螺旋天线的设计与仿真研究

合集下载

基于HFSS的超宽带天线的仿真设计

基于HFSS的超宽带天线的仿真设计

基于HFSS的超宽带天线的仿真设计超宽带(Ultra-Wideband,UWB)技术在通信、雷达、生命科学以及计算机网络等领域都有着重要的应用。

为了实现超宽带通信,需要设计优化的超宽带天线。

本文介绍了基于HFSS软件的超宽带天线的仿真设计。

首先,超宽带天线的设计需要考虑其频率范围和辐射特性。

超宽带天线能够在多个频段内工作,其辐射波形应该符合超宽带信号的要求。

因此,我们需要设计一种在整个频率范围内都能够辐射信号的天线。

在超宽带天线设计中,一种常见的方法是采用螺旋天线。

螺旋天线是一种能够产生圆极化辐射的天线,其具有较宽的频带。

通过调整螺旋天线的尺寸和参数,可以实现在超宽带频率范围内的工作。

使用HFSS软件进行超宽带天线的设计和仿真。

HFSS是一种电磁场仿真软件,能够帮助工程师分析和解决各种无线电频率设备的问题。

使用HFSS软件,可以对超宽带天线进行三维电磁场模拟,并获得其频率响应、辐射图案等参数。

在使用HFSS软件进行仿真设计时,首先需要生成天线的三维模型。

可以通过绘制天线的结构和几何形状,或通过导入CAD文件生成。

在建模过程中,需要注意准确的尺寸和几何参数。

接下来,需要通过设置边界条件和材料参数来定义仿真模型。

在超宽带天线的仿真中,可以采用均匀网格和适当的边界条件来提高计算效率和准确度。

完成模型设置后,可以进行频率扫描仿真来获得天线的频率响应。

通过设置所需的频率范围和步进值,可以获取超宽带天线在整个频率范围内的响应特性。

然后,进行辐射特性的仿真。

通过设置天线的激励条件,可以得到天线的辐射图案和增益等参数。

辐射图案是描述天线辐射能力的重要指标,可以通过HFSS软件进行仿真和分析。

在得到仿真结果后,可以对超宽带天线的性能进行评估和优化。

可以根据仿真结果对天线的尺寸、结构和材料进行调整,以达到设计要求。

总之,基于HFSS的超宽带天线的仿真设计可以帮助工程师实现高效、准确的天线设计。

通过HFSS软件的仿真分析,可以获得超宽带天线的频率响应、辐射图案等各种性能指标,为超宽带通信和其他应用领域提供支持。

宽带平面螺旋天线的研究与设计

宽带平面螺旋天线的研究与设计

宽带平面螺旋天线的研究与设计作者:易礼智来源:《现代电子技术》2008年第11期摘要:平面螺旋宽带天线具有频带较宽、体积较小、圆极化性能较好等特点,应用范围很广。

但是这种天线增益较低,馈电匹配较难实现,尤其是前者,使得其性能大打折扣。

通过研究影响平面螺旋宽带天线增益和馈电匹配的主要因素,设计了2~7 GHz范围内的宽频带平面螺旋天线。

理论分析和仿真实验结果表明,对改善平面螺旋宽带天线的性能有一定的工程参考价值。

关键词:阿基米德螺旋天线;宽频带;圆极化性;巴伦中图分类号:TN82 文献标识码:B文章编号:1004-373X(2008)11-108-Research and Design of Wideband Planar Spiral Antenna(Hunan Engineering Polytechnic College,Changsha,410151,China)Abstract:Planar Archimedean antenna has some advantages as wideband,small volume and good performance in circularly polarizing,so it has broad appliance prosperity.But also it has low gain and is difficult for matching,which reduces its characteristics a lot.The main factor which gain and matching of planar Archimedean antenna is deeply studied,The article designs a wideband planar spiral antenna with frequency from 2~7 GHz.The analysis and simulation experimental results are given to some reference values of engineering for Improving performance in planar Archimedean antenna.Keywords:Archimedean spiral antenna;wideband;circularly polarizing;Cumberland平面螺旋天线是一种宽频带天线,因其频带较宽、尺寸小、重量轻、容易实现圆极化而在超宽带及抗干扰等技术中得以广泛应用。

