,1,4-关于x 轴对称的点的坐标为()2,1,4---,所以A 不正确; 对于选项B :点(),,x y z到()1,0,0的距离小于11<,所以B 正确;对于选项C :点()1,2,3与点()3,2,1的中点坐标是()132231,,2222,2,2⎛⎫=⎪⎝⎭+++,所以C 正确;对于选项D :由点(),,x y z 关于平面yOz 对称的点的坐标为(),,x y z -,所以D 正确. 故选B C D .40.(山东省威海市文登区2019-2020学年高二上学期期末)正方体1111ABCD A B C D -的棱长为a ,则下列结论正确的是( )A .211AB AC a ⋅=- B .212BD BD a ⋅= C .21AC BA a⋅=- D .212AB AC a ⋅=【答案】BC【解析】如下图所示:对于A 选项,()2211AB AC AB AC AB AB AD AB a ⋅=⋅=⋅+==,A 选项错误;对于B ,()()()()2221112BD BD AD AB BD DD AD AB AD AB AA AD AB a ⋅=-+=--+=+=,B 选项正确;对于C 选项,()()2211AC BA AB AD AA AB AB a ⋅=+⋅-=-=-,C 选项正确;对于D 选项,()2211AB AC AB AB AD AA AB a ⋅=⋅++==,D 选项错误.故选BC .41.(福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理))如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则( )A .直线1//BC 平面1A BD B .11B C BD ⊥C .三棱锥11C B CE -的体积为13D .异面直线1B C 与BD 所成的角为60︒【答案】ABD【解析】如图建立空间直角坐标系,()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,10,1,2⎛⎫ ⎪⎝⎭E ,()1B C 0,1,1=-,()11,1,1BD =-,()1,1,0BD =-,()11,0,1BA =-,所以()111011110B C BD =-⨯+⨯+-⨯=,即11BC BD ⊥,所以11B C BD ⊥,故B 正确;()11011101B C BD =-⨯+⨯+-⨯=,12B C =,2BD =,设异面直线1B C 与BD 所成的角为θ,则111cos 2B C BD B C BDθ==,又0,2πθ⎛⎤∈ ⎥⎝⎦,所以3πθ=,故D 正确;设平面1A BD 的法向量为(),,n x y z =,则1·0·0n BA n BD ⎧=⎨=⎩,即0x y x z -+=⎧⎨-+=⎩,取()1,1,1n =,则()10111110n B C =⨯+⨯+⨯-=,即1C n B ⊥,又直线1B C ⊄平面1A BD ,所以直线1//B C 平面1A BD ,故A 正确;111111111111113326C B CE B C CE C CE V B C S V -∆-===⨯⨯⨯⨯=⋅,故C 错误;故选ABD.42.(海南省海南中学2019-2020学年高三第四次月考)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是()A .113P AA D V -=B .点P 必在线段1BC 上C .1AP BC ⊥D .//AP 平面11AC D【答案】BD 【解析】对于A ,P 在平面11BCC B 上,平面11//BCC B 平面1AA D ,P ∴到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长,1111111113326P AA D AA D V S CD -∴=⋅=⨯⨯⨯⨯=△,A 错误;对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则()1,0,0A ,(),1,P x z ,()1,1,0B ,()10,0,1D ,()11,1,1B ,()0,1,0C()1,1,AP x z →∴=-,()11,1,1BD →=--,()11,0,1B C →=--,1AP BD ⊥,1110AP BD x z →→∴⋅=--+=,x z ∴=,即(),1,P x x ,(),0,CP x x →∴=,1CP x B C →→∴=-,即1,,B P C 三点共线,P ∴必在线段1B C 上,B 正确;对于C ,()1,1,AP x x →=-,()11,0,1BC →=-,111AP BC x x →→∴⋅=-+=,AP ∴与1BC 不垂直,C 错误;对于D ,()11,0,1A ,()10,1,1C ,()0,0,0D ,()11,0,1DA →∴=,()10,1,1DC →=,设平面11AC D 的法向量(),,n x y z →=,1100n DA x z n DC y z ⎧⋅=+=⎪∴⎨⋅=+=⎪⎩,令1x =,则1z =-,1y =,()1,1,1n →∴=-, 110AP n x x →→∴⋅=-+-=,即AP n →→⊥,//AP ∴平面11ACD ,D 正确.故选BD . 43.(福建省宁德市2019-2020学年高二上学期期末考试)如图所示,棱长为1的正方体1111ABCD A B C D-中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )A .平面11D A P ⊥平面1A APB .1AP DC ⋅不是定值 C .三棱锥11BD PC -的体积为定值 D .11DC D P ⊥【答案】ACD【解析】A .因为是正方体,所以11D A ⊥平面1A AP ,11D A ⊂平面11D A P ,所以平面11D A P ⊥平面1A AP ,所以A 正确;B .11111111()AP DC AA A P DC AA DC A P DC ⋅=+⋅=⋅+⋅ 11112cos 45cos901212AA DC A P DC =+=⨯⨯=,故11AP DC ⋅=,故B 不正确; C .1111B D PC P B D C V V --=,11B D C 的面积是定值,1//A B 平面11B D C ,点P 在线段1A B 上的动点,所以点P 到平面11B D C 的距离是定值,所以1111B D PC P B D C V V --=是定值,故C 正确; D .111DC A D ⊥,11DC A B ⊥,1111A D A B A =,所以1DC ⊥平面11A D P ,1D P ⊂平面11A D P ,所以11DC D P ⊥,故D 正确.