2020版高考数学新设计一轮复习浙江专版 第六章 数列与数学归纳法 课时检测 等差数列及其前n项和

合集下载

浙江专用2020届高考数学一轮复习第六章数列6.3等比数列教师用书PDF

浙江专用2020届高考数学一轮复习第六章数列6.3等比数列教师用书PDF

将 m 分离得

m≤1
-1 2n -

- 2
1 - n+1




-1 2n -

- 2
1 - n+1

的最小值得结论
解析 (1) 由 an+2 = 3an+1 -2an 可得 an+2 -an+1 = 2( an+1 -an ) . 又 a1 = 1,a2 = 3,所以 a2 -a1 = 2, 所以{ an+1 -an } 是首项为 2,公比为 2 的等比数列. 所以 an+1 -an = 2n . 所以 an = a1 +( a2 -a1 ) +…+( an -an-1 ) = 1+2+22 +…+2n-1 = 2n -1.
= 2,故
a5
= 2.
从而
T9

( a1 a9 ) · (
a2 a8

·(
a3 a7

·(
a4 a6

·a5


9 5

29
= 512,
故选 B.
答案 B
2-1 (2018 浙江嘉兴高三期末,11) 各项均为实数的等比
数列{ an } ,若 a1 = 1,a5 = 9,则 a3 = ,公比 q = .
列{ an} 是等比数列,前 n 项和为 Sn,则“ 2a5 > a3 + a7 ” 是“ S2n-1 <
0” 的
( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
2-2 答案 A
解析 充分性:设{ an } 的公比为 q.因为 2a5 >a3 +a7 ,所以
对应学生用书起始页码 P115