螺旋式天线设计原理及其优化方法

螺旋式天线设计原理及其优化方法

螺旋式天线设计原理及其优化方法摘要:本文介绍了螺旋式天线的设计原理,并提出了一种优化方法,以提高螺旋式天线的性能。

首先,文章讲解了螺旋式天线的基本原理和工作原理。

然后,介绍了一种优化方法,包括选择适当的材料、提高天线的效率和优化天线的几何结构等。

最后,文章指出了螺旋式天线的应用前景和未来发展方向。

关键词:螺旋式天线、设计原理、优化方法、性能一、引言螺旋式天线是一种非常常见的宽频段宽波束天线,具有较大的天线增益和较小的旁瓣损耗,被广泛应用于航空航天、通信和雷达等领域。

本文将介绍螺旋式天线的设计原理及其优化方法,以提高天线的性能。

二、螺旋式天线的设计原理螺旋式天线是一种基于二维平面螺旋线的天线结构。

其原理类似于一根弹簧,电磁波通过螺旋线的辐射和反射传输。

螺旋线的半波长决定了天线的工作频率,螺旋线的绕圈数和线宽决定了天线的方向性和增益。

三、螺旋式天线的优化方法1. 选择适当的材料天线的材料对其性能有着重要的影响。

常见的材料包括金属和导电聚合物。

金属具有良好的导电性,但容易产生辐射损耗。

而导电聚合物具有低损耗和较高的抗腐蚀性能,适用于高频率和高温环境。

根据具体应用需求选择合适的材料,可提高螺旋式天线的工作效率和稳定性。

2. 提高天线的效率天线的效率是衡量天线性能的一个重要指标,取决于天线的辐射功率和损耗功率之比。

为提高天线的效率,可以采取以下优化措施:- 降低螺旋线的线宽:减小线宽可以减小辐射损耗,提高天线的效率。

- 提高螺旋线的绕圈数:增加螺旋线的绕圈数可以提高天线的方向性和增益,进而提高天线的效率。

- 优化地平面结构:设计合适的地平面结构以提高天线的辐射效率和天线和地面之间的耦合效果。

3. 优化天线的几何结构为提高螺旋式天线的性能,还可针对其几何结构进行优化。

优化的方法包括调整螺旋线的绕圈半径、螺旋线的宽度和间距以及螺旋线的内移程度等。

根据具体应用需求,通过仿真和实验研究,找到最佳的参数组合,以提高天线的性能。

螺旋天线电路设计

螺旋天线电路设计

螺旋天线电路设计引言螺旋天线是一种常见的天线类型,具有多频段、宽带和方向性好等特点,被广泛应用于无线通信和雷达系统中。

在设计螺旋天线电路时,需要考虑天线的结构、频率范围、辐射特性以及电路参数等因素。

本文将全面、详细、完整地探讨螺旋天线电路设计的相关内容。

螺旋天线结构螺旋天线由导体线圈在平面内旋转组成,其结构可以分为两种主要类型:方形螺旋天线和圆形螺旋天线。

方形螺旋天线方形螺旋天线的导体线圈呈正方形或长方形,辐射器和馈电结构相对简单,易于制造和布局。

方形螺旋天线通常具有宽频带和宽角度覆盖等特点,适用于通信和雷达系统中的多频段应用。

圆形螺旋天线圆形螺旋天线的导体线圈呈圆形,具有较为均匀的辐射特性。

圆形螺旋天线通常在窄带应用中使用,如无线电测向和卫星通信等领域。

螺旋天线频率范围螺旋天线的频率范围受到其外形、尺寸和匝数等因素的影响。

频率范围的选择应根据具体的应用需求来确定。

方形螺旋天线频率范围方形螺旋天线的频率范围较宽,通常可覆盖数个频段。

选择适当的参数可以实现不同频段的覆盖,如调整导体线圈的长度、宽度和匝数等。

圆形螺旋天线频率范围圆形螺旋天线的频率范围较窄,通常适用于单一频段的应用。

改变导体线圈的尺寸和匝数可以微调频率范围,满足特定频段的要求。