故选ACD44.(山东省济南莱芜市第一中学2019-2020学年高二下学期第一次质量检测)关于空间向量,以下说法正确的是( )A .空间中的三个向量,若有两个向量共线,则这三个向量一定共面B .若对空间中任意一点O ,有111632OP OA OB OC =++,则P ,A ,B ,C 四点共面 C .设{},,a b c 是空间中的一组基底,则{},,a b b c c a +++也是空间的一组基底 D .若0a b ⋅<,则,a b 是钝角 【答案】ABC【解析】对于A 中,根据共线向量的概念,可知空间中的三个向量,若有两个向量共线,则这三个向量一定共面,所以是正确的;对于B 中,若对空间中任意一点O ,有111632OP OA OB OC =++,根据空间向量的基本定理,可得,,,P A B C 四点一定共面,所以是正确的;对于C 中,由{},,a b c 是空间中的一组基底,则向量,,a b c 不共面,可得向量,a b b c ++,c a +也不共面,所以{},,a b b c c a +++也是空间的一组基底,所以是正确的; 对于D 中,若0a b ⋅<,又由,[0,]a b π∈,所以,(,]2a b ππ∈,所以不正确.故选ABC .45.(河北省沧州市盐山中学2019-2020学年高一下学期期末)若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-,设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y =,所以(1,2,1)n =, 同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高,所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△,故C 正确; 三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确.故选CD .46.(山东省济南市2019-2020学年高二下学期末考试)如图,棱长为的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )A .直线1D P 与AC 所成的角可能是6π B .平面11D A P ⊥平面1A AP C .三棱锥1D CDP -的体积为定值D .平面1APD 截正方体所得的截面可能是直角三角形 【答案】BC【解析】对于A ,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,()()()10,0,1,1,0,0,0,1,0D A C ,设()()1,,01,01P a b a b <<<< ()()11,,1,1,1,0D P a b AC =-=-,(111cos ,01D P AC D P AC D P ACa b ⋅==<++-1301,01,,24a b D P AC ππ<<<<∴<<∴直线D 1P 与AC 所成的角为,42ππ⎛⎫⎪⎝⎭,故A 错误; 对于B ,正方体ABCD ﹣A 1B 1C 1D 1中,A 1D 1⊥AA 1,A 1D 1⊥AB , ∵AA 1AB =A ,∴A 1D 1⊥平面A 1AP ,∵A 1D 1⊥平面D 1A 1P ,∴平面D 1A 1P ⊥平面A 1AP ,故B 正确;对于C ,1111122CDD S=⨯⨯=,P 到平面CDD 1的距离BC =1, ∴三棱锥D 1﹣CDP 的体积:111111326D CDP P CDD V V --==⨯⨯=为定值,故C 正确;对于D ,平面APD 1截正方体所得的截面不可能是直角三角形,故D 错误;故选BC .47.(江苏省苏州中学园区校2020-2021学年高三上学期8月期初调研)如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且12EF =,则下列结论中正确的是( )A .线段11B D 上存在点F ,使得AC AF ⊥ B .//EF 平面ABCD C .AEF 的面积与BEF 的面积相等 D .三棱锥A BEF -的体积为定值【答案】BD【解析】如图,以C 为坐标原点建系CD ,CB ,1CC 为x ,y ,z 轴,()1,1,0A ,()0,0,0C ,()1,1,0AC =--,1B F B λ=11D ,即()()0,1,11,1,0x y z λ---=-,∴x λ=,1y λ=-,1z =,∴(),1,1F λλ-,()1,,1AF λλ=--,()()11010AC AF λλ⋅=--++=≠, ∴AC 与AF 不垂直,A 错误.E ,F 都在B ,D 上,又11//BD B D ,∴//EF BD ,BD ⊂平面ABCD ,EF ⊄平面ABCD ,∴//EF 平面ABCD ,B 正确AB 与EF 不平行,则1A B 与EF 的距离相等,∴AEF BEF S S ≠△△,∴C 错误A 到BEF 的距离就是A 到平面11BDDB 的距离,A 到11BDD B 的距离为22AC =1111224BEF S =⨯⨯=△,∴1134224A BEF V -=⨯⨯=是定值,D 正确.故选BD .48.(江苏省扬州市宝应中学2020-2021学年高三上学期开学测试)在正三棱柱ABC A B C '''-中,所有棱长为1,又BC '与B C '交于点O ,则( )A .AO =111222AB AC AA '++ B .AO B C '⊥C .三棱锥A BB O '-D .AO 与平面BB ′C ′C 所成的角为π6【答案】AC【解析】由题意,画出正三棱柱ABC A B C '''-如图所示,向量()()111222AO AB BO AB BC BB AB AC AB AA ''=+=++=+-+ 111222AB AC AA '=++,故选项A 正确;在AOC △中,1AC =,22OC,1OA ==, 222OA OC AC +≠,所以AO 和B C '不垂直,故选项B 错误;在三棱锥A BB O '-中,14BB O S '=,点A 到平面BB O '的距离即ABC 中BC 边上的高,所以h =以111334A BB O BB O V S h ''-==⨯=C 正确; 设BC 中点为D ,所以AD BC ⊥,又三棱柱是正三棱柱,所以AD ⊥平面BB C C '',所以AOD ∠即AO 与平面BB ′C ′C 所成的角,112cos 12OD AOD OA ∠===,所以3AOD π∠=,故选项D 错误.