2020版高考数学(浙江专用)一轮总复习检测:6.4 数列求和、数列的综合应用 Word版含解析

2020版高考数学(浙江专用)一轮总复习检测:6.4 数列求和、数列的综合应用 Word版含解析

6.4数列求和、数列的综合应用挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点数列的求和掌握特殊数列求和的方法.2018浙江,20 错位相减法求和等差数列、等比数列★★★2016浙江文,17 数列求和等比数列的通项公式2015浙江文,17 错位相减法求和递推数列通项公式的求法2014浙江,19 裂项相消法求和数列通项公式的求法数列的综合应用能利用等差数列、等比数列解决相应问题.2018浙江,20等差数列、等比数列的综合运用错位相减法求和★★★数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.2017浙江,22 数学归纳法不等式及其应用★★☆分析解读 1.等差数列和等比数列是数列的两个最基本的模型,是高考中的热点之一.基本知识的考查以选择题或填空题的形式呈现,而综合知识的考查则以解答题的形式呈现.2.以数列为载体来考查推理归纳、类比的能力成为高考的热点.3.数列常与其他知识如不等式、函数、概率、解析几何等综合起来进行考查.4.数学归纳法常与数列、不等式等知识综合在一起,往往综合性比较强,对学生的思维要求比较高.5.预计2020年高考中,等差数列与等比数列的综合问题仍然是考试的热点,复习时要足够重视.破考点【考点集训】考点一数列的求和1.(2018浙江新高考调研卷五(绍兴一中),14)已知等差数列{a n}的首项为a,公差为-2,S n为数列{a n}的前n项和,若从S7开始为负数,则a的取值范围为,S n最大时,n=.答案[5,6);32.(2018浙江杭州地区重点中学第一学期期中,22)已知函数f(x)=x2+x,x∈[1,+∞),a n=f(a n-1)(n≥2,n∈N).(1)证明:-≤f(x)≤2x2;(2)设数列{}的前n项和为A n,数列的前n项和为B n,a1=,证明:≤≤.证明(1)f(x)-=x2+x-=>0,∴f(x)≥-.f(x)-2x2=x2+x-2x2=x-x2=x(1-x)≤0(x≥1),∴f(x)≤2x2,∴-≤f(x)≤2x2.(2)a n=f(a n-1)=+a n-1⇒=a n-a n-1(n≥2),则A n=++…+=a n+1-a1=a n+1-,a n=+a n-1=a n-1(a n-1+1)⇒==-⇒=-(n≥2),累加得:B n=++…+=-=-,∴==a n+1.由(1)得a n≥-⇒a n+1+≥≥≥…≥,∴a n+1≥-∴=a n+1≥3·-.a n=f(a n-1)≤2⇒a n+1≤2≤23≤…≤=·=·.∴=a n+1≤×·=·,∴3·-≤≤·,即-1≤≤,而-1≥,∴≤≤.考点二数列的综合应用1.(2018浙江新高考调研卷二(镇海中学),10)数列{a n}的各项均为正数,S n为其前n项和,对于任意n∈N*,总有S n=.设b n=a4n+1,d n=3n(n∈N*),且数列{b n}中存在连续的k(k>1,k∈N*)项和是数列{d n}中的某一项,则k的取值集合为()A.{k|k=2α,α∈N*}B.{k|k=3α,α∈N*}C.{k|k=2α,α∈N*}D.{k|k=3α,α∈N*}答案 B2.(2017浙江“七彩阳光”新高考研究联盟测试,9)已知函数f(x)=sin xcosx+cos2x,0≤x0<x1<x2<…<x n≤,a n=|f(x n)-f(x n-1)|,n∈N*,S n=a1+a2+…+a n,则S n的最大值等于()A. B.C.+1D.2答案 A考点三数学归纳法1.(2018浙江新高考调研卷五(绍兴一中),22)在数列{a n}中,a1=a,a n+1=a n+(n∈N*),已知0<a<1.(1)求证:a n+1<a n(n∈N*);(2)求证:a n≥.证明(1)由题意知a n>0,a n+1-a n=-a n=·a n(a n-1)(n∈N*).下面用数学归纳法证明:a n<1.①n=1时,a1=a<1,结论成立.②假设n=k时,a k<1,当n=k+1时,a k+1-a k=a k(a k-1)<0,即a k+1<a k<1,结论成立.根据①②可知,当n∈N*时,a n<1,所以a n+1<a n.(2)由a n+1=a n+,得====-,因为0<a n<1,所以=-<-,所以<-=+-(n≥2),即<+-<…<+-1==,所以a n>,又a1=a,所以当n∈N*时,a n≥.2.(2017浙江新高考临考冲刺卷,22)已知正项数列a n满足:a n+1=a n-(n∈N*).(1)证明:当n≥2时,a n≤;(2)设S n为数列{a n}的前n项和,证明:S n<1+ln(n∈N*).证明(1)因为a2>0,所以a1->0,故0<a1<1.下面利用数学归纳法证明结论.当n=2时,a2=a1-=-+≤,结论成立;假设当n=k(k≥2)时,结论成立,即a k≤,则当n=k+1时,a k+1=-+.因为函数f(x)=-+在上单调递增,0<a k≤<,所以a k+1≤-+=<=,即当n=k+1时,结论成立.由数学归纳法知,当n≥2时,a n≤.(2)首先证明:当x>0时,均有ln(1+x)>.设g(x)=ln(1+x)-,则g'(x)=-=>0,所以g(x)在(0,+∞)上单调递增,因此,当x>0时,g(x)>g(0)=0,即ln(1+x)>. 在上述不等式中,取x=,则ln>,即ln>,所以,当n≥2时,S n=a1+(a2+a3+…+a n)<a1+++…+<a1+=a1+ln<1+ln.而当n=1时,S1=a1<1+ln=1成立.综上,S n<1+ln(n∈N*).炼技法【方法集训】方法1 错位相减法求和1.已知数列{a n}的前n项和为S n,a1=5,nS n+1-(n+1)S n=n2+n.(1)求证:数列为等差数列;(2)令b n=2n a n,求数列{b n}的前n项和T n.解析(1)证明:由nS n+1-(n+1)S n=n2+n得-=1,又=5,所以数列是首项为5,公差为1的等差数列.(2)由(1)可知=5+(n-1)=n+4,所以S n=n2+4n.当n≥2时,a n=S n-S n-1=n2+4n-(n-1)2-4(n-1)=2n+3.又a1=5也符合上式,所以a n=2n+3(n∈N*),所以b n=(2n+3)2n,所以T n=5×2+7×22+9×23+…+(2n+3)2n,①2T n=5×22+7×23+9×24+…+(2n+1)2n+(2n+3)2n+1,②所以②-①得T n=(2n+3)2n+1-10-(23+24+…+2n+1)=(2n+3)2n+1-10-=(2n+3)2n+1-10-(2n+2-8)=(2n+1)2n+1-2.2.已知数列{a n}是等比数列,a2=4,a3+2是a2和a4的等差中项.(1)求数列{a n}的通项公式;(2)设b n=2log2a n-1,求数列{a n b n}的前n项和T n.解析(1)设数列{a n}的公比为q,因为a2=4,所以a3=4q,a4=4q2.因为a3+2是a2和a4的等差中项,所以2(a3+2)=a2+a4.即2(4q+2)=4+4q2,化简得q2-2q=0.因为公比q≠0,所以q=2.所以a n=a2q n-2=4×2n-2=2n(n∈N*).所以数列{a n}的通项公式a n=2n(n∈N*).(2)因为a n=2n,所以b n=2log2a n-1=2n-1,所以a n b n=(2n-1)2n,则T n=1×2+3×22+5×23+…+(2n-3)2n-1+(2n-1)2n,①2T n=1×22+3×23+5×24+…+(2n-3)2n+(2n-1)2n+1.②由①-②得,-T n=2+2×22+2×23+…+2×2n-(2n-1)2n+1=2+2-(2n-1)2n+1=-6-(2n-3)2n+1,所以T n=6+(2n-3)2n+1.方法2 裂项相消法求和1.(2018浙江嘉兴高三期末,22)已知数列{a n}满足a1=1,a n=a n-1(n≥2).(1)求数列{a n}的通项公式;(2)求证:对任意的n∈N*,都有:①+++…+<3;②+++…+>(k≥2,k∈N*).解析(1)当n≥2时,==…==1,∴当n≥2时,a n=n.又∵a1=1,∴a n=n,n∈N*.(3分)(2)证明:①当n=1时,1<3成立;∴当n≥2时,==<=·=·<-.(6分)∴+++…+<1+++++…++ =1+1+--<3,∴+++…+<3.(9分)②+++…+=+++…++,设S=++…++,则S=++…++,2S=++…+++.(11分)∵当x>0,y>0时,(x+y)=2++≥4,∴+≥,当且仅当x=y时等号成立.(13分)∴当k≥2,k∈N*时,2S>·(nk-n)=>.∴S>,即+++…+>(k≥2,k∈N*).(15分)2.(2017浙江宁波期末,22)已知数列{a n}满足a1=2,a n+1=2(S n+n+1)(n∈N*),b n=a n+1.(1)求证:{b n}是等比数列;(2)记数列{nb n}的前n项和为T n,求T n;(3)求证: -<+++…+<.解析(1)证明:由a1=2,得a2=2(a1+1+1)=8.由a n+1=2(S n+n+1),得a n=2(S n-1+n)(n≥2),两式相减,得a n+1=3a n+2(n≥2),当n=1时上式也成立,故a n+1=3a n+2(n∈N*).所以有a n+1+1=3(a n+1),即b n+1=3b n,又b1=3,故{b n}是等比数列.(2)由(1)得b n=3n,所以T n=1×3+2×32+3×33+…+n·3n,3T n=1×32+2×33+3×34+…+n·3n+1,两式相减,得-2T n=3+32+33+…+3n-n·3n+1=-n·3n+1,故T n=·3n+1+.(3)证明:由a n=b n-1=3n-1,得=>,k∈N*,所以+++…+>+++…+==-·,又==<=,k∈N*,所以+++…+<+=+=+-·<.故-<+++…+<.过专题【五年高考】A组自主命题·浙江卷题组考点一数列的求和1.(2016浙江文,17,15分)设数列{a n}的前n项和为S n.已知S2=4,a n+1=2S n+1,n∈N*.(1)求通项公式a n;(2)求数列{|a n-n-2|}的前n项和.解析(1)由题意得则又当n≥2时,由a n+1-a n=(2S n+1)-(2S n-1+1)=2a n,得a n+1=3a n.所以,数列{a n}的通项公式为a n=3n-1,n∈N*.(2)设b n=|3n-1-n-2|,n∈N*,则b1=2,b2=1.当n≥3时,由于3n-1>n+2,故b n=3n-1-n-2,n≥3.设数列{b n}的前n项和为T n,则T1=2,T2=3.当n≥3时,T n=3+-=,所以T n=易错警示(1)当n≥2时,得出a n+1=3a n,要注意a1是否满足此关系式.(2)在去掉绝对值时,要考虑n=1,2时的情形.在求和过程中,要注意项数,最后T n要写成分段函数的形式.2.(2015浙江文,17,15分)已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+b2+b3+…+b n=b n+1-1(n∈N*).(1)求a n与b n;(2)记数列{a n b n}的前n项和为T n,求T n.解析(1)由a1=2,a n+1=2a n,得a n=2n(n∈N*).由题意知:当n=1时,b1=b2-1,故b2=2.当n≥2时, b n=b n+1-b n,整理得=,所以b n=n(n∈N*).(2)由(1)知a n b n=n·2n,因此T n=2+2·22+3·23+…+n·2n,2T n=22+2·23+3·24+…+n·2n+1,所以T n-2T n=2+22+23+…+2n-n·2n+1.故T n=(n-1)2n+1+2(n∈N*).评析本题主要考查数列的通项公式,等差、等比数列的基础知识,同时考查数列求和的基本思想方法,以及推理论证能力.考点二数列的综合应用1.(2018浙江,20,15分)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.解析本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由a4+2是a3,a5的等差中项得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20得8=20,解得q=2或q=,因为q>1,所以q=2.(2)设c n=(b n+1-b n)a n,数列{c n}的前n项和为S n.由c n=解得c n=4n-1.由(1)可知a n=2n-1,所以b n+1-b n=(4n-1)·,故b n-b n-1=(4n-5)·,n≥2,b n-b1=(b n-b n-1)+(b n-1-b n-2)+…+(b3-b2)+(b2-b1)=(4n-5)·+(4n-9)·+…+7·+3.设T n=3+7·+11·+…+(4n-5)·,n≥2, T n=3·+7·+…+(4n-9)·+(4n-5)·,所以T n=3+4·+4·+…+4·-(4n-5)·,因此T n=14-(4n+3)·,n≥2,又b1=1,所以b n=15-(4n+3)·.易错警示利用错位相减法求和时,要注意以下几点:(1)错位相减法求和,适合数列{a n b n},其中{a n}为等差数列,{b n}为等比数列.(2)在等式两边所乘的数是等比数列{b n}的公比.(3)两式相减时,一定要错开一位.(4)特别要注意相减后等比数列的项数.(5)进行检验.2.(2016浙江,20,15分)设数列{a n}满足≤1,n∈N*.(1)证明:|a n|≥2n-1(|a1|-2),n∈N*;(2)若|a n|≤,n∈N*,证明:|a n|≤2,n∈N*.证明(1)由≤1得|a n|-|a n+1|≤1,故-≤,n∈N*,所以-=++…+≤++…+<1,因此|a n|≥2n-1(|a1|-2).(2)任取n∈N*,由(1)知,对于任意m>n,-=++…+≤++…+<,故|a n|<·2n≤·2n=2+·2n.从而对于任意m>n,均有|a n|<2+·2n.①由m的任意性得|a n|≤2.否则,存在n0∈N*,有||>2,取正整数m0>lo且m0>n0,则·<·=||-2,与①式矛盾.综上,对于任意n∈N*,均有|a n|≤2.3.(2014浙江,19,14分)已知数列{a n}和{b n}满足a1a2a3…a n=((n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(1)求a n与b n;(2)设c n=-(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.解析(1)由a1a2a3…a n=(,b3-b2=6,知a3=(=8.又由a1=2,得公比q=2(q=-2舍去),所以数列{a n}的通项公式为a n=2n(n∈N*),所以,a1a2a3…a n==()n(n+1).故数列{b n}的通项公式为b n=n(n+1)(n∈N*).(2)(i)由(1)知c n=-=-(n∈N*),所以S n=-(n∈N*).(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,c n=,而-=>0,得≤<1,所以,当n≥5时,c n<0.综上,对任意n∈N*,恒有S4≥S n,故k=4.评析本题主要考查等比数列的概念、通项公式、求和公式、不等式性质等基础知识,同时考查运算求解能力.考点三数学归纳法(2017浙江,22,15分)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*).证明:当n∈N*时,(1)0<x n+1<x n;(2)2x n+1-x n≤;(3)≤x n≤.解析本题主要考查数列的概念、递推关系与单调性基础知识,不等式及其应用,同时考查推理论证能力、分析问题和解决问题的能力.(1)用数学归纳法证明:x n>0.当n=1时,x1=1>0.假设n=k时,x k>0,那么n=k+1时,若x k+1≤0,则0<x k=x k+1+ln(1+x k+1)≤0,矛盾,故x k+1>0.因此x n>0(n∈N*).所以x n=x n+1+ln(1+x n+1)>x n+1.因此0<x n+1<x n(n∈N*).(2)由x n=x n+1+ln(1+x n+1)得,x n x n+1-4x n+1+2x n=-2x n+1+(x n+1+2)ln(1+x n+1).记函数f(x)=x2-2x+(x+2)ln(1+x)(x≥0),f '(x)=+ln(1+x)>0(x>0).函数f(x)在[0,+∞)上单调递增,所以f(x)≥f(0)=0,因此-2x n+1+(x n+1+2)ln(1+x n+1)=f(x n+1)≥0,故2x n+1-x n≤(n∈N*).(3)因为x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,所以x n≥.由≥2x n+1-x n得-≥2>0,所以-≥2≥…≥2n-1=2n-2,故x n≤.综上,≤x n≤(n∈N*).方法总结 1.证明数列单调性的方法.①差比法:作差a n+1-a n,然后分解因式,判断符号,或构造函数,利用导数求函数的值域,从而判断其符号.②商比法:作商,判断与1的大小,同时注意a n的正负.③数学归纳法.④反证法:例如求证:n∈N*,a n+1<a n,可反设存在k∈N*,有a k+1≥a k,从而导出矛盾.2.证明数列的有界性的方法.①构造法:构造函数,求函数的值域,得数列有界.②反证法.③数学归纳法.3.数列放缩的方法.①裂项法:利用不等式性质,把数列的第k项分裂成某数列的相邻两项差的形式,再求和,达到放缩的目的.②累加法:先把a n+1-a n进行放缩.例:a n+1-a n≤q n,则有n≥2时,a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)≤a1+q+q2+…+q n-1.③累乘法:先把进行放缩.例:≤q(q>0),则有n≥2时,a n=a1···…·≤a1q n-1(其中a1>0).④放缩为等比数列:利用不等式性质,把非等比数列{a n}放缩成等比数列{b n},求和后,再进行适当放缩.B组统一命题、省(区、市)卷题组考点一数列的求和1.(2017课标全国Ⅰ理,12,5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110答案 A2.(2015江苏,11,5分)设数列{a n}满足a1=1,且a n+1-a n=n+1(n∈N*),则数列前10项的和为. 答案3.(2018课标全国Ⅱ理,17,12分)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解析(1)设{a n}的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以{a n}的通项公式为a n=2n-9.(2)由(1)得S n=n2-8n=(n-4)2-16.所以当n=4时,S n取得最小值,最小值为-16.方法总结求等差数列前n项和S n的最值的两种方法(1)函数法:利用等差数列前n项和的函数表达式S n=an2+bn,通过配方或借助图象求二次函数的最值.(2)邻项变号法:①当a1>0,d<0时,满足的项数m,可使得S n取得最大值,最大值为S m;②当a1<0,d>0时,满足的项数m,可使得S n取得最小值,最小值为S m.4.(2018天津文,18,13分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n 项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(1)求S n和T n;(2)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.解析本题主要考查等差数列、等比数列的通项公式及其前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.(1)设等比数列{b n}的公比为q.由b1=1,b3=b2+2,可得q2-q-2=0.因为q>0,可得q=2,故b n=2n-1.所以T n==2n-1.设等差数列{a n}的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+13d=16,从而a1=1,d=1,故a n=n,所以S n=.(2)由(1),有T1+T2+…+T n=(21+22+…+2n)-n=-n=2n+1-n-2.由S n+(T1+T2+…+T n)=a n+4b n可得+2n+1-n-2=n+2n+1,整理得n2-3n-4=0,解得n=-1(舍)或n=4.所以正整数n的值为4.5.(2018天津理,18,13分)设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(1)求{a n}和{b n}的通项公式;(2)设数列{S n}的前n项和为T n(n∈N*).(i)求T n;(ii)证明=-2(n∈N*).解析本题主要考查等差数列的通项公式,等比数列的通项公式及其前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.(1)设等比数列{a n}的公比为q.由a1=1,a3=a2+2,可得q2-q-2=0.因为q>0,可得q=2,故a n=2n-1.设等差数列{b n}的公差为d.由a4=b3+b5,可得b1+3d=4.由a5=b4+2b6,可得3b1+13d=16,从而b1=1,d=1,故b n=n.所以数列{a n}的通项公式为a n=2n-1,数列{b n}的通项公式为b n=n.(2)(i)由(1),有S n==2n-1,故T n==-n=2n+1-n-2.(ii)证明:因为===-,所以=++…+=-2.方法总结解决数列求和问题的两种思路(1)利用转化的思想将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和.6.(2017北京文,15,13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(1)求{a n}的通项公式;(2)求和:b1+b3+b5+…+b2n-1.解析本题考查等差数列及等比数列的通项公式,数列求和.考查运算求解能力.(1)设等差数列{a n}的公差为d.因为a2+a4=10,所以2a1+4d=10.解得d=2.所以a n=2n-1.(2)设等比数列{b n}的公比为q.因为b2b4=a5,所以b1qb1q3=9.解得q2=3.所以b2n-1=b1q2n-2=3n-1.从而b1+b3+b5+…+b2n-1=1+3+32+…+3n-1=.方法总结求解有关等差数列和等比数列问题的关键是对其基本量(首项,公差,公比)进行求解.对于数列求和问题,常用的方法有公式法、裂项相消法、错位相减法、倒序相加法和分组求和法等.考点二数列的综合应用1.(2015福建,8,5分)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于()A.6B.7C.8D.9答案 D2.(2018江苏,14,5分)已知集合A={x|x=2n-1, n∈N*},B={x|x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{a n}.记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为.答案273.(2017北京理,10,5分)若等差数列{a n}和等比数列{b n}满足a1=b1=-1,a4=b4=8,则=.答案 14.(2018江苏,20,16分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n-b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n-b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).解析本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)由条件知a n=(n-1)d,b n=2n-1.因为|a n-b n|≤b1对n=1,2,3,4均成立,即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得≤d≤.因此,d的取值范围为.(2)由条件知a n=b1+(n-1)d,b n=b1q n-1.若存在d∈R,使得|a n-b n|≤b1(n=2,3,…,m+1)均成立,即|b1+(n-1)d-b1q n-1|≤b1(n=2,3,…,m+1).即当n=2,3,…,m+1时,d满足b1≤d≤b1.因为q∈(1,],所以1<q n-1≤q m≤2,从而b1≤0,b1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n-b n|≤b1对n=2,3,…,m+1均成立.下面讨论数列的最大值和数列的最小值(n=2,3,…,m+1).①当2≤n≤m时,-==,当1<q≤时,有q n≤q m≤2,从而n(q n-q n-1)-q n+2>0.因此,当2≤n≤m+1时, 数列单调递增,故数列的最大值为.②设f(x)=2x(1-x),当x>0时, f '(x)=(ln 2-1-xln 2)2x<0.所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n≤m时,=≤=f<1.因此,当2≤n≤m+1时,数列单调递减,故数列的最小值为.因此,d的取值范围为.疑难突破本题是数列的综合题,考查等差数列、等比数列的概念和相关性质,第(1)问主要考查绝对值不等式.第(2)问要求d的范围,使得|a n-b n|≤b1对n=2,3,…, m+1都成立,首先把d分离出来,变成b1≤d≤b1,难点在于讨论b1的最大值和b1的最小值.对于数列,可以通过作差讨论其单调性,而对于数列,要作商讨论单调性,∵==q,当2≤n≤m时,1<q n≤2.∴q≤,可以构造函数f(x)=2x(1-x),通过讨论f(x)在(0,+∞)上的单调性去证明f<1,得到数列的单调性,解出最小值.两个数列,一个作差得到单调性,一个作商得到单调性,都是根据数列本身结构而得,方法自然合理,最后构造函数判断与1的大小是难点,平时多积累,多思考,也是可以得到的.5.(2017课标全国Ⅱ文,17,12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=-1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.解析本题考查等差、等比数列的通项与求和.设{a n}的公差为d,{b n}的公比为q,则a n=-1+(n-1)d,b n=q n-1.由a2+b2=2得d+q=3.①(1)由a3+b3=5得2d+q2=6.②联立①和②解得(舍去)或因此{b n}的通项公式为b n=2n-1.(2)由b1=1,T3=21得q2+q-20=0.解得q=-5或q=4.当q=-5时,由①得d=8,则S3=21.当q=4时,由①得d=-1,则S3=-6.6.(2017山东理,19,12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.解析本题考查等比数列基本量的计算,错位相减法求和.(1)设数列{x n}的公比为q,由已知知q>0.由题意得所以3q2-5q-2=0.因为q>0,所以q=2,x1=1.因此数列{x n}的通项公式为x n=2n-1.(2)过P1,P2,…,P n+1向x轴作垂线,垂足分别为Q1,Q2,…,Q n+1.由(1)得x n+1-x n=2n-2n-1=2n-1,记梯形P n P n+1Q n+1Q n的面积为b n,由题意b n=×2n-1=(2n+1)×2n-2,所以T n=b1+b2+…+b n=3×2-1+5×20+7×21+…+(2n-1)×2n-3+(2n+1)×2n-2,①2T n=3×20+5×21+7×22+…+(2n-1)×2n-2+(2n+1)×2n-1.②①-②得-T n=3×2-1+(2+22+…+2n-1)-(2n+1)×2n-1=+-(2n+1)×2n-1.所以T n=.解题关键记梯形P n P n+1Q n+1Q n的面积为b n,以几何图形为背景确定{b n}的通项公式是关键.方法总结一般地,如果{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,可采用错位相减法.在写“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n-qS n”的表达式.考点三数学归纳法(2015江苏,23,10分)已知集合X={1,2,3},Y n={1,2,3,…,n}(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,b∈Y n}.令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.解析(1)f(6)=13.(2)当n≥6时,f(n)=(t∈N*).下面用数学归纳法证明:①当n=6时, f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t-1)+5,此时有f(k+1)=f(k)+3=k+2+++3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.C组教师专用题组考点一数列的求和1.(2017天津文,18,13分)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和(n∈N*).解析本题主要考查等差数列、等比数列及其前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0.又因为q>0,解得q=2.所以b n=2n.由b3=a4-2a1,可得3d-a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以{a n}的通项公式为a n=3n-2,{b n}的通项公式为b n=2n.(2)设数列{a2n b n}的前n项和为T n,由a2n=6n-2,有T n=4×2+10×22+16×23+…+(6n-2)×2n,2T n=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,上述两式相减,得-T n=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=-4-(6n-2)×2n+1=-(3n-4)2n+2-16.得T n=(3n-4)2n+2+16.所以数列{a2n b n}的前n项和为(3n-4)2n+2+16.方法总结(1)等差数列与等比数列中分别有五个量,a1,n,d(或q),a n,S n,一般可以“知三求二”,通过列方程(组)求基本量a1和d(或q),问题可迎刃而解.(2)数列{a n b n},其中{a n}是公差为d的等差数列,{b n}是公比q≠1的等比数列,求{a n b n}的前n项和应采用错位相减法.2.(2017山东文,19,12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和为S n.已知S2n+1=b n b n+1,求数列的前n项和T n.解析本题考查等比数列与数列求和.(1)设{a n}的公比为q,由题意知a1(1+q)=6,q=a1q2,又a n>0,解得a1=2,q=2,所以a n=2n.(2)由题意知S2n+1==(2n+1)b n+1,又S2n+1=b n b n+1,b n+1≠0,所以b n=2n+1.令c n=,则c n=.因此T n=c1+c2+…+c n=+++…++,又T n=+++…++,两式相减得T n=+-,所以T n=5-.3.(2016课标全国Ⅱ,17,12分)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1 000项和.解析(1)设{a n}的公差为d,据已知有7+21d=28,解得d=1.所以{a n}的通项公式为a n=n.b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2.(6分)(2)因为b n=(9分)所以数列{b n}的前1 000项和为1×90+2×900+3×1=1 893.(12分)疑难突破充分理解[x]的意义,求出b n的表达式,从而求出{b n}的前1 000项和.评析本题主要考查了数列的综合运用,同时对学生创新能力进行了考查,充分理解[x]的意义是解题关键.4.(2015湖北,19,12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q.已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=,求数列{c n}的前n项和T n.解析(1)由题意有,即解得或故或(2)由d>1,知a n=2n-1,b n=2n-1,故c n=,于是T n=1+++++…+,①T n=+++++…+.②①-②可得T n=2+++…+-=3-,故T n=6-.评析本题考查等差、等比数列的通项公式、前n项和公式,利用错位相减法求和,考查推理运算能力. 5.(2015天津,18,13分)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.解析(1)由已知,有(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),即a4-a2=a5-a3,所以a2(q-1)=a3(q-1).又因为q≠1,故a3=a2=2,由a3=a1·q,得q=2.当n=2k-1(k∈N*)时,a n=a2k-1=2k-1=;当n=2k(k∈N*)时,a n=a2k=2k=.所以{a n}的通项公式为a n=(2)由(1)得b n==.设{b n}的前n项和为S n,则S n=1×+2×+3×+…+(n-1)×+n×,S n=1×+2×+3×+…+(n-1)×+n×,上述两式相减,得S n=1+++…+-=-=2--,整理得,S n=4-.所以数列{b n}的前n项和为4-,n∈N*.评析本题主要考查等比数列及其前n项和公式、等差中项等基础知识.考查数列求和的基本方法、分类讨论思想和运算求解能力.6.(2014山东,19,12分)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-1,求数列{b n}的前n项和T n.解析(1)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(2)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+=.所以T n=评析本题考查等差数列的通项公式,前n项和公式和数列的求和,分类讨论的思想和运算求解能力、逻辑推理能力.7.(2014天津,19,14分)已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A;(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.解析(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3}.可得,A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i=1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=-q n-1=-1<0.所以s<t.评析本题主要考查集合的含义与表示,等比数列的前n项和公式,不等式的证明等基础知识和基本方法.考查运算能力、分析问题和解决问题的能力.考点二数列的综合应用1.(2017课标全国Ⅲ文,17,12分)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n.(1)求{a n}的通项公式;(2)求数列的前n项和.解析(1)因为a1+3a2+…+(2n-1)a n=2n,所以当n≥2时,a1+3a2+…+(2n-3)a n-1=2(n-1),两式相减得(2n-1)a n=2,所以a n=(n≥2).又由题设可得a1=2,满足上式,所以{a n}的通项公式为a n=(n∈N*).(2)记的前n项和为S n,由(1)知==-,所以S n=-+-+…+-=.思路分析(1)条件a1+3a2+…+(2n-1)a n=2n的实质就是数列{(2n-1)a n}的前n项和,故可利用a n与前n项和的关系求解;(2)利用裂项相消法求和.易错警示(1)要注意n=1时,是否符合所求得的通项公式;(2)裂项相消后,注意留下了哪些项,避免遗漏.2.(2017江苏,19,16分)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.证明本题主要考查等差数列的定义、通项公式等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)因为{a n}是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列{a n}是“P(3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d'.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d',在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d',所以数列{a n}是等差数列.方法总结数列新定义型创新题的一般解题思路:1.阅读审清“新定义”;2.结合常规的等差数列、等比数列的相关知识,化归、转化到“新定义”的相关知识;3.利用“新定义”及常规的数列知识,求解证明相关结论.3.(2016天津,18,13分)已知{a n}是各项均为正数的等差数列,公差为d.对任意的n∈N*,b n是a n和a n+1的等比中项.(1)设c n=-,n∈N*,求证:数列{c n}是等差数列;(2)设a1=d,T n=(-1)k,n∈N*,求证:<.证明(1)由题意得=a n a n+1,有c n=-=a n+1·a n+2-a n a n+1=2da n+1,因此c n+1-c n=2d(a n+2-a n+1)=2d2,所以{c n}是等差数列.(2)T n=(-+)+(-+)+…+(-+)=2d(a2+a4+…+a2n)=2d·=2d2n(n+1).所以===·<.评析本题主要考查等差数列及其前n项和公式、等比中项等基础知识.考查数列求和的基本方法、推理论证能力和运算求解能力.4.(2015重庆,22,12分)在数列{a n}中,a1=3,a n+1a n+λa n+1+μ=0(n∈N+).(1)若λ=0,μ=-2,求数列{a n}的通项公式;(2)若λ=(k0∈N+,k0≥2),μ=-1,证明:2+<<2+.解析(1)由λ=0,μ=-2,有a n+1a n=2(n∈N+).若存在某个n0∈N+,使得=0,则由上述递推公式易得=0.重复上述过程可得a1=0,此与a1=3矛盾,所以对任意n∈N+,a n≠0.从而a n+1=2a n(n∈N+),即{a n}是一个公比q=2的等比数列.故a n=a1q n-1=3·2n-1.(2)证明:由λ=,μ=-1,数列{a n}的递推关系式变为a n+1a n+a n+1-=0,变形为a n+1=(n∈N+).由上式及a1=3>0,归纳可得3=a1>a2>...>a n>a n+1> 0因为a n+1===a n-+·,所以对n=1,2,…,k0求和得=a1+(a2-a1)+…+(-)=a1-k0·+·>2+·=2+.另一方面,由上已证的不等式知a1>a2>…>>>2,得=a1-k0·+·<2+·=2+.综上,2+<<2+.5.(2014湖南,20,13分)已知数列{a n}满足a1=1,|a n+1-a n|=p n,n∈N*.(1)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(2)若p=,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.解析(1)因为{a n}是递增数列,所以|a n+1-a n|=a n+1-a n=p n.而a1=1,因此a2=p+1,a3=p2+p+1.又a1,2a2,3a3成等差数列,所以4a2=a1+3a3,因而3p2-p=0,解得p=或p=0.当p=0时,a n+1=a n,这与{a n}是递增数列矛盾.故p=.(2)由于{a2n-1}是递增数列,因而a2n+1-a2n-1>0,于是(a2n+1-a2n)+(a2n-a2n-1)>0.①但<,所以|a2n+1-a2n|<|a2n-a2n-1|.②由①②知,a2n-a2n-1>0,因此a2n-a2n-1==.③因为{a2n}是递减数列,同理可得,a2n+1-a2n<0,故a2n+1-a2n=-=.④由③④知,a n+1-a n=.于是a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=1+-+…+=1+·=+·,故数列{a n}的通项公式为a n=+·.6.(2015陕西,21,12分)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(1)证明:函数F n(x)=f n(x)-2在内有且仅有一个零点(记为x n),且x n=+;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(x),比较f n(x)和g n(x)的大小,并加以证明.解析(1)证明:F n(x)=f n(x)-2=1+x+x2+…+x n-2,则F n(1)=n-1>0,F n=1+++…+-2=-2=-<0,所以F n(x)在内至少存在一个零点.又F'n(x)=1+2x+…+nx n-1>0,故F n(x)在内单调递增,所以F n(x)在内有且仅有一个零点x n. 因为x n是F n(x)的零点,所以F n(x n)=0,即-2=0,故x n=+.(2)解法一:由题设知,g n(x)=.设h(x)=f n(x)-g n(x)=1+x+x2+…+x n-,x>0.当x=1时, f n(x)=g n(x).当x≠1时,h'(x)=1+2x+…+nx n-1-.若0<x<1,h'(x)>x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.若x>1,h'(x)<x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.所以h(x)在(0,1)上递增,在(1,+∞)上递减,所以h(x)<h(1)=0,即f n(x)<g n(x).综上所述,当x=1时, f n(x)=g n(x);当x≠1时, f n(x)<g n(x).解法二:由题设, f n(x)=1+x+x2+…+x n,g n(x)=,x>0.当x=1时, f n(x)=g n(x).当x≠1时,用数学归纳法可以证明f n(x)<g n(x).①当n=2时, f2(x)-g2(x)=- (1-x)2<0,所以f2(x)<g2(x)成立.②假设n=k(k≥2)时,不等式成立,即f k(x)<g k(x).那么,当n=k+1时,f k+1(x)=f k(x)+x k+1<g k(x)+x k+1=+x k+1=.又g k+1(x)-=,令h k(x)=kx k+1-(k+1)x k+1(x>0),则h'k(x)=k(k+1)x k-k(k+1)x k-1=k(k+1)x k-1(x-1).所以当0<x<1时,h'k(x)<0,h k(x)在(0,1)上递减;当x>1时,h'k(x)>0,h k(x)在(1,+∞)上递增.所以h k(x)>h k(1)=0,从而g k+1(x)>.故f k+1(x)<g k+1(x),即n=k+1时不等式也成立.由①和②知,对一切n≥2的整数,都有f n(x)<g n(x).解法三:由已知,记等差数列为{a k},等比数列为{b k},k=1,2,…,n+1. 则a1=b1=1,a n+1=b n+1=x n,所以a k=1+(k-1)·(2≤k≤n),b k=x k-1(2≤k≤n),令m k(x)=a k-b k=1+-x k-1,x>0(2≤k≤n),当x=1时,a k=b k,所以f n(x)=g n(x).当x≠1时,m'k(x)=·nx n-1-(k-1)x k-2=(k-1)x k-2(x n-k+1-1).而2≤k≤n,所以k-1>0,n-k+1≥1.若0<x<1,x n-k+1<1,m'k(x)<0;若x>1,x n-k+1>1,m'k(x)>0,从而m k(x)在(0,1)上递减,在(1,+∞)上递增,所以m k(x)>m k(1)=0,所以当x>0且x≠1时,a k>b k(2≤k≤n),又a1=b1,a n+1=b n+1,故f n(x)<g n(x).综上所述,当x=1时, f n(x)=g n(x);当x≠1时, f n(x)<g n(x).7.(2014四川,19,12分)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*). (1)若a1=-2,点(a8,4b7)在函数f(x)的图象上,求数列{a n}的前n项和S n;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-,求数列的前n项和T n.解析(1)由已知,得b7=,b8==4b7,有=4×=.解得d=a8-a7=2.所以,S n=na1+d=-2n+n(n-1)=n2-3n.(2)函数f(x)=2x在(a2,b2)处的切线方程为y-=(ln 2)(x-a2),它在x轴上的截距为a2-.由题意,得a2-=2-,解得a2=2.所以d=a2-a1=1.从而a n=n,b n=2n.所以T n=+++…++,2T n=+++…+.因此,2T n-T n=1+++…+-=2--=.所以,T n=.评析本题考查等差数列与等比数列的概念、等差数列与等比数列通项公式与前n项和、导数的几何意义等基础知识,考查运算求解能力.8.(2014江西,17,12分)已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1-a n+1b n+2b n+1b n=0.(1)令c n=,求数列{c n}的通项公式;(2)若b n=3n-1,求数列{a n}的前n项和S n.解析(1)因为a n b n+1-a n+1b n+2b n+1b n=0,b n≠0(n∈N*),所以-=2,即c n+1-c n=2.所以数列{c n}是以1为首项,2为公差的等差数列,故c n=2n-1.(2)由b n=3n-1知a n=c n b n=(2n-1)3n-1,于是数列{a n}的前n项和S n=1·30+3·31+5·32+…+(2n-1)·3n-1,3S n=1·31+3·32+…+(2n-3)·3n-1+(2n-1)·3n,相减得-2S n=1+2·(31+32+…+3n-1)-(2n-1)·3n=-2-(2n-2)3n,所以S n=(n-1)3n+1.评析本题主要考查等差数列的有关概念及求数列的前n项和,考查学生的运算求解能力,在利用错位相减法求和时,计算失误是学生失分的主要原因.9.(2014湖北,18,12分)已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式;(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.解析(1)设数列{a n}的公差为d,依题意,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,a n=2;当d=4时,a n=2+(n-1)·4=4n-2,从而得数列{a n}的通项公式为a n=2或a n=4n-2.(2)当a n=2时,S n=2n.显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立.当a n=4n-2时,S n==2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n<-10(舍去),此时存在正整数n,使得S n>60n+800成立,n的最小值为41.综上,当a n=2时,不存在满足题意的n;当a n=4n-2时,存在满足题意的n,其最小值为41.。