螺旋天线辐射特性螺旋天线的辐射特性在设计过程中需要考虑,包括辐射方向图、辐射效率和极化特性等。

辐射方向图辐射方向图描述了螺旋天线在不同方向的辐射强度,通常以极坐标图的形式表示。

通过调整导体线圈的几何参数和匝数等,可以实现不同辐射方向图的设计。

辐射效率辐射效率是指天线将输入功率转化为辐射功率的能力。

提高辐射效率可以减少能量损耗,提高天线的性能。

螺旋天线的辐射效率受到导体材料、匝数、尺寸和地平面等因素的影响。

极化特性螺旋天线可以实现不同的极化方式,如线性极化和圆极化。

通过合适的设计和调整,可以实现所需的极化特性。

螺旋天线电路参数在设计螺旋天线电路时,需要考虑到电路的匹配、增益、带宽和阻抗等参数。

螺旋天线电路设计

螺旋天线电路设计

螺旋天线电路设计一、引言螺旋天线是一种常用的宽带天线,其特点是频率范围广、阻抗匹配好、方向性良好等。

本文将介绍如何设计一款螺旋天线电路。

二、螺旋天线的原理螺旋天线是一种基于电磁波的发射和接收原理的天线,其主要构成部分为导体和地面板。

导体通常采用圆形或正方形的金属片,通过不同方向上的缠绕来实现较好的频率范围和方向性。

在实际应用中,通常采用四分之一波长或半波长作为导体长度。

三、螺旋天线电路设计步骤1. 确定频率范围:首先需要确定需要使用的频率范围,以便选择合适的导体长度和缠绕方式。

2. 选择导体形状:根据实际应用需求,选择合适的导体形状(圆形或正方形),并确定其大小。

3. 计算导体长度:根据选定的频率范围和导体形状,计算出所需的导体长度。

可以使用在线计算器或专业软件进行计算。

4. 缠绕方式:根据计算出的导体长度和形状,确定缠绕方式。

通常有两种方式:顺时针和逆时针缠绕。

选择合适的缠绕方式可以影响天线的方向性。

5. 地面板设计:螺旋天线需要一个地面板来实现较好的阻抗匹配和性能。

地面板通常采用金属板或铜箔,大小应与导体相匹配。

6. 阻抗匹配:在实际应用中,需要将天线的阻抗与接收器或发射器进行匹配。

可以使用衰减器、变压器等方法进行匹配。

四、螺旋天线电路实现1. 制作导体:根据设计好的导体形状和长度,使用金属片或铜箔制作出导体。

2. 缠绕导体:根据设计好的缠绕方式,将导体进行缠绕,并固定在地面板上。

3. 制作地面板:根据设计好的大小和形状,制作出地面板,并将其与导体固定在一起。

4. 连接电路:将天线与接收器或发射器连接,并进行阻抗匹配。

五、螺旋天线电路调试1. 测试频率范围:使用信号源测试天线的频率范围,确保其符合设计要求。

2. 测试阻抗匹配:使用阻抗仪测试天线的阻抗,并进行调整以实现较好的匹配。

3. 测试方向性:使用转台或指向器测试天线的方向性,并进行调整以实现最佳效果。

六、总结螺旋天线是一种常用的宽带天线,其设计和制作需要考虑多个因素,包括频率范围、导体形状和长度、缠绕方式、地面板设计等。

平面等角螺旋天线及巴伦的设计

平面等角螺旋天线及巴伦的设计

平面等角螺旋天线及巴伦的设计随着无线通信技术的飞速发展,天线作为无线通信系统的重要组成部分,其性能和设计受到了广泛。

其中,平面等角螺旋天线(Planar Inverted-F Antenna,简称PIFA)以及巴伦(Balun)是两种常用的天线和平衡转换器设计。

本文将介绍这两种天线的特点、设计原理和参数,旨在帮助读者深入了解其优势和应用场景。