故选AC49.(山东省泰安肥城市2020届高三适应性训练(一))如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为ABCD 为矩形,CD =Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC所成角的余弦值为3C .三棱锥B ACQ -的体积为D .四棱锥Q ABCD -外接球的内接正四面体的表面积为【答案】BD【解析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,因为三角形PAD 为等边三角形,所以OP AD ⊥,因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD ,因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD 的中点,所以Q ,平面PAD 的一个法向量为(0,1,0)m =,6(QC =,显然 m 与QC 不共线,所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则3602260n AQ x zn AC ⎧⋅==⎪⎨⎪⋅=+=⎩, 令=1x ,则y z ==(1,2,3)n =--,设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===,所以22cos 3θ=,所以B 正确;三棱锥B ACQ -的体积为1132B ACQ Q ABC ABCV V S OP --==⋅ 1116322=⨯⨯⨯=,所以C 不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD =,所以22222222a a ⎛⎫⎛++-=++ ⎪ ⎪ ⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x ,所以2236⎫=⎪⎪⎝⎭,得224x =,所以正四面体的表面积为244x ⨯=,所以D 正确.故选BD.50.(山东省滕州市第一中学2020-2021学年高二9月开学收心考试)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【解析】对于A ,1233AD AC AB =+,32AD AC AB ∴=+, 22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=,即111333PQ PA PB PC ∴=++,故B 正确;对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+= 0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+==2MN ∴=D 错误.故选ABC.三、填空题51.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t =_________.。

2018-2019学年四川省乐山市高二(下)期末数学试卷(理科)(含答案)

高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是()A. 随机抽样B. 分层抽样C. 系统抽样D. 以上都是2.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A. 4+8iB. 8+2iC. 4+iD. 2+4i3.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A. 18B. 24C. 30D. 364.设i为虚数单位,则(x-i)6的展开式中含x4的项为()A. -15x4B. 15x4C. -20ix4D. 20ix45.掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D.6.曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为()A. (1,3)B. (-1,3)C. (1,3)和(-1,3)D. (1,-3)7.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x=0,则一开始输入的x的值为()A.B.C.D.8.p设η=2ξ+3,则E(η)的值为()A. 4B.C.D. 19.在区间[0,1]上任取两个实数a,b,则函数f(x)=x2+ax+b2无零点的概率为()A. B. C. D.10.根据如下样本数据,得到回归方程=bx+a,则()x345678y4.02.5-0.50.5-2.0-3.0A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<011.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()A. (-∞,]B. (-∞,3]C. [,+∞)D. [3,+∞)12.已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )A. (-∞,0)B.C. (0,1)D. (0,+∞)二、填空题(本大题共4小题,共20.0分)13.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为______.14.已知复数z满足(1+2i)z=4+3i,则|z|=______.15.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为______.16.若曲线C1:y=ax2(a>0)与曲线C2:y=e x在(0,+∞)上存在公共点,则a的取值范围为______.三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R)(1)若函数f(x)的导函数为偶函数,求a的值;(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围18.