2020版高考数学大一轮复习第六章数列与数学归纳法第4讲数列求和练习(含解析)

2020版高考数学大一轮复习第六章数列与数学归纳法第4讲数列求和练习(含解析)

第4讲 数列求和[基础达标]1.若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 12=( )A .18B .15C .-18D .-15解析:选A 。

记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 11+a 12=(-b 1)+b 2+…+(-b 11)+b 12=(b 2-b 1)+(b 4-b 3)+…+(b 12-b 11)=6×3=18。

2.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列错误!的前5项和为( )A .158或5B .错误!或5C .错误!D .错误!解析:选C 。

设数列{a n }的公比为q 。

由题意可知q ≠1,且错误!=错误!,解得q =2,所以数列错误!是以1为首项,错误!为公比的等比数列,由求和公式可得S 5=错误!.3.数列{a n }的通项公式是a n =错误!,若前n 项和为10,则项数n 为( )A .120B .99C .11D .121解析:选A。

a n=错误!=错误!=错误!-错误!,所以a1+a2+…+a n=(错误!-1)+(错误!-错误!)+…+(错误!-错误!)=错误!-1=10。

即错误!=11,所以n+1=121,n=120.4.设各项均为正数的等差数列{a n}的前n项和为S n,且a4a8=32,则S11的最小值为( )A.22错误!B.44错误!C.22 D.44解析:选B.因为数列{a n}为各项均为正数的等差数列,所以a4+a8≥2a4a8=82,S11=错误!=错误!(a4+a8)≥错误!×8错误!=44错误!,故S11的最小值为442,当且仅当a4=a8=4错误!时取等号.5.设等比数列{a n}的各项均为正数,且a1=错误!,a错误!=4a2a8,若错误!=log2a1+log2a2+…+log2a n,则数列{b n}的前10项和为()A.-错误!B.错误!C.-错误!D.错误!解析:选A。

浙江省2020版高考数学专题6数列6.2等差数列检测

浙江省2020版高考数学专题6数列6.2等差数列检测

6.2 等差数列挖命题【考情探究】分析解读 1.等差数列知识属于常考内容.2.考查等差数列定义、性质、通项公式、前n项和公式等知识.3.灵活运用通项公式、前n项和公式处理最值问题、存在性问题是高考的热点.4.以数列为背景,考查学生归纳、类比的能力.5.预计2020年高考试题中,等差数列的概念、性质、通项公式、前n项和公式的考查必不可少.复习时要足够重视.破考点【考点集训】考点一等差数列的有关概念及运算1.(2018浙江绍兴高三3月适应性模拟,13)设S n为等差数列{a n}的前n项和,满足S2=S6,-=2,则a1= ,公差d= .答案-14;42.(2018浙江稽阳联谊学校高三联考,13)《九章算术》是我国古代著名的数学著作,其中有一道数列问题:“今有良马与驽马发长安,至齐,齐去长安三千里.良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,问几日相逢及各行几何?”请研究本题,并给出下列结果:两马同时出发后第9天,良马日行里,从长安出发后第天两马第一次相遇.答案297;16考点二等差数列的性质及应用1.(2018浙江嵊州高三期末质检,7)设等差数列{a n}的前n项的和为S n,若a6<0,a7>0,且a7>|a6|,则( )A.S11+S12<0B.S11+S12>0C.S11·S12<0D.S11·S12>0答案 C2.(2018浙江高考模拟训练冲刺卷一,13)已知等差数列{a n}的前n项和为S n,且a1>0,S8=S11,则a10= ;使S n取到最大值的n为.答案0;9或10炼技法【方法集训】方法1 等差数列中“基本量法”解题的方法1.(2018浙江新高考调研卷一(诸暨中学),5)已知公差不为0的等差数列{a n}的首项a1=3,若a2,a3,a6成等比数列,则{a n}前n项和的最大值为( )A.3B. -1C.-5D.-3答案 A2.(2018浙江杭州地区重点中学期中,14)设等差数列{a n}的首项为a1,公差为d,前n项和为S n,且S5·S6=-15,则d的取值范围是;若a1=-7,则d的值为.答案(-∞,-2]∪[2,+∞);3或方法2 等差数列的判定方法1.(2018浙江杭州地区重点中学第一学期期中,4)已知数列{a n}是等差数列,则数列{b n}一定为等差数列的是( )A.b n=|a n|B.b n=C.b n=-a nD.b n=答案 C2.(2017浙江金华十校调研,6)若等差数列{a n}的公差为d,前n项和为S n,记b n=,则( )A.数列{b n}是等差数列,且公差为dB.数列{b n}是等差数列,且公差为2dC.数列{a n+b n}是等差数列,且公差为dD.数列{a n-b n}是等差数列,且公差为答案 D过专题【五年高考】A组自主命题·浙江卷题组考点一等差数列的有关概念及运算1.(2016浙江,6,5分)如图,点列{A n},{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+2,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+2,n∈N*.(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则( )A.{S n}是等差数列B.{}是等差数列C.{d n}是等差数列D.{}是等差数列答案 A2.(2015浙江,3,5分)已知{a n}是等差数列,公差d不为零,前n项和是S n.若a3,a4,a8成等比数列,则( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>0答案 B3.(2014浙江文,19,14分)已知等差数列{a n}的公差d>0.设{a n}的前n项和为S n,a1=1,S2·S3=36.(1)求d及S n;(2)求m,k(m,k∈N*)的值,使得a m+a m+1+a m+2+…+a m+k=65.解析(1)由题意知(2a1+d)(3a1+3d)=36,将a1=1代入上式解得d=2或d=-5.因为d>0,所以d=2.从而a n=2n-1,S n=n2(n∈N*).(2)由(1)得a m+a m+1+a m+2+…+a m+k=(2m+k-1)(k+1),所以(2m+k-1)(k+1)=65.由m,k∈N*知2m+k-1≥k+1>1,故所以评析本题主要考查等差数列的概念、通项公式、求和公式等基础知识,同时考查运算求解能力.考点二等差数列的性质及应用(2017浙江,6,4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 CB组统一命题、省(区、市)卷题组考点一等差数列的有关概念及运算1.(2018课标全国Ⅰ理,4,5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=( )A.-12B.-10C.10D.12答案 B2.(2017课标全国Ⅰ理,4,5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8答案 C3.(2017课标全国Ⅲ理,9,5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为( )A.-24B.-3C.3D.8答案 A4.(2016课标全国Ⅰ,3,5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=( )A.100B.99C.98D.97答案 C5.(2018北京理,9,5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.答案a n=6n-36.(2017课标全国Ⅱ理,15,5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则= .答案7.(2016江苏,8,5分)已知{a n}是等差数列,S n是其前n项和.若a1+=-3,S5=10,则a9的值是.答案208.(2016北京,12,5分)已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6= .答案 69.(2018北京文,15,13分)设{a n}是等差数列,且a1=ln 2,a2+a3=5ln 2.(1)求{a n}的通项公式;(2)求++…+.解析(1)设{a n}的公差为d.因为a2+a3=5ln 2,所以2a1+3d=5ln 2.又a1=ln 2,所以d=ln 2.所以a n=a1+(n-1)d=nln 2.(2)因为=e ln 2=2,==e ln 2=2,所以{}是首项为2,公比为2的等比数列.所以++…+=2×=2(2n-1).10.(2016山东,18,12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(1)求数列{b n}的通项公式;(2)令c n=,求数列{c n}的前n项和T n.解析(1)由题意知,当n≥2时,a n=S n-S n-1=6n+5.当n=1时,a1=S1=11,所以a n=6n+5.设数列{b n}的公差为d.由即可解得b1=4,d=3.所以b n=3n+1.(2)由(1)知c n==3(n+1)·2n+1.又T n=c1+c2+…+c n,得T n=3×[2×22+3×23+…+(n+1)×2n+1],2T n=3×[2×23+3×24+…+(n+1)×2n+2],两式作差,得-T n=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×=-3n·2n+2.所以T n=3n·2n+2.方法总结若某数列的通项是等差数列与等比数列的通项的积或商,则该数列的前n项和可以采用错位相减法求解,注意相减后的项数容易出错.评析本题主要考查了等差数列及前n项和,属中档题.11.(2014大纲全国,18,12分)等差数列{a n}的前n项和为S n.已知a1=10,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.解析(1)由a1=10,a2为整数知,等差数列{a n}的公差d为整数.又S n≤S4,故a4≥0,a5≤0,于是10+3d≥0,10+4d≤0.解得-≤d≤-.因此d=-3.故数列{a n}的通项公式为a n=13-3n.(6分)(2)b n==.(8分)于是T n=b1+b2+…+b n===.(12分)评析本题考查了等差数列的定义及其前n项和、裂项相消法求数列前n项和.第(1)问的解题关键在于分析已知条件“a2为整数”“S n≤S4”中隐含的条件;第(2)问,对通项公式b n进行裂项相消的过程中易漏了系数而导致错解.考点二等差数列的性质及应用1.(2015北京,6,5分)设{a n}是等差数列.下列结论中正确的是( )A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2>D.若a1<0,则(a2-a1)(a2-a3)>0答案 C2.(2015重庆,2,5分)在等差数列{a n}中,若a2=4,a4=2,则a6= ( )A.-1B.0C.1D.6答案 B3.(2015广东,10,5分)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8= .答案104.(2014北京,12,5分)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n= 时,{a n}的前n项和最大.答案85.(2014江苏,20,16分)设数列{a n}的前n项和为S n.若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0.若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.解析(1)证明:由已知得,当n≥1时,a n+1=S n+1-S n=2n+1-2n=2n.于是对任意的正整数n,总存在正整数m=n+1,使得S n=2n=a m.所以{a n}是“H数列”.(2)由已知,得S2=2a1+d=2+d.因为{a n}是“H数列”,所以存在正整数m,使得S2=a m,即2+d=1+(m-1)d,于是(m-2)d=1.因为d<0,所以m-2<0,故m=1.从而d=-1.当d=-1时,a n=2-n,S n=是小于2的整数,n∈N*.于是对任意的正整数n,总存在正整数m=2-S n=2-,使得S n=2-m=a m,所以{a n}是“H数列”.因此d的值为-1.(3)证明:设等差数列{a n}的公差为d,则a n=a1+(n-1)d=na1+(n-1)(d-a1)(n∈N*).令b n=na1,c n=(n-1)(d-a1),则a n=b n+c n(n∈N*),下证{b n}是“H数列”.设{b n}的前n项和为T n,则T n=a1(n∈N*).于是对任意的正整数n,总存在正整数m=,使得T n=b m.所以{b n}是“H数列”.同理可证{c n}也是“H数列”.所以,对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*).评析本题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力.C组教师专用题组考点等差数列的有关概念及运算1.(2014福建,3,5分)等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于( )A.8B.10C.12D.14答案 C2.(2014辽宁,8,5分)设等差数列{a n}的公差为d.若数列{}为递减数列,则( )A.d<0B.d>0C.a1d<0D.a1d>0答案 C3.(2015安徽,13,5分)已知数列{a n}中,a1=1,a n=a n-1+ (n≥2),则数列{a n}的前9项和等于.答案274.(2017课标全国Ⅰ,17,12分)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.解析本题考查等差、等比数列.(1)设{a n}的公比为q,由题设可得解得q=-2,a1=-2.故{a n}的通项公式为a n=(-2)n.(2)由(1)可得S n==-+(-1)n·.由于S n+2+S n+1=-+(-1)n·=2=2S n,故S n+1,S n,S n+2成等差数列.方法总结等差、等比数列的常用公式:(1)等差数列:递推关系式:a n+1-a n=d,常用于等差数列的证明.通项公式:a n=a1+(n-1)d.前n项和公式:S n==na1+ d.(2)等比数列:递推关系式:=q(q≠0),常用于等比数列的证明.通项公式:a n=a1·q n-1.前n项和公式:S n=(3)在证明a,b,c成等差、等比数列时,还可以利用等差中项:=b或等比中项:a·c=b2来证明.5.(2015福建,17,12分)等差数列{a n}中,a2=4,a4+a7=15.(1)求数列{a n}的通项公式;(2)设b n=+n,求b1+b2+b3+…+b10的值.解析(1)设等差数列{a n}的公差为d.由已知得解得所以a n=a1+(n-1)d=n+2.(2)由(1)可得b n=2n+n.所以b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+...+210)+(1+2+3+ (10)=+=(211-2)+55=211+53=2 101.评析本题主要考查等差数列、等比数列、数列求和等基础知识,考查运算求解能力.【三年模拟】一、选择题(每小题4分,共12分)1.(2019届浙江名校协作体高三联考,9)已知公差为d的等差数列{a n}的前n项和为S n,若存在正整数n0,对任意正整数m,使得·<0恒成立,则下列结论不一定成立的是( ) A.a1d<0 B.|S n|有最小值C.·>0D.·>0答案 C2.(2018浙江温州高三质量检查,5)已知数列{a n}满足=25·,且a2+a4+a6=9,则lo(a5+a7+a9)=( )A.-3B.3C.-D.答案 A3.(2018浙江“七彩阳光”联盟期中,5)已知等差数列{a n},S n表示前n项的和,a5+a11>0,a6+a9<0,则满足S n<0的正整数n的最大值是( )A.12B.13C.14D.15答案 C二、填空题(单空题4分,多空题6分,共16分)4.(2019届镇海中学期中考试,16)已知数列{a n}为等差数列,其前n项和为S n,且2a1+3a3=S6,现给出以下结论:①a10=0;②S10最小;③S7=S12;④S19=0.其中正确的是(填序号).答案①③④5.(2018浙江诸暨高三上学期期末,11)已知等差数列{a n}的前n项和为S n,若a3=5,S3=12,则公差d= ;通项公式a n= .答案1;n+26.(2018浙江名校协作体,12)已知{a n}是公差为-2的等差数列,S n为其前n项和,若a2+1,a5+1,a7+1成等比数列,则a1= ,当n= 时,S n有最大值.答案19;10三、解答题(共45分)7.(2019届衢州、湖州、丽水三地教学质量检测,20)设正项数列{a n}的前n项和为S n,a1=2,且1+,3,1-成等差数列(n∈N*).(1)求数列{a n}的通项公式;(2)证明:-1<++…+≤- (n∈N*).解析(1)由题意知-=4,=4,(2分)所以数列{}是以4为首项,4为公差的等差数列,所以=4n,又a n>0,所以S n>0,所以S n=2.(4分)当n≥2时,a n=S n-S n-1=2-2,当n=1时,a1=2也满足上式,所以a n=2-2(n∈N*).(6分)(2)由(1)知S n=2,所以==>=-.(8分)所以++…+>-1.(10分)又因为=<=-(n≥2).(12分)当n≥2时,++…+≤+-1=-.(14分)当n=1时上式也成立,所以-1<++…+≤- (n∈N*).(15分)8.(2019届金丽衢十二校高三第一次联考,20)已知数列{a n}中,a1=2,a2=6,且满足=2(n≥2且n∈N*).(1)求证:{a n+1-a n}为等差数列;(2)令b n=-,设数列{b n}的前n项和为S n,求{S2n-S n}的最大值.解析(1)证明:由题意可得a n+1+a n-1=2a n+2(n≥2),则(a n+1-a n)-(a n-a n-1)=2,所以{a n+1-a n}是公差为2的等差数列.(2)当n≥2时,a n=(a n-a n-1)+…+(a2-a1)+a1=2n+…+4+2=2·=n(n+1).当n=1时,a1=2满足上式.∴a n=n(n+1).b n=-=-,∴S n=10-,∴S2n=10-,设M n=S2n-S n=10-,∴M n+1=10-,∴M n+1-M n=10-=10-=-,当n=1时,M n+1-M n=M2-M1=->0,即M1<M2,当n≥2时,M n+1-M n<0,即M2>M3>M4>…,∴(M n)max=M2=10×-1=,∴{S2n-S n}的最大值为S4-S2=.9.(2018浙江金丽衢十二校第三次联考(5月),22)有一列数a0,a1,a2,a3,…,对任意的m,n∈N,m≥n,满足2a m+2a n-2n=a m+n+a m-n,且已知a1=2.(1)求a0,a2,a3 ;(2)证明:对一切n∈N*,数列{a n+1-a n}为等差数列;(3)若对一切n∈N*,λ>++…+恒成立,求λ的最小值.解析(1)令m=n=0,得a0=0,令m=n=1,得a2=6,令m=2,n=1,得a3=12.(2)证明:令n=1,得2a m+4-2=a m+1+a m-1,即(a m+1-a m)=(a m-a m-1)+2.所以数列{a n+1-a n}是公差为2的等差数列.(3)因为a n+1-a n=(a1-a0)+n×2=2(n+1),所以a n=(a n-a n-1)+(a n-1-a n-2)+…+(a1-a0)+a0=2n+2(n-1)+…+2+0=n(n+1).所以++…+=++…+=1-,要使λ>1-恒成立,λ的最小值为1.。