平面等角螺旋天线是一种常见的宽带天线,具有体积小、易共形、易集成等优点。

它由一个平面的辐射元和一个螺旋状的地面构成,通过调整辐射元和地面的尺寸以及螺旋的匝数,可以实现在宽频带内的良好辐射性能。

平面等角螺旋天线的辐射原理主要依赖于螺旋的电流分布。

当高频电流在螺旋上流动时,会产生一个向外扩散的磁场,从而形成辐射。

由于螺旋的等角特性,电流在整个螺旋上均匀分布,使得天线在宽频带内具有稳定的辐射方向图和阻抗特性。

平面等角螺旋天线的特点在于其宽频带性能和易共形性。

通过改变螺旋的匝数和辐射元的尺寸,可以覆盖较宽的频率范围,同时保持稳定的阻抗特性和辐射方向图。

在设计时,需要考虑的主要参数包括辐射元的尺寸、螺旋的匝数、介质基板的厚度和相对介电常数等。

巴伦是一种用于将不平衡的信号转换为平衡的信号,或反之亦然的平衡转换器。

在天线设计中,巴伦被广泛应用于将天线的不平衡信号转换为平衡信号,以实现更好的辐射性能。

下面以常见的威尔金森巴伦为例,介绍其设计原理和特点。

威尔金森巴伦是一种经典的巴伦设计,它利用两个对称的线绕线圈来实现不平衡到平衡的转换。

在线绕线圈的中心连接不平衡信号源,在线绕线圈的两侧连接平衡信号端口。

通过调整线圈的匝数和半径,以及源阻抗和负载阻抗的匹配,可以实现信号的高效传输。

威尔金森巴伦的特点在于其宽带性能和高效传输。

通过调整线圈的匝数和半径,可以覆盖较宽的频率范围,同时保持高效传输。

在设计时,需要考虑的主要参数包括线圈的匝数和半径、源阻抗和负载阻抗的匹配等。

平面等角螺旋天线和巴伦是两种常用的天线和平衡转换器设计,具有广泛的应用场景。

多螺距、多波段螺旋天线的设计与仿真


MATCHED
Benefit of using macro
• • • • Save time – no redrawing Portable – cut and paste Optimetrix ready Tweaking dimension using pulled down menu – edit parameters
Assigning Parameters to the Helix Sections • • • • • Helix diameter, helixrad Number of turns, nostx Pitch of helix, pitchx Z-position of starting point, hstartx Angle of rotation of the starting point, rostx
Drawing the subsequent helix
"hstart2=hstart1+nost1*pitch1" Circle [helixrad, 0, hstart2] 1 wirerad "hb2" 1 wiresegment [0, helindia, hstart2] Select ("hb2") Rotate 2 rost1 Deselect ("*") NewObjColor 0 0 254 Helix "hb2" 2 pitch2 nost2 8 0 "helix2" "rost1=nost1*360"
Design Strategy
The two bands are related, the 5th harmonics of the first band fall on that of the second.