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.数学888311792108100112物理949110896104101106(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.参考公式:方差公式:,其中为样本平均数==,=-19.已知函数,.(1)求f(x)在区间(-∞,1)上的极小值和极大值点;(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值.20.如图,在矩形ABCD中,AB=4,AD=2,E是CD的中点,以AE为折痕将△DAE向上折起,D变为D',且平面D'AE⊥平面ABCE.(Ⅰ)求证:AD'⊥EB;(Ⅱ)求二面角A-BD'-E的大小.21.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T,其范围为[0,10],分为五个级别,T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如右图.(Ⅰ)这50个路段为中度拥堵的有多少个?(Ⅱ)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.22.已知函数f(x)=(ax-1)e x(x>0,a∈R)(e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)当a=1时,f(x)>kx-2恒成立,求整数k的最大值.答案和解析1.【答案】C【解析】解:∵学生人数比较多,∵把每个班级学生从1到最后一号编排,要求每班编号是5的倍数的同学留下进行作业检查,这样选出的样本是采用系统抽样的方法,故选:C.学生人数比较多,把每个班级学生从1到最后一号编排,要求每班学号是5的倍数的同学留下进行作业检查,这样选出的样本是具有相同的间隔的样本,是采用系统抽样的方法.本题考查系统抽样,当总体容量N较大时,采用系统抽样,将总体分成均衡的若干部分即将总体分段,分段的间隔要求相等,系统抽样又称等距抽样.2.【答案】D【解析】解:因为复数6+5i,-2+3i对应的点分别为A(6,5),B(-2,3).且C为线段AB的中点,所以C(2,4).则点C对应的复数是2+4i.故选:D.写出复数所对应点的坐标,有中点坐标公式求出C的坐标,则答案可求.本题考查了中点坐标公式,考查了复数的代数表示法及其几何意义,是基础题.3.【答案】C【解析】解:根据题意,分2种情况讨论:①,选出的3人为2男1女,有C42C31=18种选法;②,选出的3人为1男2女,有C41C32=12种选法;则男女生都有的选法有18+12=30种;故选:C.根据题意,分2种情况讨论:①,选出的3人为2男1女,②,选出的3人为1男2女,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理,属于基础题.4.【答案】A【解析】解:(x-i)6的展开式的通项公式为T r+1=•x6-r•(-i)r,令6-r=4,求得r=2,故展开式中含x4的项为•(-i)2•x4=-15x4,故选:A.在二项式展开式的通项公式中,令x的幂指数等于4,求得r的值,可得展开式中含x4的项.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.5.【答案】B【解析】【分析】这是一个古典概率模型,求出所有的基本事件数N与事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”包含的基本事件数n,再由公式求出概率得到答案本题是一个古典概率模型问题,解题的关键是理解事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”,由列举法计算出事件所包含的基本事件数,判断出概率模型,理解求解公式是本题的重点,正确求出事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件数是本题的难点.【解答】解:抛掷两颗骰子所出现的不同结果数是6×6=36事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件有(1,4),(2,3),(3,2),(4,1)共四种故事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”的概率是=,故选B.6.【答案】C【解析】解:设P的坐标为(m,n),则n=m3-m+3,f(x)=x3-x+3的导数为f′(x)=3x2-1,在点P处的切线斜率为3m2-1,由切线平行于直线y=2x-1,可得3m2-1=2,解得m=±1,即有P(1,3)或(-1,3),故选:C.设P的坐标为(m,n),则n=m3-m+3,求出函数的导数,求得切线的斜率,由两直线平行的条件:斜率相等,可得m的方程,求得m的值,即可得到所求P的坐标.本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,考查两直线平行的条件:斜率相等,属于基础题.7.【答案】C【解析】【分析】求出对应的函数关系,由题输出的结果的值为0,由此关系建立方程求出自变量的值即可.解答本题,关键是根据所给的框图,得出函数关系,然后通过解方程求得输入的值.本题是算法框图考试常见的题型,其作题步骤是识图得出函数关系,由此函数关系解题,得出答案.【解答】解:第一次输入x=x,i=1第二次输入x=2x-1,i=2,第三次输入x=2(2x-1)-1=4x-3,i=3,第四次输入x=2(4x-3)-1=8x-7,i=4>3,第五次输入x=2(8x-7)-1=16x-15,i=5>4,输出16x-15=0,解得:x=,故选:C.8.【答案】B【解析】解:由题意可知E(ξ)=-1×+0×+1×=-.∵η=2ξ+3,所以E(η)=E(2ξ+3)=2E(ξ)+3=+3=.故选:B.求出ξ的期望,然后利用η=2ξ+3,求解E(η)即可.本题考查有一定关系的两个变量之间的期望之间的关系,本题也可以这样来解,根据两个变量之间的关系写出η的分布列,再由分布列求出期望.9.