2020版数学新优化浙江大一轮试题:第六章 数列 考点规范练28 Word版含答案

2020版数学新优化浙江大一轮试题:第六章 数列 考点规范练28 Word版含答案
解析 S9= 2 = 2 = 2 =72.故选 B.
2.(2018 浙江宁波高三期末)《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题
1
目:把 100 个面包分给 5 个人,使每人所得成等差数列,且使较多的三份之和的7是较少的两份之和.若 按题中要求分好面包,则最少的一份为( )
5
∵a1=2,S4=20,∴4 × 2 + 2 d=20,解得 d=3.
1 6×5
∴S6=6 × 2 + 2 × 3=48.
7.设等差数列{an}的前 n 项和为 Sn(其中 n∈N*),且满足 a6+a7+a8-a9=2,则 a6= ,S4·S18 的最 大值是 .
答案 1 72
解析设公差为 d.由题意得 a6+a6+d+a6+2d-(a6+3d)=2a6=2,所以
10
5
11
A.3
B. 3
C.6
D. 6
答案 A
{ 5������1 + 10������ = 100,
解析设
a1<a2<a3<a4<a5,则
1
7(3������1 + 9������)
=
2������1 + ������,
5
解得 a1=3.故选 A.
3.(2018 浙江桐乡一模)在等差数列{an}中,d 为公差,Sn 为前 n 项的和,则“d>0”是“Sn+Sn+2>2Sn+1”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
答案 C 解析由已知 Sn ������������ - 1-Sn-1 ������������=2 ������������������������ - 1,可得 ������������ ‒ ������������ - 1=2,则数列{ ������������}是以 1 为首项,2 为公差的 等差数列.

(浙江专版)高考数学一轮复习 第6章 不等式及其证明 第6节 数学归纳法教师用书-人教版高三全册数学

(浙江专版)高考数学一轮复习 第6章 不等式及其证明 第6节 数学归纳法教师用书-人教版高三全册数学

第六节 数学归纳法1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 2.数学归纳法的框图表示1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( ) (2)用数学归纳法证明问题时,归纳假设可以不用.( )(3)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )(4)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( )[答案] (1)× (2)× (3)× (4)√2.(2017·某某二中月考)在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A .1B .2C .3D .0C [因为凸n 边形最小为三角形,所以第一步检验n 等于3,故选C.]3.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2,且k 为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立 B [k 为偶数,则k +2为偶数.]4.(教材改编)已知{a n }满足a n +1=a 2n -na n +1,n ∈N *,且a 1=2,则a 2=__________,a 3=__________,a 4=__________,猜想a n =__________.3 4 5 n +15.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是__________.【导学号:51062209】2k[当n =k 时,不等式为1+12+13+…+12k -1<k .则n =k +1时,左边应为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1,则左边增加的项数为2k +1-1-2k+1=2k.]用数学归纳法证明等式设f (n )=1+12+13+ (1)(n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).[证明] (1)当n =2时,左边=f (1)=1,右边=2⎝ ⎛⎭⎪⎫1+12-1=1,左边=右边,等式成立.4分(2)假设n =k (k ≥2,k ∈N *)时,结论成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1],8分那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k =(k +1)⎣⎢⎡⎦⎥⎤f k +1-1k +1-k =(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1],12分 ∴当n =k +1时结论仍然成立.由(1)(2)可知:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).15分[规律方法] 1.用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.2.由n =k 时命题成立,推出n =k +1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.[变式训练1] 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).[证明] (1)当n =1时,左边=1-12=12,右边=11+1=12,左边=右边.4分 (2)假设n =k 时等式成立, 即1-12+13-14+…+12k -1-12k=1k +1+1k +2+ (12),8分 则当n =k +1时,⎝ ⎛⎭⎪⎫1-12+13-14+…+12k -1-12k +⎝ ⎛⎭⎪⎫12k +1-12k +2 =⎝ ⎛⎭⎪⎫1k +1+1k +2+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2.13分 即当n =k +1时,等式也成立.综合(1)(2)可知,对一切n ∈N *,等式成立.15分用数学归纳法证明不等式用数学归纳法证明:对一切大于1的自然数n ,不等式⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12n -1>2n +12均成立. [证明] (1)当n =2时,左边=1+13=43;右边=52.∵左边>右边,∴不等式成立.4分(2)假设n =k (k ≥2,且k ∈N *)时不等式成立, 即⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1>2k +12.8分则当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+12k +1-1>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=2k +1+12.14分∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立.15分[规律方法] 1.当遇到与正整数n 有关的不等式证明时,若用其他方法不容易证明,则可考虑应用数学归纳法.2.用数学归纳法证明不等式的关键是由n =k 时命题成立,再证n =k +1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用基本不等式、不等式的性质等放缩技巧,使问题得以简化.[变式训练2] 已知数列{a n },当n ≥2时,a n <-1,又a 1=0,a 2n +1+a n +1-1=a 2n ,求证:当n ∈N *时,a n +1<a n .[证明] (1)当n =1时,∵a 2是a 22+a 2-1=0的负根, ∴a 1>a 2.4分(2)假设当n =k (k ∈N *)时,a k +1<a k ,6分∵a 2k +1-a 2k =(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0, ∴a 2k +1-a 2k >0.10分又∵a k +2+a k +1+1<-1+(-1)+1=-1, ∴a k +2-a k +1<0,∴a k +2<a k +1,即当n =k +1时,命题成立. 由(1)(2)可知,当n ∈N *时,a n +1<a n .15分归纳——猜想——证明已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.[解] (1)当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0.∴a 1=3-1(a 1>0).2分当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0).同理可得a 3=7- 5. 猜想a n =2n +1-2n -1(n ∈N *).7分(2)证明:①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1.10分 由于a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k, 将a k =2k +1-2k -1代入上式,整理得a 2k +1+22k +1a k +1-2=0,∴a k +1=2k +3-2k +1, 即n =k +1时通项公式成立.14分由①②可知对所有n ∈N *,a n =2n +1-2n -1都成立.15分[规律方法] 1.猜想{a n }的通项公式时应注意两点:(1)准确计算a 1,a 2,a 3发现规律(必要时可多计算几项);(2)证明a k +1时,a k +1的求解过程与a 2,a 3的求解过程相似,注意体会特殊与一般的辩证关系.2.“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式,这种方法在解决探索性问题、存在性问题时起着重要作用,它的模式是先由合情推理发现结论,然后经逻辑推理证明结论的正确性.[变式训练3] (2017·某某调研)已知数列{x n }满足x 1=12,x n +1=11+x n,n ∈N *.猜想数列{x 2n }的单调性,并证明你的结论. 【导学号:51062210】[解] 由x 1=12及x n +1=11+x n ,得x 2=23,x 4=58,x 6=1321,由x 2>x 4>x 6猜想:数列{x 2n }是递减数列.4分 下面用数学归纳法证明:(1)当n =1时,已证命题成立.6分 (2)假设当n =k (k ≥1,k ∈N *)时命题成立, 即x 2k >x 2k +2,易知x k >0,那么x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x2k+3-x2k+11+x2k+11+x2k+3=x2k-x2k+21+x2k1+x2k+11+x2k+21+x2k+3>0,12分即x2(k+1)>x2(k+1)+2.也就是说,当n=k+1时命题也成立.结合(1)(2)知,对∀n∈N*命题成立.15分[思想与方法]1.数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学命题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据.2.在推证n=k+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要弄清n=k与n=k+1之间的关系.在推证时,应灵活运用分析法、综合法、反证法等方法.[易错与防X]1.第一步验证当n=n0时,n0不一定为1,要根据题目要求选择合适的起始值.2.由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用归纳假设,否则就不是数学归纳法.3.解“归纳——猜想——证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础.否则将会做大量无用功.课时分层训练(三十五) 数学归纳法A组基础达标(建议用时:30分钟)一、选择题1.用数学归纳法证明2n>2n +1,n 的第一个取值应是( ) A .1 B .2 C .3D .4C [∵n =1时,21=2,2×1+1=3,2n>2n +1不成立;n =2时,22=4,2×2+1=5,2n >2n +1不成立; n =3时,23=8,2×3+1=7,2n >2n +1成立.∴n 的第一个取值应是3.]2.一个关于自然数n 的命题,如果验证当n =1时命题成立,并在假设当n =k (k ≥1且k ∈N *)时命题成立的基础上,证明了当n =k +2时命题成立,那么综合上述,对于( ) 【导学号:51062211】A .一切正整数命题成立B .一切正奇数命题成立C .一切正偶数命题成立D .以上都不对B [本题证的是对n =1,3,5,7,…命题成立,即命题对一切正奇数成立.]3.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1n -1n +1 B.12n 2n +1C.12n -12n +1D.12n +12n +2C [由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =12n -12n +1.]4.凸n 多边形有f (n )条对角线,则凸(n +1)边形的对角线的条数f (n +1)为()A .f (n )+n +1B .f (n )+nC .f (n )+n -1D .f (n )+n -2C [边数增加1,顶点也相应增加1个,它与和它不相邻的n -2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加(n -1)条.]5.用数学归纳法证明3(2+7k)能被9整除,证明n =k +1时,应将3(2+ 7k +1)配凑成( ) 【导学号:51062212】A .6+21·7kB .3(2+7k)+21 C .3(2+7k)D .21(2+7k)-36D [要配凑出归纳假设,故3(2+7k +1)=3(2+7·7k)=6+21·7k=21(2+7k)-36.]二、填空题6.用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =__________时,命题亦真.2k +1 [n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立.] 7.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上的项为__________. 【导学号:51062212】(k 2+1)+(k 2+2)+…+(k +1)2[当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2,则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2.]8.已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则其一般结论为__________________.f (2n )>n +22(n ≥2,n ∈N *) [因为f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n)>n +22.故填f (2n)>n +22(n ≥2,n ∈N *).]三、解答题9.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).[证明] (1)当n =2时,1+122=54<2-12=32,命题成立.4分(2)假设n =k 时命题成立,即 1+122+132+…+1k 2<2-1k .7分 当n =k +1时,1+122+132+…+1k 2+1k +12<2-1k+1k +12<2-1k +1kk +1=2-1k +1k -1k +1=2-1k +1命题成立.14分 由(1)(2)知原不等式在n ∈N *,n ≥2时均成立.15分10.在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2-λ)2n(n∈N*,λ>0).(1)求a2,a3,a4;(2)猜想{a n}的通项公式,并加以证明. 【导学号:51062213】[解](1)a2=2λ+λ2+2(2-λ)=λ2+22,a3=λ(λ2+22)+λ3+(2-λ)22=2λ3+23,a4=λ(2λ3+23)+λ4+(2-λ)23=3λ4+24.6分(2)由(1)可猜想数列通项公式为:a n=(n-1)λn+2n.8分下面用数学归纳法证明:①当n=1,2,3,4时,等式显然成立,②假设当n=k(k≥4,k∈N*)时等式成立,即a k=(k-1)λk+2k,10分那么当n=k+1时,a k+1=λa k+λk+1+(2-λ)2k=λ(k-1)λk+λ2k+λk+1+2k+1-λ2k=(k-1)λk+1+λk+1+2k+1=[(k+1)-1]λk+1+2k+1,所以当n=k+1时,猜想成立,由①②知数列的通项公式为a n=(n-1)λn+2n(n∈N*,λ>0).15分B组能力提升(建议用时:15分钟)1.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立.”那么,下列命题总成立的是( )A.若f(1)<1成立,则f(10)<100成立B.若f(2)<4成立,则f(1)≥1成立C.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立D.若f(4)≥16成立,则当k≥4时,均有f(k)≥k2成立D[∵f(k)≥k2成立时,f(k+1)≥(k+1)2成立,∴f(4)≥16时,有f(5)≥52,f(6)≥62,…,f(k)≥k2成立.]2.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=__________;当n>4时,f(n)=__________(用n表示).5 12(n+1)(n-2)(n≥3)[f(3)=2,f(4)=f(3)+3=2+3=5,f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1) =12(n +1)(n -2)(n ≥3).] 3.设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15. (1)求a 1,a 2,a 3的值;(2)求数列{a n }的通项公式. 【导学号:51062214】 [解] (1)由题意知S 2=4a 3-20, ∴S 3=S 2+a 3=5a 3-20.2分又S 3=15,∴a 3=7,S 2=4a 3-20=8. 又S 2=S 1+a 2=(2a 2-7)+a 2=3a 2-7, ∴a 2=5,a 1=S 1=2a 2-7=3. 综上知,a 1=3,a 2=5,a 3=7.6分(2)由(1)猜想a n =2n +1,下面用数学归纳法证明. ①当n =1时,结论显然成立;7分 ②假设当n =k (k ≥1)时,a k =2k +1, 则S k =3+5+7+…+(2k +1)=k [3+2k +1]2=k (k +2).又S k =2ka k +1-3k 2-4k , ∴k (k +2)=2ka k +1-3k 2-4k , 解得2a k +1=4k +6,13分∴a k +1=2(k +1)+1,即当n =k +1时,结论成立. 由①②知,∀n ∈N *,a n =2n +1.15分。