螺旋天线——精选推荐

一.课题要求技术要求:要求设计当频率f=2.45GHz、圈数N=6时,计算出螺旋天线的螺旋直径D、螺距S、螺距角α、一圈周长L、轴向长度A、螺旋线导线直径d、螺旋线至接地板的距离g、接地板直径G。

并对螺旋天线的法向模、轴向模、圆锥模的仿真,并得出天线的方向图及轴比图、反射系数、方向性系数、增益、输入阻抗、波瓣宽度(HPBW)二.课题背景螺旋天线是由螺旋形的金属线作为辐射体,由于螺旋线缠绕的形状不同,包括圆柱螺旋、椭圆柱螺旋、圆锥螺旋以及球面螺旋等,其中轴向模是螺旋天线的一种重要的工作模式,该种模式主要产生沿着螺旋轴向的辐射,并且辐射的电磁波是圆极化波,所以广泛应用于卫星通讯中,近来随着移动通信的发展,为了获得大范围的稳定的无线局域网络覆盖,轴向模螺旋天线也被用作基站天线。

轴向模式工作的螺旋天线的输入阻抗在较宽频带(理论值接近2:1的频率范围)内近似是一个常数,约为140Ω,所以具有宽带阻抗特性。

通常螺旋天线的增益由螺旋圈数确定,在螺距一定的情况下,螺旋线越长天线增益就越高,但是当圈数过大时,增益提高的效果就不明显了,并且天线的制作也将变得十分复杂。

三.螺旋天线结构与几何特性螺旋天线是用金属导线或管做成的螺旋形结构,它通常用同轴电缆馈电。

同轴线的内导体与螺旋线的一端相连接;外导体可与作反射器用的金属板连接;也有其他的连接方法。

若螺旋直径是不变的,称为圆柱螺旋天线;螺旋直径是渐变的,称为圆锥螺旋天线,本项目仅讨论圆柱螺旋天线。

如图1所示。

图1 螺旋天线结构螺旋天线结构尺寸:螺旋直径D ;螺距S ;螺距角α,α=arctan(S /πD );一圈周长L ,L =22(D)S π;圈数N ;轴向长度A ,A =NS ;螺旋线导线直径d ;馈电端螺旋线至接地板的距离g ;接地板直径G 。

螺旋天线的辐射特性基本上决定于螺旋的直径与波长之比D /λ。

当0.25<D /λ<0.46时,即螺旋一圈周长L 近似等于一个波长,最大辐射方向沿螺旋轴线,称为轴向模辐射;当D /λ<0.16时,最大辐射方向与螺旋轴垂直,而轴向几乎无辐射,称为法向模辐射;当D /λ>0.46以后,方向图就呈圆锥形,轴向辐射很弱,当D /λ≈2/π时,轴向辐射接近零,最大辐射偏离轴向,这种辐射称做圆锥模。