【答案】B【解析】解:∵a,b是区间[0,1]上的两个数,∴a,b对应区域面积为1×1=1若函数f(x)=x2+ax+b2无零点,则△=a2-4b2<0,对应的区域为直线a-2b=0的上方,面积为1-=,则根据几何概型的概率公式可得所求的概率为.故选:B.函数f(x)=x2+ax+b2无零点的条件,得到a,b满足的条件,利用几何概型的概率公式求出对应的面积即可得到结论.本题主要考查几何概型的概率计算,根据二次函数无零点的条件求出a,b满足的条件是解决本题的关键.10.【答案】B【解析】解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b <0,且回归方程经过(3,4)与(4,2.5)附近,所以a>0.故选:B.通过样本数据表,容易判断回归方程中,b、a的符号.本题考查回归方程的应用,基本知识的考查.11.【答案】C【解析】解:∵函数f(x)=x3-tx2+3x,∴f′(x)=3x2-2tx+3,若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则f′(x)≤0即3x2-2tx+3≤0在[1,4]上恒成立,∴t≥(x+)在[1,4]上恒成立,令y=(x+),由对勾函数的图象和性质可得:函数在[1,4]为增函数,当x=4时,函数取最大值,∴t≥,即实数t的取值范围是[,+∞),由题意可得f′(x)≤0即3x2-2tx+3≤0在[1,4]上恒成立,由二次函数的性质可得不等式组的解集.本题主要考查函数的单调性和导数符号间的关系,二次函数的性质,属于中档题.12.【答案】B【解析】【分析】本题主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.先求导函数,函数f(x)=x(ln x-ax)有两个极值点,等价于f′(x)=ln x-2ax+1有两个零点,等价于函数y=ln x与y=2ax-1的图象由两个交点,在同一个坐标系中作出它们的图象.由图可求得实数a的取值范围.【解答】解:函数f(x)=x(ln x-ax),则f′(x)=ln x-ax+x(-a)=ln x-2ax+1,令f′(x)=ln x-2ax+1=0得ln x=2ax-1,函数f(x)=x(ln x-ax)有两个极值点,等价于f′(x)=ln x-2ax+1有两个零点,等价于函数y=ln x与y=2ax-1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax-1与y=ln x的图象相切,由图可知,当0<a<时,y=ln x与y=2ax-1的图象有两个交点.则实数a的取值范围是(0,).简解:函数f(x)=x(ln x-ax),则f′(x)=ln x-ax+x(-a)=ln x-2ax+1,令f′(x)=ln x-2ax+1=0得ln x=2ax-1,可得2a=有两个不同的解,设g(x)=,则g′(x)=,当x>1时,g(x)递减,0<x<1时,g(x)递增,可得g(1)取得极大值1,作出y=g(x)的图象,可得0<2a<1,即0<a<,13.【答案】【解析】解:根据题意,简单随机抽样中每个个体被抽到的概率是相等的,若在含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率P==;故答案为:.根据题意,由简单随机抽样的性质以及古典概型的计算公式可得个体m被抽到的概率P=,化简即可得答案.本题考查古典概型的计算,涉及随机抽样的性质,属于基础题.14.【答案】【解析】解:∵(1+2i)z=4+3i,∴z=,则|z|=||=.故答案为:.把已知等式变形,再由商的模等于模的商求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.15.【答案】【解析】解:将三棱锥D1-EDF选择△D1ED为底面,F为顶点,则=,其==,F到底面D1ED的距离等于棱长1,所以=××1=S故答案为:将三棱锥D1-EDF选择△D1ED为底面,F为顶点,进行等体积转化V D 1-EDF=V F -D1ED后体积易求.本题考查了三棱柱体积的计算,等体积转化法是常常需要优先考虑的策略.16.【答案】[,+∞)【解析】解:根据题意,函数y=ax2(a>0)与函数y=e x在(0,+∞)上有公共点,令ax2=e x得:,设则,由f'(x)=0得:x=2,当x>2时,f'(x)>0,函数在区间(2,+∞)上是增函数,所以当x=2时,函数在(0,+∞)上有最小值,所以.故答案为:.由题意可得,ax2=e x有解,运用参数分离,再令,求出导数,求得单调区间、极值和最值,即可得到所求范围.本题考查导数的运用:求单调区间和极值、最值,考查函数方程的转化思想的运用,属于中档题.17.【答案】解:(1):f(x)=3x2+2(1-a)x-a(a+2),由题因为f(x)为偶函数,∴2(1-a)=0,即a=1.(2)∵曲线y=f(x)存在两条垂直于y轴的切线,∴关于x的方程f′(x)=3x2+2(1-a)x-a(a+2)有两个不相等的实数根,∴△=4(1-a)2+12a(a+2)>0,即4a2+4a+1>0,∴,∴a的取值范围为()∪().【解析】(1)求出导函数,利用函数的奇偶性求出a即可.(2)求出函数的导数,利用曲线y=f(x)存在两条垂直于y轴的切线,通过△>0求解即可.本题考查函数的导数的应用,切线方程的求法,考查计算能力.18.【答案】解:(1)根据题意,由表中的数据可得:=100+=100,=100+=100,则有,从而,故物理成绩更稳定;(2)由于x与y之间具有线性相关关系,则==0.5,则=100-0.5×100=50,则线性回归方程为=0.5x+50,当y=115时,x=130;建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高.【解析】(1)根据题意,由数据计算数学、物理的平均数、方差,进而分析可得答案;(2)根据题意,求出线性回归方程,据此分析可得答案.本题考查线性回归方程的计算,涉及数据的平均数、方差的计算,属于基础题.19.【答案】解:(1)当x<1时,f′(x)=-3x2+2x=-x(3x-2),令f′(x)=0,得x=0或x=.当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,0) 0(0,)(,1)f′(x)- 0+ 0-f(x)极小值极大值∴当x=0时,函数f(x)取得极小值f(0)=0,函数f(x)取得极大值点为x=.