2020版高考数学大一轮复习第六章数列高考专题突破三高考中的数列问题第1课时等差等比数列与数列求和教案文

第1课时 等差、等比数列与数列求和题型一 等差数列、等比数列的交汇例1记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧ a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n.(2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n 2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.思维升华等差与等比数列的基本量之间的关系,利用方程思想和通项公式、前n 项和公式求解.求解时,应“瞄准目标”,灵活应用数列的有关性质,简化运算过程. 跟踪训练1(2019·鞍山模拟)已知公差不为0的等差数列{a n }的前n 项和为S n ,S 1+1,S 3,S 4成等差数列,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)若S 4,S 6,S n 成等比数列,求n 及此等比数列的公比.解 (1)设数列{a n }的公差为d ,由题意可知⎩⎪⎨⎪⎧ 2S 3=S 1+1+S 4,a 22=a 1a 5,d ≠0,整理得⎩⎪⎨⎪⎧ a 1=1,d =2a 1,即⎩⎪⎨⎪⎧ a 1=1,d =2,∴a n =2n -1.(2)由(1)知a n =2n -1,∴S n =n 2,∴S 4=16,S 6=36,又S 4S n =S 26,∴n 2=36216=81, ∴n =9,公比q =S 6S 4=94. 题型二 新数列问题例2对于数列{x n },若对任意n ∈N +,都有x n +2-x n +1>x n +1-x n 成立,则称数列{x n }为“增差数列”.设a n =t (3n +n 2)-13n ,若数列a 4,a 5,a 6,…,a n (n ≥4,n ∈N +)是“增差数列”,则实数t 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫215,+∞ 解析 数列a 4,a 5,a 6,…,a n (n ≥4,n ∈N +)是“增差数列”,故得到a n +2+a n >2a n +1(n ≥4,n ∈N +),即t [3n +2+(n +2)2]-13n +2+t (3n +n 2)-13n >2t [3n +1+(n +1)2]-13n +1(n ≥4,n ∈N +), 化简得到(2n 2-4n -1)t >2(n ≥4,n ∈N +),即t >22n 2-4n -1对于n ≥4恒成立, 当n =4时,2n 2-4n -1有最小值15, 故实数t 的取值范围是⎝ ⎛⎭⎪⎫215,+∞. 思维升华根据新数列的定义建立条件和结论间的联系是解决此类问题的突破口,灵活对新数列的特征进行转化是解题的关键.跟踪训练2(1)定义“等积数列”,在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{a n }是等积数列且a 1=2,前21项的和为62,则这个数列的公积为________.答案 0或8解析 当公积为0时,数列a 1=2,a 2=0,a 3=60,a 4=a 5=…=a 21=0满足题意; 当公积不为0时,应该有a 1=a 3=a 5=…=a 21=2,且a 2=a 4=a 6=…=a 20,由题意可得,a 2+a 4+a 6+…+a 20=62-2×11=40,则a 2=a 4=a 6=…=a 20=4010=4, 此时数列的公积为2×4=8.综上可得,这个数列的公积为0或8.(2)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列称为“斐波那契数列”若{a n }是“斐波那契数列”,则(a 1a 3-a 22)·(a 2a 4-a 23)(a 3a 5-a 24)…·(a 2017·a 2019-a 22018)的值为________. 答案 1解析 因为a 1a 3-a 22=1×2-12=1,a 2a 4-a 23=1×3-22=-1,a 3a 5-a 24=2×5-32=1,a 4a 6-a 25=3×8-52=-1, …,a 2017a 2019-a 22018=1,共有2017项,所以(a 1a 3-a 22)(a 2a 4-a 23)(a 3a 5-a 24)…(a 2017a 2019-a 22018)=1.题型三 数列的求和命题点1 分组求和与并项求和例3(2018·呼和浩特模拟)已知数列{a n }是各项均为正数的等比数列,且a 1+a 2=2⎝ ⎛⎭⎪⎫1a 1+1a 2,a 3+a 4=32⎝ ⎛⎭⎪⎫1a 3+1a 4. (1)求数列{a n }的通项公式;(2)设b n =a 2n +log 2a n ,求数列{b n }的前n 项和T n .解 (1)设等比数列{a n }的公比为q (q >0),则a n =a 1q n -1,且a n >0,由已知得⎩⎪⎨⎪⎧ a 1+a 1q =2⎝ ⎛⎭⎪⎫1a 1+1a 1q ,a 1q 2+a 1q 3=32⎝ ⎛⎭⎪⎫1a 1q 2+1a 1q 3,化简得⎩⎪⎨⎪⎧ a 21q (q +1)=2(q +1),a 21q 5(q +1)=32(q +1),即⎩⎪⎨⎪⎧ a 21q =2,a 21q 5=32,又∵a 1>0,q >0,∴a 1=1,q =2,∴数列{a n }的通项公式为a n =2n -1.(2)由(1)知b n =a 2n +log 2a n =4n -1+n -1,∴T n =(1+4+42+…+4n -1)+(0+1+2+3+…+n -1)=4n -14-1+n (n -1)2=4n-13+n (n -1)2.命题点2 错位相减法求和例4(2018·大连模拟)已知数列{a n }满足a n ≠0,a 1=13,a n -a n +1=2a n a n +1,n ∈N +.(1)求证:⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求出数列{a n }的通项公式; (2)若数列{b n }满足b n =2na n,求数列{b n }的前n 项和T n .解 (1)由已知可得,1a n +1-1a n=2,∴⎩⎨⎧⎭⎬⎫1a n 是首项为3,公差为2的等差数列, ∴1a n=3+2(n -1)=2n +1,∴a n =12n +1.(2)由(1)知b n =(2n +1)2n,∴T n =3×2+5×22+7×23+…+(2n -1)2n -1+(2n +1)2n ,2T n =3×22+5×23+7×24+…+(2n -1)2n +(2n +1)·2n +1,两式相减得,-T n =6+2×22+2×23+…+2×2n -(2n +1)2n +1.=6+8-2×2n×21-2-(2n +1)2n +1=-2-(2n -1)2n +1,∴T n =2+(2n -1)2n +1.命题点3 裂项相消法求和例5在数列{a n }中,a 1=4,na n +1-(n +1)a n =2n 2+2n .(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列; (2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n . (1)证明 na n +1-(n +1)a n =2n 2+2n 的两边同时除以n (n +1),得a n +1n +1-a n n=2(n ∈N +), 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为4,公差为2的等差数列.(2)解 由(1),得a n n =2n +2,所以a n =2n 2+2n ,故1a n =12n 2+2n =12·(n +1)-n n (n +1)=12·⎝ ⎛⎭⎪⎫1n -1n +1, 所以S n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =12⎝⎛⎭⎪⎫1-1n +1=n 2(n +1). 思维升华 (1)一般求数列的通项往往要构造数列,此时可从要证的结论出发,这是很重要的解题信息.(2)根据数列的特点选择合适的求和方法,常用的求和方法有错位相减法、分组转化法、裂项相消法等.跟踪训练3 已知正项数列{a n }的前n 项和为S n ,a 1=1,且(t +1)S n =a 2n +3a n +2(t ∈R ).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫12b n +7n 的前n 项和T n . 解 (1)因为a 1=1,且(t +1)S n =a 2n +3a n +2,所以(t +1)S 1=a 21+3a 1+2,所以t =5.所以6S n =a 2n +3a n +2.(ⅰ)当n ≥2时,有6S n -1=a 2n -1+3a n -1+2,(ⅱ)①-②得6a n =a 2n +3a n -a 2n -1-3a n -1,所以(a n +a n -1)(a n -a n -1-3)=0,因为a n >0,所以a n -a n -1=3,又因为a 1=1,所以{a n }是首项a 1=1,公差d =3的等差数列, 所以a n =3n -2(n ∈N +).(2)因为b n +1-b n =a n +1,b 1=1,所以b n -b n -1=a n (n ≥2,n ∈N +),所以当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n +a n -1+…+a 2+b 1=3n 2-n 2.又b 1=1也适合上式,所以b n =3n 2-n 2(n ∈N +).所以12b n +7n =13n 2-n +7n=13·1n (n +2)=16·⎝ ⎛⎭⎪⎫1n -1n +2,所以T n =16·⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2=16·⎝ ⎛⎭⎪⎫32-1n +1-1n +2,=3n 2+5n12(n +1)(n +2).1.已知等差数列{a n }的前n 项和为S n ,且a 3=7,a 5+a 7=26.(1)求a n 及S n ;(2)令b n =S n n (n ∈N +),求证:数列{b n }为等差数列.(1)解 设等差数列{a n }的首项为a 1,公差为d , 由题意有⎩⎪⎨⎪⎧ a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2,则a n =a 1+(n -1)d =3+2(n -1)=2n +1,S n =n (a 1+a n )2=n [3+(2n +1)]2=n (n +2).(2)证明 因为b n =S n n =n (n +2)n=n +2, 又b n +1-b n =n +3-(n +2)=1,所以数列{b n }是首项为3,公差为1的等差数列.2.(2018·包头模拟)在数列{a n }和{b n }中,a 1=1,a n +1=a n +2,b 1=3,b 2=7,等比数列{c n }满足c n =b n -a n .(1)求数列{a n }和{c n }的通项公式;(2)若b 6=a m ,求m 的值.解 (1)因为a n +1-a n =2,且a 1=1,所以数列{a n }是首项为1,公差为2的等差数列. 所以a n =1+(n -1)·2=2n -1,即a n =2n -1. 因为b 1=3,b 2=7,且a 1=1,a 2=3,所以c 1=b 1-a 1=2,c 2=b 2-a 2=4.因为数列{c n }是等比数列,且数列{c n }的公比q =c 2c 1=2,所以c n =c 1·q n -1=2×2n -1=2n ,即c n =2n . (2)因为b n -a n =2n ,a n =2n -1,所以b n =2n +2n -1.所以b 6=26+2×6-1=75.令2m -1=75,得m =38.3.已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n 12log a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.解 (1)由题意,得⎩⎪⎨⎪⎧ a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2),解得⎩⎪⎨⎪⎧ a 1=2,q =2或⎩⎪⎨⎪⎧ a 1=32,q =12,∵{a n }是递增数列,∴a 1=2,q =2,∴数列{a n }的通项公式为a n =2·2n -1=2n.(2)∵b n =a n 12log a n =2n ·12log 2n =-n ·2n ,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n ),①则2S n =-(1×22+2×23+…+n ·2n +1),② ②-①,得S n =(2+22+…+2n )-n ·2n +1=2n +1-2-n ·2n +1, 则S n +n ·2n +1=2n +1-2, 解2n +1-2>62,得n >5,∴n 的最小值为6.4.正项等差数列{a n }满足a 1=4,且a 2,a 4+2,2a 7-8成等比数列,{a n }的前n 项和为S n .(1)求数列{a n }的通项公式;(2)令b n =1S n +2,求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d (d >0),由已知得a 2(2a 7-8)=(a 4+2)2,化简得,d 2+4d -12=0,解得d =2或d =-6(舍), 所以a n =a 1+(n -1)d =2n +2.(2)因为S n =n (a 1+a n )2=n (2n +6)2=n 2+3n , 所以b n =1S n +2=1n 2+3n +2=1(n +1)(n +2) =1n +1-1n +2, 所以T n =b 1+b 2+b 3+…+b n=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+…+⎝ ⎛⎭⎪⎫1n +1-1n +2 =12-1n +2=n 2n +4.5.数列{a n }的前n 项和为S n ,已知a 1=1,(2n -1)a n +1=(2n +3)S n (n =1,2,3,…).(1)证明:数列⎩⎨⎧⎭⎬⎫S n 2n -1是等比数列; (2)求数列{S n }的前n 项和T n .(1)证明 ∵a n +1=S n +1-S n =2n +32n -1S n , ∴S n +1=2(2n +1)2n -1S n ,∴S n +12n +1=2·S n 2n -1,又a 1=1,∴S 11=1≠0,∴数列⎩⎨⎧⎭⎬⎫S n 2n -1是以1为首项,2为公比的等比数列.(2)解 由(1)知,S n 2n -1=2n -1,∴S n =(2n -1)·2n -1,∴T n =1+3×2+5×22+…+(2n -3)·2n -2+(2n -1)·2n -1,① 2T n =1×2+3×22+5×23+…+(2n -3)·2n -1+(2n -1)·2n .② ①-②得-T n =1+2×(21+22+…+2n -1)-(2n -1)·2n=1+2×2-2n -1×21-2-(2n -1)·2n=(3-2n )·2n -3,∴T n =(2n -3)·2n+3.6.设数列{a n }满足a 1=12,a n =2a n -1+1a n -1+2(n ≥2,n ∈N +).(1)证明:数列⎩⎨⎧⎭⎬⎫a n -1a n +1为等比数列,并求数列{a n }的通项公式; (2)设c n =(3n+1)a n ,证明:数列{c n }中任意三项不可能构成等差数列.(1)解 由条件,a n -1=2a n -1+1a n -1+2-1=a n -1-1a n -1+2(n ≥2,n ∈N +),①a n +1=2a n -1+1a n -1+2+1=3(a n -1+1)a n -1+2(n ≥2,n ∈N +),②由a 1=12知a n >0,∴a n +1>0.①÷②得,a n -1a n +1=13·a n -1-1a n -1+1(n ≥2,n ∈N +),且a 1-1a 1+1=12-112+1=-13≠0,∴⎩⎨⎧⎭⎬⎫a n -1a n +1是首项为-13,公比为13的等比数列.∴a n -1a n +1=-13·⎝ ⎛⎭⎪⎫13n -1=-⎝ ⎛⎭⎪⎫13n , ∴a n =3n -13n +1. (2)证明 由(1)得,c n =(3n +1)a n =3n -1,(反证法)假设存在正整数l ,m ,n 且1≤l <m <n , 使得c l ,c m ,c n 成等差数列.则2(3m -1)=3l +3n -2,即2·3m =3l +3n , 则有2·3m -l =1+3n -l ,即2·3m -l -3n -l =1, 则有3m -l ·[2-3n -l -(m -l )]=1, 即3m -l ·(2-3n -m )=1.∵l ,m ,n ∈N +且1≤l <m <n ,∴3m -l ∈N +.∴⎩⎪⎨⎪⎧ 2-3n -m =1,3m -l =1,∴⎩⎪⎨⎪⎧ n -m =0,m -l =0,∴l =m =n 与l <m <n 矛盾,故假设不成立,∴数列{c n }中任意三项不可能构成等差数列.。

2020届高考数学一轮复习:教师用书第六章 数列与数学归纳法2

第六章⎪⎪⎪数列与数学归纳法第四节数列的综合问题1.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式有:①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.2.解决数列与不等式问题常见放缩技巧(1)对1n 2的放缩,根据不同的要求,大致有三种情况:1n 2<1n 2-n =1n -1-1n(n ≥2); 1n 2<1n 2-1=12⎝⎛⎭⎫1n -1-1n +1(n ≥2); 1n 2<1n 2-14=2⎝⎛⎭⎫12n -1-12n +1(n ≥1). (2)对12n的放缩,根据不同的要求,大致有两种情况: 12n>1n +n +1=n +1-n ;12n<1n +n -1=n -n -1(n ≥1).[小题体验]1.若S n =1-2+3-4+5-6+…+(-1)n -1·n ,则S 50=________.答案:-252.若数列{a n }的通项公式为a n =2n -1,则⎩⎨⎧⎭⎬⎫1a n a n +1的前10项和为_______.答案:10211.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n+1的式子应进行合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项. [小题纠偏]1.设f (n )=2+24+27+210+…+23n +10(n ∈N *),则f (3)=________.答案:27(87-1)2.已知数列{a n }的前n 项和为S n 且a n =n ·2n ,则S n =________. 答案:(n -1)2n +1+2考点一 分组转化法求和(重点保分型考点——师生共研)[典例引领](2019·浙江三地联考)在数列{a n }中,a 1=3,a n =2a n -1+n -2(n ≥2,且n ∈N *). (1)求a 2,a 3的值;(2)证明:数列{a n +n }是等比数列,并求{a n }的通项公式; (3)求数列{a n }的前n 项和S n . 解:(1)a 2=2a 1=6, a 3=2a 2+1=13.(2)证明:当n ≥2时,a n +n a n -1+(n -1)=2a n -1+n -2+n a n -1+n -1=2,所以数列{a n +n }是以a 1+1=4为首项,2为公比的等比数列. 所以a n +n =4×2n -1=2n +1,所以a n =2n +1-n .(3)S n =(22+23+…+2n +1)-(1+2+…+n )=22(1-2n )1-2-n (n +1)2=2n +2-n (n +1)2-4.[由题悟法]分组转化法求和的常见类型[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[即时应用](2018·嘉兴模拟)已知数列{a n }的前n 项和S n ,满足S n =n (n -6),数列{b n }满足b 2=3,b n +1=3b n (n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)记数列{c n }满足c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n,n 为偶数,求数列{c n }的前n 项和T n .解:(1)当 n =1时,a 1=S 1=-5,当n ≥2时, a n =S n -S n -1=n 2-6n -(n -1)2+6(n -1)=2n -7, ∵n =1适合上式,∴a n =2n -7(n ∈N *).∵b n +1=3b n (n ∈N *)且b 2≠0,∴b n +1b n =3,(n ∈N *).∴{b n }为等比数列,∴b n =3n -1(n ∈N *).(2)由(1)得,c n =⎩⎪⎨⎪⎧2n -7,n 为奇数,3n -1,n 为偶数当n 为偶数时,T n =c 1+c 2+…+c n =n 2(-5+2n -9)2+3(1-9n2)1-9=n (n -7)2+3(3n -1)8.当n 为奇数时:T n =c 1+c 2+…+c n =n +12(-5+2n -7)2+3(1-9n -12)1-9=(n +1)(n -6)2+3(3n -1-1)8. 综上所述:T n=⎩⎨⎧n (n -7)2+3(3n -1)8,n 为偶数,(n +1)(n -6)2+3(3n -1-1)8,n 为奇数.考点二 错位相减法求和(重点保分型考点——师生共研)[典例引领](2018·海宁期初)已知正项等比数列{a n }(n ∈N *),首项a 1=3,前n 项和为S n ,且S 3+a 3、S 5+a 5、S 4+a 4成等差数列.(1)求数列{a n }的通项公式; (2)求数列{nS n }的前n 项和T n . 解:(1)依题意,设a n =3q n -1,因为S 3+a 3、S 5+a 5、S 4+a 4成等差数列, 所以2(S 5+a 5)=(S 3+a 3)+(S 4+a 4),即2(a 1+a 2+a 3+a 4+2a 5)=(a 1+a 2+2a 3)+(a 1+a 2+a 3+2a 4), 化简得4a 5=a 3,从而4q 2=1,解得q =12(负值舍去),故a n =62n .(2)由(1)知S n =6⎝⎛⎭⎫1-12n , 所以T n =6⎝⎛⎭⎫1-12+6⎝⎛⎭⎫2-222+6⎝⎛⎭⎫3-323+…+6⎝⎛⎭⎫n -n 2n , 即T n =3n (n +1)-6⎝⎛⎭⎫12+222+323+…+n 2n . 令R n =12+222+323+…+n 2n ,则2R n =1+22+322+…+n 2n -1,两式相减得R n =1+12+122+123+…+12n -1-n 2n =2-n +22n .所以T n =3n (n +1)-6R n =3n (n +1)-12+3(n +2)2n -1. [由题悟法]用错位相减法求和的3个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[即时应用](2017·天津高考)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n ,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.故T n =3n -23×4n +1+83.所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83. 考点三 裂项相消法求和(题点多变型考点——多角探明) [锁定考向]裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.常见的命题角度有: (1)形如a n =1n (n +k )型;(2)形如a n =1n +k +n型;(3)形如a n =n +1n 2(n +2)2型.[题点全练]角度一:形如a n =1n (n +k )型1.(2018·温州十校联考)已知数列{a n }是等差数列,a 1+a 2+a 3=6,a 5=5. (1)求数列{a n }的通项公式; (2)若b n =1a n ·a n +1(n ∈N *),求数列{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d . ∵a 1+a 2+a 3=6,a 5=5,∴⎩⎪⎨⎪⎧3a 1+3d =6,a 1+4d =5, 解得a 1=1,d =1. ∴a n =n . (2)∵b n =1a n ·a n +1=1n (n +1)=1n -1n +1, ∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=n n +1, 即数列{b n }的前n 项和S n =nn +1. 角度二:形如a n =1n +k +n型2.(2018·江南十校联考)已知函数f (x )=x α的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=( )A. 2 016-1B. 2 017-1C. 2 018-1D. 2 018+1解析:选C 由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017-2 016)+( 2 018- 2 017)= 2 018-1.角度三:形如a n =n +1n 2(n +2)2型3.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ; (2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n .于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n ,故b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=116⎣⎡⎦⎤1n 2-1(n +2)2. T n =116⎣⎡1-132+122-142+132-152+…+1(n -1)2-1(n +1)2+⎦⎤1n 2-1(n +2)2=116⎣⎡⎦⎤1+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564.[通法在握]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1,1a n a n +2=12d ⎝⎛⎭⎫1a n -1a n +2.[演练冲关](2018·江山模拟)已知数列{a n }的前n 项和为S n =n 2an +b ,若a 1=12,a 2=56.(1)求数列{a n }的前n 项和S n ; (2)求数列{a n }的通项公式a n ; (3)设b n =a nn 2+n -1,求数列{b n }的前n 项和T n .解:(1)由a 1=12,a 2=56,可得⎩⎨⎧1a +b =12,12a +b =13,解得⎩⎪⎨⎪⎧a =1,b =1.所以S n =n 2n +1.(2)当n ≥2时,a n =S n -S n -1=n 2n +1-(n -1)2n =n 2+n -1n (n +1).因为n =1时,S 1=a 1=12成立.所以a n =n 2+n -1n (n +1).(3)由(2)知b n =a n n 2+n -1=1n (n +1)=1n -1n +1.所以T n =b 1+b 2+…+b n =1-12+12-13+…+1n -1-1n +1n -1n +1=1-1n +1=n n +1.考点四 数列与不等式的综合问题(重点保分型考点——师生共研)[典例引领](2019·宁波模拟)已知数列{a n }满足a 1=1,a n +1=a n1+a 2n,n ∈N *.记S n ,T n 分别是数列{a n }和{a 2n }的前n 项和,证明:(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1; (3)2n -1<S n <2n . 证明:(1)由a 1=1及a n +1=a n1+a 2n知a n >0, 所以a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, 即a n +1<a n .(2)由a n +1=a n 1+a 2n,得1a n +1=1+a 2n a n =1a n +a n , 两边平方可得1a 2n +1=1a 2n +a 2n +2,所以1a 2n +1-1a 2n-2=a 2n . 所以T n =a 21+a 22+…+a 2n =⎝⎛⎭⎫1a 22-1a 21-2+⎝⎛⎭⎫1a 23-1a 22-2+…+⎝⎛⎭⎫1a 2n +1-1a 2n -2=1a 2n +1-2n -1.(3)由(2)知1a n +1-1a n =a n , 所以S n =a 1+a 2+…+a n =⎝⎛⎭⎫1a 2-1a 1+⎝⎛⎭⎫1a 3-1a 2+…+⎝⎛⎭⎫1a n +1-1a n =1a n +1-1a 1. 因为1a 2n +1=a 21+a 22+…+a 2n +1+2n ≥2n +2, 所以1a n +1≥2n +2,所以S n =1a n +1-1a 1≥2n +2-1>2n -1. 又1a n +1≥2n +2,所以1a n ≥2n (n ≥2),所以当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1), 累加可得S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n . 当n =1时,S n <2n 成立. 综上,2n -1<S n <2n .[由题悟法](1)数列的项的大小比较时,可以根据数列的性质,结合数列的单调性进行推理计算,也可以直接利用作差的方式,通过构造差值的正负判断数列项的大小;(2)证明数列不等式成立与否,通常与放缩法有关,通过对数列的通项的局部放缩,构造等比数列和的形式或裂项相消的模型,然后证明不等式成立.[即时应用](2018·浙江三地联考)已知数列{a n }满足a n =nt +1(n ,t ∈N *,t ≥3,n ≤t ),证明: (1)a n <e a n -1(e 为自然对数底数); (2)1a 1+1a 2+…+1a n >(t +1)ln(n +1); (3)(a 1)t +(a 2)t +(a 3)t +…+(a n )t <1.证明:(1)设f (x )=e x -1-x ,则f ′(x )=e x -1-1,当x ∈(0,1)时,f ′(x )<0,即f (x )在(0,1)上单调递减. 因为0<a n =n t +1≤t t +1<1, 所以f (a n )=e a n -1-a n >f (1)=0,即a n <e a n -1.(2)要证不等式成立,即证1(t +1)a 1+1(t +1)a 2+…+1(t +1)a n >ln(n +1),只需证1+12+13+…+1n >ln(n +1).设g (x )=x -ln(x +1), 则g ′(x )=1-1x +1=x x +1. 因为当x >0时,g ′(x )>0, 即g (x )在(0,+∞)上单调递增, 所以g (x )=x -ln(x +1)>g (0)=0, 即x >0时,有x >ln(x +1),所以1+12+13+…+1n >ln 2+ln 32+ln 43+…+ln n +1n =ln(n +1),所以1a 1+1a 2+…+1a n>(t +1)ln(n +1).(3)因为(a 1)t +(a 2)t +(a 3)t +…+(a n )t <(e a 1-1)t +(e a 2-1)t +(e a 3-1)t +…+(e a n -1)t =e -t 2t +1(1-e tn t +1)1-e t t +1≤e -t 2t +1(1-e t 2t +1)1-e t t +1=e -t 2t +1-11-et t +1设e t t +1=q ,则q =e t t +1≥e 34>2,所以e -t 2t +1-11-et t +1=q -t -11-q =1-q -t q -1<1q -1<1, 所以(a 1)t +(a 2)t +(a 3)t +…+(a n )t <1.一抓基础,多练小题做到眼疾手快1.(2019·浦江模拟)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A .2B .3C .4D .5解析:选B 由题可得,偶数项之和减去奇数项之和为30-15=5d ,解得公差d =3. 2.(2019·奉化模拟)若数列{a n }的通项公式为a n =2n +2n -1,则该数列的前10项和为( )A .2 146B .1 122C .2 148D .1 124解析:选A 因为a n =2n+2n -1,所以前n 项和S n =2(1-2n )1-2+n (2n -1+1)2=2n +1+n 2-2,所以前10项和S 10=211+102-2=2 146.3.(2018·江西新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( )A .-200B .-100C .200D .100解析:选D 根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100,故选D.4.(2019·江山模拟)在等差数列{a n }中,若a 3+a 5+a 7=6,a 11=8,则数列⎩⎨⎧⎭⎬⎫1a n +3a n +4的前n 项和S n =( )A.n +1n +2B.n n +1C.n n +2D.2n n +1解析:选B 设等差数列{a n }的公差为d ,由a 3+a 5+a 7=6,a 11=8,得a 5=2,d =1,所以a n =n -3.则a n +3=n ,a n +4=n +1,所以1a n +3a n +4=1n (n +1)=1n -1n +1.所以S n =1-1n +1=nn +1. 5.(2018·杭州模拟)已知等差数列{a n }满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N*),数列{b n }的前n 项和为S n ,则S 100的值为________.解析:因为a 3=7,a 5+a 7=26,所以公差d =2, 所以a n =a 3+2(n -3)=2n +1. 所以b n =1a 2n -1=1(2n +1)2-1=14n (n +1)=14⎝⎛⎭⎫1n -1n +1.所以S 100=b 1+b 2+…+b 100=14⎝⎛⎭⎫1-12+12-13+…+1100-1101=25101.答案:25101二保高考,全练题型做到高考达标1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5 B.3116或5 C.3116D.158解析:选C 设{a n }的公比为q ,显然q ≠1,由题意得9(1-q 3)1-q =1-q 61-q,所以1+q 3=9,得q =2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,前5项和为1-⎝⎛⎭⎫1251-12=3116.2.已知数列{a n }中,若a n +1=a n +a n +2(n ∈N *),则称数列{a n }为“凸数列”.已知数列{b n }为“凸数列”,且b 1=1,b 2=-2,则数列{b n }的前2 019项和为( )A .5B .-4C .0D .-2解析:选B 因为数列{b n }为“凸数列”,且b 1=1,b 2=-2,所以b 3=b 2-b 1=-3,b 4=b 3-b 2=-1,b 5=b 4-b 3=2,b 6=b 5-b 4=3,b 7=b 6-b 5=1,所以数列{b n }是以6为周期的周期数列.且b 1+b 2+b 3+b 4+b 5+b 6=0,所以数列{b n }的前2 019项和S 2 019=S 3=1-2-3=-4.3.(2018·绍兴模拟)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( )A .5B .6C .7D .16解析:选C 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.故选C. 4.已知数列{a n }的通项公式是a n =n 2sin ⎝⎛⎭⎫2n +12π,则a 1+a 2+a 3+…+a 2 018=( ) A.2 017×2 0182B.2 018×2 0192C.2 017×2 0172D.2 018×2 0182解析:选B a n =n 2sin ⎝⎛⎭⎫2n +12π=⎩⎪⎨⎪⎧-n 2,n 为奇数,n 2,n 为偶数,∴a 1+a 2+a 3+…+a 2 018=-12+22-32+42-…-2 0172+2 0182=(22-12)+(42-32)+…+(2 0182-2 0172)=1+2+3+4+…+2 018=2 018×2 0192. 5.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项为2n ,则数列{a n }的前n 项和S n =( )A .2B .2nC .2n +1-2D .2n -1-2解析:选C ∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n-1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n,∴S n =2-2n +11-2=2n +1-2.故选C.6.(2018·嘉兴模拟)设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1()n ∈N *,则a 1a 2+a 2a 3+…+a 100a 101的值为____________.解析:因为()1-a n +1(1+a n )=1,所以a n -a n +1=a n a n +1.所以有1a n +1-1a n=1, 即数列⎩⎨⎧⎭⎬⎫1a n 是公差为1,首项为1的等差数列,所以1a n=n .所以a n =1n .因为a n -a n +1=a n a n +1,所以a 1a 2+a 2a 3+…+a 100a 101=a 1-a 2+a 2-a 3+…+a 100-a 101=a 1-a 101=1-1101=100101. 答案:1001017.已知数列:112,214,318,…,⎝⎛⎭⎫n +12n ,…,则其前n 项和关于n 的表达式为________. 解析:设所求的前n 项和为S n ,则S n =(1+2+3+…+n )+⎝⎛⎭⎫12+14+…+12n =n (n +1)2+12⎝⎛⎭⎫1-12n 1-12=n (n +1)2-12n +1. 答案:n (n +1)2-12n +1 8.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n =________.解析:∵a 2n +1-6a 2n =a n +1a n ,∴(a n +1-3a n )(a n +1+2a n )=0, ∵a n >0,∴a n +1=3a n ,又a 1=2,∴数列{a n }是首项为2,公比为3的等比数列, ∴S n =2(1-3n )1-3=3n -1.答案:3n -19.(2019·杭州五校联考)已知等差数列{a n }的前n 项和为S n ,S 5=35,a 5和a 7的等差中项为13.(1)求a n 及S n ; (2)令b n =4a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差为d , 因为S 5=5a 3=35,a 5+a 7=26,所以⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2.所以a n =3+2(n -1)=2n +1, S n =n (3+2n +1)2=n 2+2n . (2)因为a n =2n +1, 所以b n =4a 2n -1=1n (n +1)=1n -1n +1, 所以T n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=n n +1. 10.(2018·宁波模拟)数列{a n }中,a 1=12,a n +1=a 2na 2n -a n +1,n ∈N *.(1)求证:a n +1<a n ;(2)记数列{a n }的前n 项和为S n ,求证:S n <1.证明:(1)因为a 2n -a n +1=⎝⎛⎭⎫a n -122+34>0,且a 1=12>0,所以a n >0.所以a n +1-a n =a 2na 2n -a n +1-a n =-a n (a n -1)2a 2n -a n +1<0,所以a n +1<a n . (2)因为a n +1=a 2n a 2n -a n +1,所以a n =a 2n -1a 2n -1-a n -1+1=11-1a n -1+1a 2n -1<1-1a n -1+1a 2n -1=11a n -1⎝⎛⎭⎫1a n -1-1=11a n -1-1-11a n -1=-a n -1+1-1a n -2+1a 2n -2=-a n -1-a n -2+1-1a n -3+1a 2n -3=…=-a n -1-a n -2-…-a 1+11a 1-1=1-a n -1-a n -2-…-a 1.所以S n =a 1+a 2+…+a n < 1.三上台阶,自主选做志在冲刺名校1.(2018·云南师大附中检测)已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________.解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,∴a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,∵a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,∴a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2892.(2019·萧山适考)已知数列{a n }的前n 项和为S n ,对一切正整数n ,点P n (n ,S n )都在函数f (x )=x 2+2x 的图象上,且过点P n (n ,S n )的切线的斜率为k n .(1)求数列{a n }的通项公式;(2)若b n =2k n a n ,求数列{b n }的前n 项和T n .解:(1)因为点P n (n ,S n )都在函数f (x )=x 2+2x 的图象上,所以S n =n 2+2n (n ∈N *),当n ≥2时,a n =S n -S n -1=2n +1; 当n =1时,a 1=S 1=3满足上式, 所以数列{a n }的通项公式a n =2n +1. (2)由f (x )=x 2+2x ,得f ′(x )=2x +2. 因为过点P n (n ,S n )的切线的斜率为k n , 所以k n =2n +2,所以b n =2k n a n =(2n +1)4n +1.所以T n =3×42+5×43+7×44+…+(2n +1)×4n +1,①4T n =3×43+5×44+…+(2n +1)×4n +2,②①-②,得-3T n =3×42+2×()43+44+…+4n +1-(2n +1)×4n +2=48+2×43(1-4n -1)1-4-(2n +1)×4n +2,所以T n =6n +19·4n +2-169. 第五节数学归纳法数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.[小题体验]1.(教材习题改编)在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于________.答案:32.(教材习题改编)用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1)”.当验证n =1时,上式左端计算所得为________.答案:1+a +a 21.数学归纳法证题时初始值n 0不一定是1.2.推证n =k +1时一定要用上n =k 时的假设,否则不是数学归纳法.3.解“归纳——猜想——证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础.否则将会做大量无用功.[小题纠偏]判断正误(请在括号中打“√”或“×”).(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( ) (2)所有与正整数有关的数学命题都必须用数学归纳法证明.( ) (3)用数学归纳法证明问题时,归纳假设可以不用.( )(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )(5)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( )答案:(1)× (2)× (3)× (4)× (5)√考点一 用数学归纳法证明等式(基础送分型考点——自主练透)[题组练透]1.(易错题)用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)=n 4(n +1)(n ∈N *).证明:(1)当n =1时, 左边=12×1×(2×1+2)=18,右边=14(1+1)=18,左边=右边,所以等式成立. (2)假设n =k (k ∈N *)时等式成立,即有 12×4+14×6+16×8+…+12k (2k +2)=k 4(k +1), 则当n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+12(k +1)[2(k +1)+2]=k 4(k +1)+14(k +1)(k +2)=k (k +2)+14(k +1)(k +2)=(k +1)24(k +1)(k +2) =k +14(k +2)=k +14(k +1+1).所以当n =k +1时,等式也成立.由(1)(2)可知,对于一切n ∈N *等式都成立.2.设f (n )=1+12+13+…+1n (n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).证明:(1)当n =2时,左边=f (1)=1,右边=2⎝⎛⎭⎫1+12-1=1,左边=右边,等式成立. (2)假设n =k (k ≥2,k ∈N *)时,结论成立,即 f (1)+f (2)+…+f (k -1)=k [f (k )-1], 那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k ) =(k +1)f (k )-k =(k +1)⎣⎡⎦⎤f (k +1)-1k +1-k=(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1], ∴当n =k +1时结论仍然成立.由(1)(2)可知:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).[谨记通法]用数学归纳法证明等式应注意的2个问题(1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,以及初始值n 0的值.(2)由n =k 到n =k +1时,除考虑等式两边变化的项外还要充分利用n =k 时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.考点二 用数学归纳法证明不等式(重点保分型考点——师生共研)[典例引领]已知函数f (x )=x -32x 2,设0<a 1<12,a n +1=f (a n ),n ∈N *,证明:a n <1n +1.证明:(1)当n =1时,0<a 1<12,显然结论成立.因为当x ∈⎝⎛⎭⎫0,12时,0<f (x )≤16, 所以0<a 2=f (a 1)≤16<13.故n =2时,原不等式也成立. (2)假设当n =k (k ≥2,k ∈N *)时, 不等式0<a k <1k +1成立. 因为f (x )=x -32x 2的对称轴为直线x =13,所以当x ∈⎝⎛⎦⎤0,13时,f (x )为增函数. 所以由0<a k <1k +1≤13, 得0<f (a k )<f ⎝⎛⎭⎫1k +1.于是,0<a k +1=f (a k )<1k +1-32·1(k +1)2+1k +2-1k +2=1k +2-k +42(k +1)2(k +2)<1k +2. 所以当n =k +1时,原不等式也成立. 根据(1)(2),知对任何n ∈N *,不等式a n <1n +1成立. [由题悟法]用数学归纳法证明不等式应注意的2个问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等证明.[即时应用](2017·浙江新高考联盟)数列{a n }满足a 1=1,a n +1=⎝⎛⎭⎫1+1n 2+n a n (n ∈N *).证明:(1)a n +1>a n ; (2)2n n +1≤a n ≤e n n +1. 证明:(1)用数学归纳法证明a n >0. ①当n =1时,a 1=1>0;②假设当n =k (k ≥1,k ∈N *)时,a k >0, 则当n =k +1时,a k +1=⎝⎛⎭⎫1+1k 2+k a k >0.综上可知,当n ∈N *时,a n >0. 所以a n +1=⎝⎛⎭⎫1+1n 2+n a n >a n . (2)用数学归纳法证明a n ≥2nn +1. ①当n =1时,a 1=1≥21+1; ②假设当n =k (k ≥1,k ∈N *)时,a k ≥2kk +1,则当n =k +1时,a k +1=⎝⎛⎭⎫1+1k 2+k a k ≥2(k 2+k +1)(k +1)2≥2(k +1)k +2.综上可知,当n ∈N *时,a n ≥2nn +1.由a n +1=⎝⎛⎭⎫1+1n 2+n a n ,得ln a n +1-ln a n =ln ⎝⎛⎭⎫1+1n 2+n ≤1n 2+n =1n -1n +1,所以ln a n ≤1-1n ≤1-ln ⎝⎛⎭⎫1+1n =ln e n n +1. 所以a n ≤e nn +1. 综上可知,当n ∈N *时,2n n +1≤a n ≤e nn +1.考点三 归纳—猜想—证明(重点保分型考点——师生共研)[典例引领]已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n -1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.解:(1)当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0. ∴a 1=3-1(a 1>0).当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0). 同理可得a 3=7- 5.猜想a n =2n +1-2n -1(n ∈N *).(2)证明:①由(1)知,当n=1,2,3时,通项公式成立.②假设当n=k(k≥3,k∈N*)时,通项公式成立,即a k=2k+1-2k-1.由于a k+1=S k+1-S k=a k+12+1a k+1-a k2-1a k,将a k=2k+1-2k-1代入上式,整理得a2k+1+22k+1a k+1-2=0,∴a k+1=2k+3-2k+1,即n=k+1时通项公式成立.由①②可知对所有n∈N*,a n=2n+1-2n-1都成立.[由题悟法]“归纳—猜想—证明”的3步曲(1)计算:根据条件,计算若干项.(2)归纳猜想:通过观察、分析、综合、联想,猜想出一般结论.(3)证明:用数学归纳法证明.[即时应用](2018·常德模拟)设a>0,f(x)=axa+x,令a1=1,a n+1=f(a n),n∈N*.(1)写出a2,a3,a4的值,并猜想数列{a n}的通项公式;(2)用数学归纳法证明你的结论.解:(1)∵a1=1,∴a2=f(a1)=f(1)=a1+a;a3=f(a2)=a·a1+aa+a1+a=a2+a;a4=f(a3)=a·a2+aa+a2+a=a3+a.猜想a n=a(n-1)+a(n∈N*).(2)证明:①易知,n=1时,猜想正确.②假设n=k(k≥1且k∈N*)时猜想正确,即a k =a(k -1)+a,则a k +1=f (a k )=a ·a ka +a k=a ·a (k -1)+a a +a (k -1)+a =a(k -1)+a +1=a[(k +1)-1]+a.这说明,n =k +1时猜想正确. 由①②知,对于任何n ∈N *, 都有a n =a(n -1)+a.一保高考,全练题型做到高考达标1.若f (n )=1+12+13+…+16n -1(n ∈N *),则f (1)为( )A .1B.15C .1+12+13+14+15D .非以上答案解析:选C 等式右边的分母是从1开始的连续的自然数,且最大分母为6n -1,则当n =1时,最大分母为5,故选C.2.利用数学归纳法证明“(n +1)(n +2) …(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1解析:选B 当n =k (k ∈N *)时, 左式为(k +1)(k +2) ·…·(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1), 则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1).3.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,利用归纳法假设证明n =k +1时,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3解析:选A 假设n =k 时,原式k 3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只须将(k +3)3展开,让其出现k 3即可.4.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( ) A .n +1 B .2nC.n 2+n +22D .n 2+n +1解析:选C 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域.5.用数学归纳法证明1+2+3+…+n 2=n 4+ n 22,则当n =k +1时左端应在n =k 的基础上加上的项为______________.解析:当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2, 则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2. 答案:(k 2+1)+(k 2+2)+…+(k +1)26.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有:(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =________.解析:由(S 1-1)2=S 21得,S 1=12; 由(S 2-1)2=(S 2-S 1)S 2得,S 2=23;由(S 3-1)2=(S 3-S 2)S 3得,S 3=34.猜想S n =n n +1. 答案:n n +17.用数学归纳法证明等式12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2.证明:(1)当n =1时,左边=12=1, 右边=(-1)0×1×(1+1)2=1,左边=右边,原等式成立. (2)假设n =k (k ∈N *)时,等式成立,即有12-22+32-42+…+(-1)k -1·k 2=(-1)k-1·k (k +1)2.那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2=(-1)k-1k (k +1)2+(-1)k ·(k +1)2 =(-1)k ·k +12[-k +2(k +1)]=(-1)k (k +1)(k +2)2.∴n =k +1时,等式也成立,由(1)(2)知对任意n ∈N *有12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2.8.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n 1-4a 2n(n ∈N *),且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. 解:(1)由题意得a 1=1,b 1=-1, b 2=-11-4×1=13,a 2=1×13=13,∴P 2⎝⎛⎭⎫13,13.∴直线l 的方程为y +113+1=x -113-1,即2x +y =1.(2)证明:①当n =1时, 2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ≥1且k ∈N *)时, 2a k +b k =1成立.则2a k +1+b k +1=2a k ·b k +1+b k +1=b k1-4a2k·(2a k+1)=b k1-2a k=1-2a k1-2a k=1,∴当n=k+1时,2a k+1+b k+1=1也成立.由①②知,对于n∈N*,都有2a n+b n=1,即点P n在直线l上.9.(2019·宁波模拟)已知三个数列{a n},{b n},{c n},满足a1=-1110,b1=1,a n+1=|a n-1|+a2n-2a n+52,b n+1=2b n+1,c n=ab n,n∈N*.(1)证明:当n≥2时,a n>1;(2)是否存在集合[a,b],使得c n∈[a,b]对任意n∈N*成立,若存在,求出b-a的最小值;若不存在,请说明理由.解:(1)证明:下面用数学归纳法证明:当n≥2时,a n>1.①当n=2时,由a1=-1110,a n+1=|a n-1|+a2n-2a n+52,得a2=52,显然成立;②假设当n=k时命题成立,即a k>1.则当n=k+1时,a k+1=a k-1+a2k-2a k+52,于是a k+1-1=a k-3+a2k-2a k+52.因为()a2k-2a k+52-(3-a k)2=4(a k-1)>0.所以a k+1>1,即当n=k+1时命题成立.由①②可知,当n≥2时,a n>1.(2)由b n+1=2b n+1,b1=1,得b n+1+1=2(b n+1),所以数列{b n+1}是首项为b1+1=2,公比为2的等比数列,所以b n+1=2n,从而b n=2n-1.由(1)知,当n≥2时,a n>1,所以,当n≥2时,a n+1-a n=a2n-2a n+5-(1+a n)2.因为(a2n-2a n+5)2-(1+a n)2=4(1-a n)<0,所以a n+1<a n.综上,当n≥2时,1<a n+1<a n.由a1=-1110,a n+1=f(a n)(n∈N *),cn=ab n,得c 1=a 1=-1110,a 2=52,a 3=2, 所以c 1<1,c 2=a 3=2>c 3> (1)从而存在集合[a ,b ],使得c n ∈[a ,b ]对任意n ∈N *成立. 当b =c 2=a 3=2,a =c 1=-1110时,b -a 的最小值为c 2-c 1=3110. 二上台阶,自主选做志在冲刺名校1.设等差数列{a n }的公差d >0,且a 1>0.记T n =1a 1a 2+1a 2a 3+…+1a n a n +1. (1)用a 1,d 分别表示T 1,T 2,T 3,并猜想T n ; (2)用数学归纳法证明你的猜想. 解:(1)T 1=1a 1a 2=1a 1(a 1+d ); T 2=1a 1a 2+1a 2a 3=⎝⎛⎭⎫1a 1-1a 2+1a 2-1a 3×1d=⎝⎛⎭⎫1a 1-1a 1+2d ×1d =2a 1(a 1+2d ); T 3=1a 1a 2+1a 2a 3+1a 3a 4=⎝⎛⎭⎫1a 1-1a 2+1a 2-1a 3+1a 3-1a 4×1d =⎝⎛⎭⎫1a 1-1a 1+3d ×1d =3a 1(a 1+3d ). 由此可猜想:T n =na 1(a 1+nd ).(2)证明:①当n =1时,T 1=1a 1(a 1+d )结论成立.②假设当n =k (k ∈N *)时结论成立,即T k =ka 1(a 1+kd ).则当n =k +1时,T k +1=T k +1a k +1a k +2=k a 1(a 1+kd )+1(a 1+kd )[a 1+(k +1)d ]=(k +1)(a 1+kd )a 1(a 1+kd )[a 1+(k +1)d ]=k +1a 1[a 1+(k +1)d ].即n =k +1时,结论成立. 由①②可知,T n =na 1(a 1+nd )对于一切n ∈N *恒成立.2.(2018·浙江名校协作体联考)已知无穷数列{a n }的首项a 1=12,1a n +1=12⎝⎛⎭⎫a n +1a n ,n ∈N *.(1)证明:0<a n <1;(2)记b n =(a n -a n +1)2a n a n +1,T n 为数列{b n }的前n 项和,证明:对任意正整数n ,T n <310.证明:(1)①当n =1时显然成立;②假设当n =k 时不等式成立,即0<a k <1. 则当n =k +1时,1a k +1=12⎝⎛⎭⎫a k +1a k >12×2a k 1a k=1,所以0<a k +1<1,即当n =k +1时不等式也成立. 综上可知,0<a n <1对任意n ∈N *成立. (2)因为a n +1a n =2a 2n +1>1,即a n +1>a n ,所以数列{a n }为递增数列.又1a n-1a n +1=1a n -12⎝⎛⎭⎫a n +1a n =12⎝⎛⎭⎫1a n -a n , 易知⎩⎨⎧⎭⎬⎫1a n-a n 为递减数列,所以⎩⎨⎧⎭⎬⎫1a n-1a n +1也为递减数列.所以当n ≥2时,1a n -1a n +1≤12⎝⎛⎭⎫1a 2-a 2=12⎝⎛⎭⎫54-45=940, 所以当n ≥2时,b n =(a n -a n +1)2a n a n +1=(a n +1-a n )⎝⎛⎭⎫1a n -1a n +1≤940(a n +1-a n ).则当n =1时,T 1=b 1=940<310,成立; 当n ≥2时,T n =b 1+b 2+…+b n ≤940+940[(a 3-a 2)+(a 4-a 3)+…+(a n +1-a n )]=940+940(a n +1-a 2)<940+940⎝⎛⎭⎫1-45=27100<310. 综上,对任意正整数n ,T n <310.命题点一数列的概念及表示1.(2018·全国卷Ⅰ)记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=________. 解析:∵S n=2a n+1,∴当n≥2时,S n-1=2a n-1+1,∴a n=S n-S n-1=2a n-2a n-1,即a n=2a n-1.当n=1时,由a1=S1=2a1+1,得a1=-1.∴数列{a n}是首项a1为-1,公比q为2的等比数列,∴S n=a1(1-q n)1-q=-1(1-2n)1-2=1-2n,∴S6=1-26=-63. 答案:-632.(2014·全国卷Ⅱ)数列{a n}满足a n+1=11-a n,a8=2,则a1=________.解析:将a8=2代入a n+1=11-a n,可求得a7=12;再将a7=12代入a n+1=11-a n,可求得a6=-1;再将a6=-1代入a n+1=11-a n,可求得a5=2;由此可以推出数列{a n}是一个周期数列,且周期为3,所以a1=a7=1 2.答案:1 2命题点二等差数列与等比数列1.(2018·全国卷Ⅰ)记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=() A.-12 B.-10C.10 D.12解析:选B设等差数列{a n}的公差为d,由3S3=S2+S4,得3(3a1+3d)=2a1+d+4a1+6d,即3a1+2d=0.将a1=2代入上式,解得d=-3,故a5=a1+(5-1)d=2+4×(-3)=-10.2.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A.1盏B.3盏C.5盏D.9盏解析:选B每层塔所挂的灯数从上到下构成等比数列,记为{a n},则前7项的和S7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3.3.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.4.(2018·北京高考)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为________.解析:法一:设数列{a n }的公差为d .∵a 2+a 5=36,∴(a 1+d )+(a 1+4d )=2a 1+5d =36.∵a 1=3,∴d =6,∴a n =6n -3.法二:设数列{a n }的公差为d ,∵a 2+a 5=a 1+a 6=36,a 1=3,∴a 6=33,∴d =a 6-a 15=6,∴a n =6n -3.答案:a n =6n -35.(2016·浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1, ∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎫S n +12, ∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1, ∴S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432, ∴S 5=121. 答案:1 1216.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值. 解:(1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16, 所以当n =4时,S n 取得最小值,最小值为-16. 7.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)设{a n }的公比为q ,由题设得a n =q n -1.由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n-1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63,得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =1-2n 1-2=2n-1.由S m =63,得2m =64,解得m =6. 综上,m =6.8.(2018·浙江高考)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.解:(1)由a 4+2是a 3,a 5的等差中项, 得a 3+a 5=2a 4+4,所以a 3+a 4+a 5=3a 4+4=28, 解得a 4=8.由a 3+a 5=20,得8⎝⎛⎭⎫q +1q =20, 解得q =2或q =12.因为q >1,所以q =2.(2)设c n =(b n +1-b n )a n ,数列{c n }的前n 项和为S n .。