(2)①当-1≤x<1时,f(x)=-x3+x2,由(1)知,函数f(x)在[-1,0]和[,1)上单调递减,在[0,]上单调递增.∵,∴f(x)在[-1,1)上的最大值为2.②当1≤x≤e时,f(x)=a ln x.当a≤0时,f(x)在[1,e],上单调递增,∴f(x)max=a.综上所述,当a≥2时,f(x)在[-1,e]上的最大值为a;当a<2时,f(x)在[-1,e]上的最大值为2.【解析】(1)当x<1时,求导函数,确定函数的单调性,可得f(x)在区间(-∞,1)上的极小值和极大值点;(2)分类讨论,确定函数的单调性,即可得到f(x)在[-1,e](e为自然对数的底数)上的最大值.本题考查导数知识的应用,考查函数的单调性与极值、最值,考查分类讨论的数学思想,属于中档题.20.【答案】证明:(Ⅰ)∵,AB=4,∴AB2=AE2+BE2,∴AE⊥EB,取AE的中点M,连结MD',则AD=D'E=2⇒MD'⊥AE,∵平面D'AE⊥平面ABCE,∴MD'⊥平面ABCE,∴MD'⊥BE,从而EB⊥平面AD'E,∴AD'⊥EB;解:(Ⅱ)以C为原点,CE为x轴,CB为y轴,过C作平面ABCE的垂线为z轴,如图建立空间直角坐标系,则A(4,2,0)、C(0,0,0)、B(0,2,0)、,E(2,0,0),从而=(4,0,0),,.设为平面ABD'的法向量,则,取z=1,得设为平面BD'E的法向量,则,取x=1,得因此,,有,即平面ABD'⊥平面BD'E,故二面角A-BD'-E的大小为90°.【解析】(Ⅰ)推导出AE⊥EB,取AE的中点M,连结MD',则MD'⊥BE,从而EB⊥平面AD'E,由此能证明AD'⊥EB;(Ⅱ)以C为原点,CE为x轴,CB为y轴,过C作平面ABCE的垂线为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD'-E的大小.本题考查线线垂直的证明,考查二面角的求法,考查空间中线线、线面、面面的性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.21.【答案】解:(Ⅰ)(0.2+0.16)×1×50=18,这50路段为中度拥堵的有18个.(Ⅱ)设事件A“一个路段严重拥堵”,则P(A)=0.1,事件B至少一个路段严重拥堵”,则P=(1-P(A))3=0.729.P(B)=1-P()=0.271,所以三个路段至少有一个是严重拥堵的概率是0.271.(III)由频率分布直方图可得:分布列如下表:X30364260P0.10.440.360.1E(X)=30×0.1+36×0.44+42×0.36+60×0.1=39.96.此人经过该路段所用时间的数学期望是39.96分钟.【解析】(Ⅰ)利用(0.2+0.16)×1×50即可得出这50路段为中度拥堵的个数.(Ⅱ)设事件A“一个路段严重拥堵”,则P(A)=0.1,事件B至少一个路段严重拥堵”,则P=(1-P(A))3.P(B)=1-P()=0.271,可得三个路段至少有一个是严重拥堵的概率.(III)利用频率分布直方图即可得出分布列,进而得出数学期望.本题考查了频率分布直方图的应用、互斥事件的概率计算公式、数学期望,考查了推理能力与计算能力,属于中档题.22.【答案】解:(1)f′(x)=[ax-(1-a)]e x(x>0,a∈R),当a≥1时,f′(x)≥0,f(x)在(0,+∞)上递增;当0<a<1时,f(x)在(0,)上递减,在(,+∞)上递增;当a≤0时,f′(x)≤0,f(x)在(0,+∞)上递减.(2)依题意得(x-1)e x>kx-2对于x>0恒成立,方法一:令g(x)=(x-1)e x-kx+2(x≥0),则g′(x)=xe x-k(x≥0),当k≤0时,f(x)在(0,+∞)上递增,且g(0)=1>0,符合题意;当k>0时,易知x≥0时,g′(x)单调递增.则存在x0>0,使得,且g(x)在(0,x0]上递减,在[x0,+∞)上递增,∴,∴,,由得,0<k<2,又k∈Z,∴整数k的最大值为1.另一方面,k=1时,,g′(1)=e-1>0∴x0∈(,1),∈(1,2),∴k=1时成立.方法二:恒成立,令,则,令t(x)=(x2-x+1)e x-2(x>0),则t′(x)=x(x+1)e x>0,∴t(x)在(0,+∞)上递增,又t(1)>0,,∴存在x0∈(,1),使得,且h(x)在在(0,x0]上递减,在[x0,+∞)上递增,∴,又x0∈(,1),∴∈(1,),∴h(x0)∈(,2),∴k<2,又k∈Z,∴整数k的最大值为1.【解析】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,函数恒成立问题,是一道综合题.(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)方法一:令g(x)=(x-1)e x-kx+2(x≥0),通过讨论k的范围,求出g(x)的最小值,从而确定k的最大值;方法二:分离参数k,得到恒成立,令,根据函数的单调性求出k的最大值即可.。

江苏省徐州市2024届高一数学第二学期期末综合测试试题含解析

江苏省徐州市2024届高一数学第二学期期末综合测试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.不等式223x x -≤+的解集是( ) A .(,8]-∞-B .[8,)-+∞C .(,8][3,)-∞-⋃-+∞D .(,8](3,)-∞-⋃-+∞ 2.函数的图象可由函数的图象( )A .向左平移个单位长度得到B .向左平移个单位长度得到C .向右平移个单位长度得到D .向右平移个单位长度得到3.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B .互斥但不对立事件C .不可能事件D .必然事件4.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为(2,0)B -,若将军从山脚下的点(2,0)A 处出发,河岸线所在直线方程为3x y +=,则“将军饮马”的最短总路程为( ) A .4B .5C 26D .325.函数cos tan y x x =⋅ ()22x ππ-<<的大致图象是( )A .B .C .D .6.函数()sin(2)(0)f x x ϕϕπ=+<<的图象如图所示,为了得到()sin 2g x x =的图象,可将()f x 的图象( )A .