2020版高考数学浙江专用新精准大一轮精讲通用版课件:第六章 核心素养提升(六)


巧用分组妙求和 分组求和方法是分类与整合思想在数列求和问题中的具体体 现,其基本特点是把求和目标分成若干部分,先求出部分和, 再整合部分和的结果得出整体和.
(1)已知数列{an}满足 a1=1,an+1·an=2n(n∈N*),则 S2 018=________. (2)若数列{an}的通项公式为 an=22n+1,令 bn=(-1)n-1× lo4g(2annl+og12a)n+1,则数列{bn}的前 n 项和 Tn=________.
(2)由题意得 bn=(-1)n-1lo4g(2annl+og12a)n+1
=(-1)n-1(2n+4(1)n+(12)n+3)=(-1)n-12n1+1+2n1+3.
当 n 为偶数时,Tn=13+15-15+17+…+(2n1-1+2n1+1)- 2n1+1+2n1+3=13-2n1+3,当 n 为奇数时,Tn=13+15-15+17 +…-(2n1-1+2n1+1)+2n1+1+2n1+3=13+2n1+3, 所以 Tn=13-(-1)n2n1+3. 【答案】 (1)3×21 009-3 (2)13-(-1)n2n1+3
所以n+13是等差数列.一般地,Sn 是等差数列{an}的前 n 项 之和,则存在常数 c,使得nS+n c也是等差数列.
[拓展 3] 求a11a2+a21a3+…+ana1n+1的和.
【解】 由原题知 an=6n-2, 所以a11a2+a21a3+…+ana1n+1 =4×110+10×1 16+…+(6n-2)1(6n+4) =1614-110+110-116+…+6n1-2-6n1+4 =1614-6n1+4=4(6nn+4).
转―a化1―,成→d求
a1=4 d=6
⇒Sn=3n2+n.
(2)探索思路 分析→归纳→总结→解答的探索思路. (3)方法结论 ①将原问题变为:已知一个等差数列{an}的前 n 项之和为 Sn, 若 S10=310,S20=1 220,则 S30 的值为________. 首先想到结论(必修 5 P46B 组 T2)已知数列{an}是等差数列, Sn 是其前 n 项的和,求证 S6,S12-S6,S18-S12 也成等差数列; ②(必修 5 P68A 组 T10)在以 d 为公差的等差数列{an}中,设 S1 =a1+a2+…+an,S2=an+1+an+2+…+a2n,S3=a2n+1+a2n+2 +…+a3n,求证 S1,S2,S3 也是等差数列,并求其公差.