向右平移6π个单位 B .向右平移12π个单位C .向左平移12π个单位D .向左平移6π个单位 7.已知正四棱锥的底面边长为2,侧棱长为5,则该正四棱锥的体积为( )A .43B .23C .43D .4338.直线()()21210a x ay a R +-+=∈的倾斜角不可能为( )A .4π B .3π C .2π D .56π 9.如图,AB 是圆O 的直径,OC AB ⊥,假设你往圆内随机撒一粒黄豆,则它落到阴影部分的概率为( )A .12π B .1πC .13πD .1π10.已知向量()()(),1,21,30,0m a n b a b =-=->>,若//m n ,则21a b+的最小值为( ). A .12B .843+C .16D .1023+二、填空题:本大题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年江苏省名校数学高二第二学期期末综合测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.命题“(0,1),x ∀∈20x x -<”的否定是( )A .0(0,1),x ∃∉2000x x -≥ B .0(0,1),x ∃∈2000x x -≥ C .0(0,1),x ∀∉2000x x -<D .0(0,1),x ∀∈2000x x -≥2.若复数z 满足2z i z i ++-=,则复数z 在复平面上所对应的图形是( ) A .椭圆B .双曲线C .直线D .线段3.正项等比数列{}n a 中,存在两项,m n a a14a =,且6542a a a =+,则14m n+的最小值是( ) A .32B .2C .73D .2564.甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如表:则哪位同学的试验结果体现A 、B 两变量有更强的线性相关性( ) A .甲B .乙C .丙D .丁5.己知变量x ,y 的取值如下表: 由散点图分析可知y 与x 线性相关,且求得回归方程为$ˆ0.7y x a =+,据此预测:当9x =时,y 的值约为 A .5.95B .6.65C .7.35D .76.若实数x y ,满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A .3B .4C .5D .67.如图,平面ABCD 与平面BCEF 所成的二面角是3π,PQ 是平面BCEF 内的一条动直线,4DBC π∠=,则直线BD 与PQ 所成角的正弦值的取值范围是( )A .3⎤⎥⎣⎦ B .6⎤⎥⎣⎦ C .23⎣⎦D .2⎤⎥⎣⎦8.已知函数()(2ln 1f x x x =+,则不等式()()10f x f x -+>的解集是( )A .{2}x x >B .{1}x x <C .1{}2x x >D .{0}x x >9.已知函数()sin(2)12f x x π=+,'()f x 是()f x 的导函数,则函数'2()()y f x f x =+的一个单调递减区间是( ) A .7[,]1212ππB .5[,]1212ππ-C .2[,]33ππ-D .5[,]66ππ-10.已知离散型随机变量X 服从二项分布()~6,X B p ,且()1E X =,则()D X = ( ) A .13B .12C .23D .5611.某市组织了一次高二调研考试,考试后统计的数学成绩服从正态分布,其密度函数2(80)200(102x f x π--, x ∈(-∞,+∞),则下列命题不正确的是( )A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为1012.在ABC △中,内角,,A B C 所对应的边分别为,,a b c ,且sin 2sin 0a B b A +=,若2a c +=,则边b 的最小值为( ) A .4B .33C .23D 3二、填空题(本题包括4个小题,每小题5分,共20分)13.某省实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理6科中选考3科.学生甲想报考某高校的医学专业,就必须要从物理、生物、政治3科中至少选考1科,则学生甲的选考方法种数为________(用数字作答).14.某种活性细胞的存活率y (%)与存放温度x (℃)之间具有线性相关关系,样本数据如下表所示存放温度x (℃) 10 4 -2 -8 存活率y (%)20445680经计算得回归直线方程的斜率为-3.2,若存放温度为6℃,则这种细胞存活的预报值为_____%.15.若612ax x -⎛⎫+ ⎪⎝⎭的展开式中的常数项为240,则实数a 的值为______.16.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.三、解答题(本题包括6个小题,共70分)17.某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(]490,495,(]495,500,……(]510,515,由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列. (3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.18.盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球 (Ⅰ)求取出的3个球中至少有一个红球的概率; (Ⅱ)求取出的3个球得分之和恰为1分的概率; (Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列.19.(6分)如图所示,在△ABC 中,a =b·cos C +c·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,在四面体P-ABC 中,S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面PAB ,面PBC ,面PCA 与底面ABC 所成二面角的大小.写出对四面体性质的猜想,并证明你的结论20.(6分)从6名男生和4名女生中任选4人参加比赛,设被选中女生的人数为随机变量ξ,求: (1)ξ的分布列;(2)所选女生不少于2人的概率.21.(6分)函数()2ln f x x a x =+(a 为实数).(1)若2a =-,求证:函数()f x 在()1,+∞上是增函数; (2)求函数()f x 在[]1,e 上的最小值及相应的x 的值;(3)若存在[]1,x e ∈,使得()()2f x a x ≤+成立,求实数a 的取值范围. 22.(8分)已知函数()()()3212f x x a x a a x b =+--++(),a b R ∈(1)若函数()f x 的导函数为偶函数,求a 的值;(2)若曲线()y f x =存在两条垂直于y 轴的切线,求a 的取值范围参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.B 【解析】 【分析】根据“全称命题”的否定一定是“特称命题”判断. 【详解】Q “全称命题”的否定一定是“特称命题”,∴命题“(0,1),x ∀∈20x x -<”的否定是0(0,1),x ∃∈2000x x -≥,故选:B. 【点睛】本题主要考查命题的否定,还考查理解辨析的能力,属于基础题. 2.D 【解析】 【分析】根据复数的几何意义知,复数z 对应的动点P 到,i i -对应的定点12(0,1),(0,1)F F -的距离之和为定值2,且12||2F F =,可知动点的轨迹为线段. 【详解】设复数z ,,i i -对应的点分别为12,,P F F , 则由2z i z i ++-=知:12||||2PF PF +=, 又12||2F F =,所以动点P 的轨迹为线段1F F .故选D 【点睛】本题主要考查了复数的几何意义,动点的轨迹,属于中档题. 3.A 【解析】试题分析:由6542a a a =+得5432q q q =+解得2q =14a =得24162m n q+-==,所以6m n +=,所以()141141413596662n m m n m n m n m n ⎛⎫⎛⎫+=++=++≥⋅= ⎪ ⎪⎝⎭⎝⎭. 考点:数列与基本不等式.【思路点晴】本题主要考查等比数列的基本元思想,考查基本不等式.第一步是解决等比数列的首项和公比,也即求出等比数列的基本元1,a q ,在求解过程中,先对具体的数值条件6542a a a =+进行化简,可求出2q =14a =,可得到6m n +=;接下来第二步是基本不等式常用的处理技巧,先乘以一个常数,再除以这个常数,构造基本不等式结构来求. 4.D 【解析】试题分析:由题表格;相关系数越大,则相关性越强.而残差越大,则相关性越小.可得甲、乙、丙、丁四位同学,中丁的线性相关性最强. 考点:线性相关关系的判断.5.B 【解析】 【分析】先计算数据的中心点,代入回归方程得到ˆa,再代入9x =计算对应值. 【详解】34564.54x +++==2.534 4.53.54y +++==数据中心点为(4.5,3.5)代入回归方程ˆˆ3.50.7 4.50.35a a =⨯+⇒= $0.70.35y x =+当9x =时,y 的值为6.65 故答案选B 【点睛】本题考查了数据的回归方程,计算数据中心点代入方程是解题的关键,意在考查学生的计算能力. 6.B 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合进行求解即可. 【详解】作出不等式组对应的平面区域如图:(阴影部分). 设2z x y =+得2y x z =-+, 平移直线2y x z =-+,由图象可知当直线2y x z =-+经过点B 时,直线2y x z =-+的截距最大, 此时z 最大.由203x y x y -=⎧⎨+=⎩,解得12x y =⎧⎨=⎩,即(1,2)B , 代入目标函数2z x y =+得2124z =⨯+=. 即目标函数2z x y =+的最大值为1. 故选B .【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决 此类问题的基本方法. 7.B 【解析】 【分析】假定ABCD 和BCEF 均为正方形,过D 作DG CE ^,可证DG ⊥平面BCEF ,进而可得直线BD 与平面BCEF 所成的角正弦值sin DBG ∠,即直线BD 与PQ 所成角的正弦值的最小值,当直线BD 与PQ 异面垂直时,所成角的正弦值最大. 【详解】过D 作DG CE ^,垂足为G ,假定ABCD 和BCEF 均为正方形,且边长为1 则BC ⊥平面CDG ,故BC DG ⊥ 又BC CE C =I ,DG ∴⊥平面BCEF 故直线BD 在平面BCEF 内的射影为BG , 由已知可得3cos3DG CD π=⋅=,则以直线BD 与平面BCEF所成的角正弦值sin DG DBG BD ∠==, 所以直线BD 与平面BCEF内直线所成的角正弦值最小为而直线BD 与PQ 所成角最大为90︒(异面垂直),即最大正弦值为1. 故选:B 【点睛】本题考查了立体几何中线面角,面面角找法,考查了转化思想,属于难题. 8.C 【解析】 【分析】先判断出函数()f x 为奇函数且在定义域内单调递增,然后把不等式变形为()()1f x f x ->-,再利用单调性求解即可.【详解】由题意得,函数()f x 的定义域为R .∵()(x x x x f x ln x -+---=-==(()ln x f x ==-+=-,∴函数()f x 为奇函数.又根据复合函数的单调性可得,函数()f x 在定义域上单调递增. 由()()10f x f x -+>得()()()1f x f x f x ->-=-,∴1x x ->-,解得12x >, ∴不等式的解集为1{}2x x >.故选C . 【点睛】解答本题的关键是挖掘题意、由条件得到函数的奇偶性和单调性,最后根据函数的单调性求解,这是解答抽象不等式(即不知表达式的不等式)问题的常用方法,考查理解和应用能力,具有一定的难度和灵活性.9.A 【解析】()()22?sin 22?cos 2212123y f x f x x x x πππ⎛⎫⎛⎫⎛⎫=+=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎝'⎭⎭,令32232x πππ≤+≤,得:71212x ππ≤≤,∴单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦ 故选A 10.D 【解析】 【分析】利用二项分布期望公式()6E X p =求出p ,再由方差公式()()61D X p p =-可计算出答案。

相关文档
最新文档