2020版高考数学新增分大一轮新高考专用讲义:第六章 6.2 等差数列及其前n项和 Word版含解析

§6.2 等差数列及其前n 项和最新考纲1.通过实例,理解等差数列的概念.2.探索并掌握等差数列的通项公式与前n 项和的公式.3.能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问题.4.体会等差数列与一次函数的关系.1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫Sn n 也是等差数列,其首项与{a n }的首项相同,公差为12d . 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.概念方法微思考1.“a ,A ,b 是等差数列”是“A =a +b 2”的什么条件?提示充要条件.2.等差数列的前n 项和S n 是项数n 的二次函数吗?提示不一定.当公差d =0时,S n =na 1,不是关于n 的二次函数.3.如何推导等差数列的前n 项和公式?提示利用倒序相加法.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×) (2)等差数列{a n }的单调性是由公差d 决定的.(√)(3)等差数列的前n 项和公式是常数项为0的二次函数.(×)(4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.(√)(5)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√)(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.(√)题组二教材改编2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于()A .31B .32C .33D .34答案B解析由已知可得⎩⎪⎨⎪⎧ a1+5d =2,5a1+10d =30,解得⎩⎨⎧ a1=263,d =-43,∴S 8=8a 1+8×72d =32.3.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=.答案180解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.题组三易错自纠4.一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d 的取值范围是()A .d >875B .d <325C.875<d <325D.875<d ≤325答案D解析由题意可得⎩⎪⎨⎪⎧ a10>1,a9≤1,即⎩⎨⎧ 125+9d>1,125+8d≤1,所以875<d ≤325.故选D. 5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =时,{a n }的前n 项和最大.答案8解析因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.6.一物体从1960m 的高空降落,如果第1秒降落4.90m ,以后每秒比前一秒多降落9.80m ,那么经过秒落到地面.答案20解析设物体经过t 秒降落到地面.物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列.所以4.90t +12t (t -1)×9.80=1960, 即4.90t 2=1960,解得t =20.题型一等差数列基本量的运算1.(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于()A .-12B .-10C .10D .12答案B解析设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3⎣⎡⎦⎤3a1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B.2.(2018·烟台模拟)设等差数列{a n }的前n 项和为S n ,若a 7=5,S 9=27,则a 20等于()A .17B .18C .19D .20答案B解析由等差数列的前n 项和公式可知S 9=9(a 1+a 9)2=9a 5=27,解得a 5=3,又由d =a7-a57-5=5-32=1,所以由等差数列的通项公式可得a 20=a 5+15d =3+15×1=18,故选B.思维升华 (1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,n ,d ,a n ,S n ,知道其中三个就能求出另外两个.(2)确定等差数列的关键是求出两个最基本的量,即首项a 1和公差d . 题型二等差数列的判定与证明例1在数列{a n }中,a 1=2,a n 是1与a n a n +1的等差中项.(1)求证:数列⎩⎨⎧⎭⎬⎫1an -1是等差数列,并求{}an 的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1n2an 的前n 项和S n . 解(1)∵a n 是1与a n a n +1的等差中项,∴2a n =1+a n a n +1,∴a n +1=2an -1an, ∴a n +1-1=2an -1an -1=an -1an, ∴1an +1-1=an an -1=1+1an -1, ∵1a1-1=1, ∴数列⎩⎨⎧⎭⎬⎫1an -1是首项为1,公差为1的等差数列,∴1an -1=1+(n -1)=n ,∴a n =n +1n . (2)由(1)得1n2an =1n (n +1)=1n -1n +1, ∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=n n +1. 思维升华等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2.(3)通项公式法:得出a n =pn +q 后,再根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,再使用定义法证明数列{a n }为等差数列.跟踪训练1数列{a n }满足a n +1=an 2an +1,a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫1an 是等差数列; (2)求数列⎩⎨⎧⎭⎬⎫1an 的前n 项和S n ,并证明:1S1+1S2+…+1Sn >n n +1. (1)证明∵a n +1=an 2an +1, ∴1an +1=2an +1an ,化简得1an +1=2+1an ,即1an +1-1an=2, 故数列⎩⎨⎧⎭⎬⎫1an 是以1为首项,2为公差的等差数列.(2)解由(1)知1an=2n -1, 所以S n =n (1+2n -1)2=n 2,1Sn =1n2>1n (n +1)=1n -1n +1. 证明:1S1+1S2+…+1Sn =112+122+…+1n2>11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =1-1n +1=n n +1.题型三等差数列性质的应用命题点1等差数列项的性质例2(2018·上饶模拟)已知{a n }为等差数列,a 2+a 8=18,则{a n }的前9项和S 9等于()A .9B .17C .72D .81答案D解析由等差数列的性质可得,a 1+a 9=a 2+a 8=18,则{a n }的前9项和S 9=9(a 1+a 9)2=9×182=81.故选D. 命题点2等差数列前n 项和的性质例3(1)(2019·漳州质检)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15等于()A .35B .42C .49D .63答案B解析在等差数列{a n }中,S 5,S 10-S 5,S 15-S 10成等差数列,即7,14,S 15-21成等差数列,所以7+(S 15-21)=2×14,解得S 15=42.(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2018,S2*******-S2*******=6,则S 2020=. 答案2020解析由等差数列的性质可得⎩⎨⎧⎭⎬⎫Sn n 也为等差数列.设其公差为d ,则S2*******-S2*******=6d =6,∴d =1. 故S2*******=S11+2019d =-2018+2019=1, ∴S 2020=1×2020=2020.思维升华等差数列的性质(1)项的性质:在等差数列{a n }中,m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 2n -1=(2n -1)a n .跟踪训练2(1)已知等差数列{a n },a 2=2,a 3+a 5+a 7=15,则数列{a n }的公差d 等于()A .0B .1C .-1D .2答案B解析∵a 3+a 5+a 7=3a 5=15,∴a 5=5,∴a 5-a 2=3=3d ,可得d =1,故选B.(2)(2019·莆田质检)设等差数列{a n }的前n 项和为S n ,若S 13>0,S 14<0,则S n 取最大值时n 的值为()A .6B .7C .8D .13答案B解析根据S 13>0,S 14<0,可以确定a 1+a 13=2a 7>0,a 1+a 14=a 7+a 8<0,所以可以得到a 7>0,a 8<0,所以S n 取最大值时n 的值为7,故选B.1.若{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d 等于()A .-2B .-12C.12D .2 答案B解析由于a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1,则a 1=1.又由a 3=a 1+2d =1+2d =0,解得d =-12.故选B. 2.在等差数列{a n }中,已知a 1=2,a 2+a 3+a 4=24,则a 4+a 5+a 6等于()A .38B .39C .41D .42答案D解析由a 1=2,a 2+a 3+a 4=24,可得,3a 1+6d =24,解得d =3,∴a 4+a 5+a 6=3a 1+12d =42.故选D.3.(2018·新乡模拟)已知等差数列{a n }中,a 1012=3,S 2017=2017,则S 2020等于()A .2020B .-2020C .-4040D .4040答案D解析由等差数列前n 项和公式结合等差数列的性质可得,S 2017=a1+a20172×2017=2a10092×2017=2017a 1009=2017, 则a 1009=1,据此可得,S 2020=a1+a20202×2020=1010()a1009+a1012=1010×4=4040. 4.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为()A .65B .176C .183D .184答案D解析根据题意可得每个孩子所得棉花的斤数构成一个等差数列{a n },其中d =17,n =8,S 8=996.由等差数列前n 项和公式可得8a 1+8×72×17=996, 解得a 1=65.由等差数列通项公式得a 8=65+(8-1)×17=184.5.已知数列{a n }是等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,给出下列结论:①a 10=0;②S 10最小;③S 7=S 12;④S 20=0.其中一定正确的结论是()A .①②B .①③④C .①③D .①②④答案C解析a 1+5(a 1+2d )=8a 1+28d ,所以a 1=-9d ,a 10=a 1+9d =0,正确;由于d 的符号未知,所以S 10不一定最大,错误;S 7=7a 1+21d =-42d ,S 12=12a 1+66d =-42d ,所以S 7=S 12,正确;S 20=20a 1+190d =10d ,错误.所以正确的是①③,故选C.6.在等差数列{a n }中,若a9a8<-1,且它的前n 项和S n 有最小值,则当S n >0时,n 的最小值为() A .14B .15C .16D .17答案C解析∵数列{a n }是等差数列,它的前n 项和S n 有最小值,∴公差d >0,首项a 1<0,{a n }为递增数列.∵a9a8<-1, ∴a 8·a 9<0,a 8+a 9>0,由等差数列的性质知,2a 8=a 1+a 15<0,a 8+a 9=a 1+a 16>0.∵S n =n (a 1+a n )2, ∴当S n >0时,n 的最小值为16.7.(2018·北京)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为.答案a n =6n -3(n ∈N *)解析方法一设公差为d .∵a 2+a 5=36,∴(a 1+d )+(a 1+4d )=36,∴2a 1+5d =36.∵a 1=3,∴d =6,∴通项公式a n =a 1+(n -1)d =6n -3(n ∈N *).方法二设公差为d ,∵a 2+a 5=a 1+a 6=36,a 1=3,∴a 6=33,∴d =a6-a15=6. ∵a 1=3,∴通项公式a n =6n -3(n ∈N *).8.(2019·三明质检)在等差数列{a n }中,若a 7=π2,则sin2a 1+cos a 1+sin2a 13+cos a 13=. 答案0解析根据题意可得a 1+a 13=2a 7=π,2a 1+2a 13=4a 7=2π,所以有sin2a 1+cos a 1+sin2a 13+cos a 13=sin2a 1+sin(2π-2a 1)+cos a 1+cos(π-a 1)=0.9.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,且Sn Tn =3n -12n +3,则a10b10=. 答案5641解析在等差数列中,S 19=19a 10,T 19=19b 10,因此a10b10=S19T19=3×19-12×19+3=5641. 10.(2018·湘潭模拟)已知数列{an +1-an}是公差为2的等差数列,且a 1=1,a 3=9,则a n =.答案(n 2-3n +3)2解析数列{an +1-an}是公差为2的等差数列,且a 1=1,a 3=9,∴an +1-an =(a2-1)+2(n -1),a3-a2=(a2-1)+2,∴3-a2=(a2-1)+2,∴a 2=1. ∴an +1-an =2n -2, ∴an =2(n -1)-2+2(n -2)-2+…+2-2+1=2×(n -1)n 2-2(n -1)+1=n 2-3n +3. ∴a n =(n 2-3n +3)2,n =1时也成立.∴a n =(n 2-3n +3)2.11.已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1an -1. (1)证明:数列{b n }是等差数列;(2)求数列{a n }的通项公式.(1)证明∵1an +1-1-1an -1=an -an +1(a n +1-1)(a n -1)=13, ∴b n +1-b n =13, ∴{b n }是等差数列.(2)解由(1)及b 1=1a1-1=12-1=1. 知b n =13n +23, ∴a n -1=3n +2,∴a n =n +5n +2. 12.(2018·全国Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值.解(1)设{a n }的公差为d ,由题意得3a 1+3d =-15.由a 1=-7得d =2.所以{a n }的通项公式为a n =a 1+(n -1)d =2n -9(n ∈N *).(2)由(1)得S n =a1+an 2·n =n 2-8n =(n -4)2-16. 所以当n =4时,S n 取得最小值,最小值为-16.13.(2018·佛山质检)已知等差数列{a n }的前n 项和为S n ,b n =且b 1+b 3=17,b 2+b 4=68,则S 10等于()A .90B .100C .110D .120答案A解析设{a n }公差为d ,b2+b4b1+b3=24312222a a a a ++=31312222a d a d a a ++++=2d =6817=4, ∴d =2,b 1+b 3=+=+122a d +=17, =1,a 1=0,∴S 10=10a 1+10×92d =10×92×2=90,故选A. 14.(2018·菏泽模拟)已知等差数列{a n }前n 项和为S n ,且S 6=-9,S 8=4,若满足不等式n ·S n ≤λ的正整数n 有且仅有3个,则实数λ的取值范围为____________.答案⎣⎡⎭⎫-54,-812 解析不妨设S n =An 2+Bn ,由S 6=-9,S 8=4,得⎩⎪⎨⎪⎧ 36A +6B =-9,64A +8B =4,则⎩⎪⎨⎪⎧ A =1,B =-152,所以nS n =n 3-152n 2,令f (x )=x 3-152x 2, 则f ′(x )=3x 2-15x =3x (x -5),易得数列{nS n }在1≤n ≤5,n ∈N *时单调递减;在n >5,n ∈N *时单调递增.令nS n =b n ,有b 3=-812,b 4=-56,b 5=-1252,b 6=-54,b 7=-492.若满足题意的正整数n 只有3个,则n 只能为4,5,6,故实数λ的取值范围为⎣⎡⎭⎫-54,-812.15.已知数列{a n }与⎩⎨⎧⎭⎬⎫a2n n 均为等差数列(n ∈N *),且a 1=2,则a 20=. 答案40解析设a n =2+(n -1)d ,所以a2n n =[2+(n -1)d ]2n=d2n2+(4d -2d 2)n +(d -2)2n, 由于⎩⎨⎧⎭⎬⎫a2n n 为等差数列, 所以其通项是一个关于n 的一次函数,所以(d -2)2=0,∴d =2.精选中小学试题、试卷、教案资料所以a 20=2+(20-1)×2=40.16.记m =d1a1+d2a2+…+dnan n,若{}dn 是等差数列,则称m 为数列{a n }的“d n 等差均值”;若{}dn 是等比数列,则称m 为数列{a n }的“d n 等比均值”.已知数列{a n }的“2n -1等差均值”为2,数列{b n }的“3n -1等比均值”为3.记c n =2an +k log 3b n ,数列{}cn 的前n 项和为S n ,若对任意的正整数n 都有S n ≤S 6,求实数k 的取值范围.解由题意得2=a1+3a2+…+(2n -1)a n n, 所以a 1+3a 2+…+(2n -1)a n =2n ,所以a 1+3a 2+…+(2n -3)a n -1=2n -2(n ≥2,n ∈N *),两式相减得a n =22n -1(n ≥2,n ∈N *). 当n =1时,a 1=2,符合上式,所以a n =22n -1(n ∈N *). 又由题意得3=b1+3b2+…+3n -1bn n, 所以b 1+3b 2+…+3n -1b n =3n , 所以b 1+3b 2+…+3n -2b n -1=3n -3(n ≥2,n ∈N *), 两式相减得b n =32-n (n ≥2,n ∈N *). 当n =1时,b 1=3,符合上式,所以b n =32-n (n ∈N *). 所以c n =(2-k )n +2k -1.因为对任意的正整数n 都有S n ≤S 6,所以⎩⎪⎨⎪⎧ c6≥0,c7≤0,解得135≤k ≤114.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(三十二) 等差数列及其前n 项和一抓基础,多练小题做到眼疾手快1.(2018·杭州模拟)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4.则数列{a n}的通项公式为( )A .a n =2n -1B .a n =-2n +3C .a n =2n -1或-2n +3D .a n =2n解析:选A 设数列{a n }的公差为d ,由a 3=a 22-4可得1+2d =(1+d )2-4,解得d =±2.因为数列{a n }是递增数列,所以d >0,故d =2.所以a n =1+2(n -1)=2n -1.2.(2018·舟山期末)在等差数列{a n }中,若a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .25解析:选B 因为a 2=1,a 4=5,所以S 5=5(a 1+a 5)2=5(a 2+a 4)2=15. 3.(2019·缙云模拟)已知{a n }为等差数列,其公差d 为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( )A .-110B .-90C .90D .110解析:选D 设数列{a n }的首项为a 1,因为a 7是a 3与a 9的等比中项,所以(a 1-12)2=(a 1-4)(a 1-16),解得a 1=20.所以S 10=10a 1+45d =200-90=110.4.(2019·腾远调研)我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:________日相逢?解析:由题意知,良马每日行的距离成等差数列,记为{a n },其中a 1=103,d 1=13;驽马每日行的距离成等差数列,记为{b n },其中b 1=97,d 2=-0.5.设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m (m -1)×132+97m +m (m -1)×(-0.5)2=2×1 125,解得m =9(负值舍去).即二马需9日相逢.答案:95.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5二保高考,全练题型做到高考达标1.(2018·金丽衢十二校联考)已知正项数列{a n }中,a 1=1,a 2=2,当n ≥2,n ∈N *时,a n =a 2n +1+a 2n -12,则a 6=( ) A .2 2 B .4 C .16D .45解析:选B 因为a n =a 2n +1+a 2n -12,所以2a 2n =a 2n +1+a 2n -1,即a 2n +1-a 2n =a 2n -a 2n -1,所以数列{a 2n }是等差数列,公差d =a 22-a 21=4-1=3,所以a 2n =1+3(n -1)=3n -2,所以a n =3n -2,所以a 6=18-2=4.2.(2018·浙江五校联考)等差数列{a n }中,a 1=0,等差d ≠0,若a k =a 1+a 2+…+a 7,则实数k =( )A .22B .23C .24D .25解析:选A 因为a 1=0,且a k =a 1+a 2+…+a 7, 即(k -1)d =21d ,又因为d ≠0,所以k =22.3.(2018·河南六市一联)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A.114 B.32 C.72D .1解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,又{a n }和{S n}都是等差数列,且公差相同,∴⎩⎨⎧d = d 2,a 1-d2=0,解得⎩⎨⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(2018·东阳模拟)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A nB n=7n +45n +3,则使得a nb n 为整数的正整数的个数为( )A .2B .3C .4D .5解析:选D 由A n B n =7n +45n +3,可得a n b n =A 2n -1B 2n -1=7n +19n +1=7+12n +1,所以要使a n b n为整数,则需12n +1为整数,所以n =1,2,3,5,11,共5个. 5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0, 解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.(2019·台州中学期中)已知等差数列{a n }的前n 项和为S n ,若a 2=18,S 18=54,则a 17=________,S n =__________.解析:设等差数列{a n }的首项为a 1,公差为d ,因为a 2=18,S 18=54,所以⎩⎪⎨⎪⎧a 1+d =18,18a 1+18×172d =54,解得a 1=20,d =-2.所以a 17=a 1+16d =20-32=-12,S n =na 1+n (n -1)2d =-n 2+21n .答案:-12 -n 2+21n7.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-788.(2018·金华浦江适考)设数列{a n },{b n }的前n 项和分别为S n ,T n ,其中a n =-3n +20,b n=|a n|,则使T n=S n成立的最大正整数n为________,T2 018+S2 018=________.解析:根据题意,数列{a n}中,a n=-3n+20,则数列{a n}是首项为17,公差为-3的等差数列,且当n≤6时,a n>0,当n≥7时,a n<0,又由b n=|a n|,当n≤6时,b n=a n,当n≥7时,b n=-a n,则使T n=S n成立的最大正整数为6,T2 018+S2 018=(a1+a2+…+a6+a7+a8+…+a2 018)+(b1+b2+…+b6+b7+b8+…+b2 018)=2(a1+a2+…+a6)=(17+2)×6=114.答案:61149.已知等差数列的前三项依次为a,4,3a,前n项和为S n,且S k=110.(1)求a及k的值;(2)设数列{b n}的通项b n=S nn,证明:数列{b n}是等差数列,并求其前n项和T n.解:(1)设该等差数列为{a n},则a1=a,a2=4,a3=3a,由已知有a+3a=8,得a1=a=2,公差d=4-2=2,所以S k=ka1+k(k-1)2·d=2k+k(k-1)2×2=k2+k.由S k=110,得k2+k-110=0,解得k=10或k=-11(舍去),故a=2,k=10.(2)证明:由(1)得S n=n(2+2n)2=n(n+1),则b n=S nn=n+1,故b n+1-b n=(n+2)-(n+1)=1,即数列{b n}是首项为2,公差为1的等差数列,所以T n=n(2+n+1)2=n(n+3)2.10.(2018·南昌调研)设数列{a n}的前n项和为S n,4S n=a2n+2a n-3,且a1,a2,a3,a4,a5成等比数列,当n≥5时,a n>0.(1)求证:当n≥5时,{a n}成等差数列;(2)求{a n}的前n项和S n.解:(1)证明:由4S n=a2n+2a n-3,4S n+1=a2n+1+2a n+1-3,得4a n+1=a2n+1-a2n+2a n+1-2a n,即(a n+1+a n)(a n+1-a n-2)=0.当n≥5时,a n>0,所以a n+1-a n=2,所以当n≥5时,{a n}成等差数列.(2)由4a1=a21+2a1-3,得a1=3或a1=-1,又a1,a2,a3,a4,a5成等比数列,所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(2018·浙江五校联考)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 为数列{a n }的前n 项和,则2S n +16a n +3的最小值为________.解析:设公差为d .因为a 1,a 3,a 13成等比数列,所以(1+2d )2=1+12d ,解得d =2.所以a n =2n -1,S n =n 2.所以2S n +16a n +3=2n 2+162n +2=n 2+8n +1.令t =n +1,则原式=t 2+9-2t t =t +9t -2.因为t ≥2,t ∈N *,所以当t =3,即n =2时,⎝ ⎛⎭⎪⎫2S n +16a n +3min=4.答案:42.已知数列{a n }满足a n +1+a n =4n -3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值; (2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3, ∴2dn +(2a 1-d )=4n -3, 即2d =4,2a 1-d =-3, 解得d =2,a 1=-12.法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1, ∴2d =a n +2-a n =(a n +2+a n +1)-(a n +1+a n ) =4n +1-(4n -3)=4, ∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=4×1-3=1,∴a 1=-12.(2)由题意,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n ) =2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52.②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7) =2n 2-3n 2.。

相关文档
最新文档