螺旋天线设计

天线――螺旋天线物理尺寸对天线效率的影响一、天线概览绝大多数天线具有可逆性:即天线用作接收天线时的特性与其处于发射状态时的特性时相同的。

辐射方向图:表示给定距离下天线的辐射随角度的变化,辐射的强弱由离天线给定距离r处的功率密度S来评价。

接收模式下,天线对于某方向来波的响应正比于辐射方向图上该方向的值。

方向系数:表示最大辐射强度于全空间均匀辐射时的平均辐射强度之比。

极化:描述了天线辐射时电场矢量的特征,瞬时电场矢量随时间的轨迹图决定波动的极化特性。

天线的输入阻抗:是天线终端电压与电流之比,通常的目的是使天线的输入阻抗与传输线的特征阻抗相匹配。

§天线分类依据频率特性的不同,可以把天线分成四种基本类型。

◎电小天线:天线的尺寸比一个波长小很多。

特征:很弱的方向性,低输入电阻,高输入电抗,低辐射效率。

适合于VHF或更低的波段。

如短振子,小环。

◎谐振天线:在谐振频率点或某个窄频带内工作令人满意。

特征:低或中等增益,实输入阻抗,带宽狭窄。

主要用于HF到低于1GHz的频段。

如半波振子,微带贴片,八木天线。

◎宽带天线:在一个很宽的频率范围内,方向图、增益和阻抗几乎是常数,并且能够用有效辐射区的概念表述其特征,该区域在天线上的位置随频率的变化而变化。

特征:低到中等增益,增益恒定,实输入阻抗,工作频带宽。

主要用于VHF直至数个GHz的频段。

如螺线天线,对数周期天线。

◎口径天线:由一个供电磁波通过的开放的物理口径。

特征:高增益,增益随频率增大,带宽中等。

用于UHF和更高的频段。

如喇叭天线,反射面天线。

§天线的电气特性(1)方向特性――方向图(BW0.5,FSLL)、方向系数D、增益G。

(2)阻抗特性――输入阻抗Zin、效率2640rhRA,(辐射阻抗Z)(3)带宽特性――带宽、上限频率f1,下限频率f2。

(4)极化特性――极化、极化隔离度。

天线增益G :等于辐射功率与输入功率之比。

AG D阻抗特性:电小天线和谐振天线之所以是窄频带天线,很大程度上受制于恶劣的阻抗特性。

小尺寸多层平面式螺旋天线的仿真设计

场增 强 。
关键词 : 近场耦合 ; 多层 平 面 式 螺旋 天 线 ; P C B; 天线 特 性 中 图分 类号 : T N 8 2 1 文献标识码 : A 文章编号 : 1 0 0 2 -8 9 3 5 ( 2 0 1 3 ) 0 5 -0 0 4 1 -0 4
近年 来 随着 电子 信息 技术 与移 动互 联 网的蓬 勃 发展 , 短距 离 的无 线 通 信 技术 越 来 越 受 到 人 们 的 关 注 。轻薄 型 移动 电子设 备 的广 泛普 及对 天线 提 出 了 更 高 的设 计 要求 , 如要 求 天线 尺寸 足够 小 、 带 宽 足够 宽 等 。如 今 国 内外 对 于螺旋 天 线 的研 究 也 已 日趋 成 熟, 随着 各种 电磁 仿 真软件 的出现 , 对天 线各 种参 数 的计 算更 加 准 确 _ 7 ] 。 在螺 旋 天 线 基 本 模 型基 础 上 , 各种 形状 和 尺寸 的螺 旋天 线结 构不 断被 应用 于各 种
图 1 线 圈 产 生 的 磁 场
1 3 Tu r n s , La ve r
1 3 T u ns r / L a v e r
( a ) 发射 天线
( b ) 接收天线
其强 度可 由式 ( 1 )给出l _ 5 ] :
H一—
2 ̄ / ( R +z ) 。
( 1 )
f i e l d i S e nha nc e d.
Ke y wo r d s: Ne a r f i e l d c o up l i ng,M u l t i l a y e r p l a n a r s pi r a l wi nd i ng a nt e nna,PCB, Ant e nn a pr o pe r t y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

螺旋天线的设计与仿真研究
摘要在分析电晕放电原理的基础上,结合本实验室关于电晕放电探测系统的
设计要求,选用CST微波工作室对螺旋天线进行了设计、优化与仿真,所得的
仿真计算结果与测试结果有较好的一致性。设计出的螺旋天线具有高增益,提高
了整个电晕放电探测系统的灵敏度。

关键词电晕放电;螺旋天线;CST;仿真;测试
螺旋天线是一种行波天线,具有宽频带特性和圆极化特性,已广泛应用于米
波和分米波波段。可以构成螺旋天线阵使用,也可作为其它面天线的初级馈源。
按照电晕放电探测系统的设计要求,首先设计单个的螺旋天线,提供较高的增益,
在此基础上后续进行设计多个阵列进行拼接组合实现高增益阵列天线阵。螺旋天
线不仅在宽频带上具有近乎一致的电阻性输入阻抗,而且在同样的频带上螺旋天
线的波瓣图显示其增益很大。它的性能对导线尺寸和螺旋节距不敏感;它的互阻
抗几乎可以忽略,因此很容易用来组阵。

1螺旋天线结构参数及设计方法
将金属带或金属导线绕制成一定尺寸的圆柱或者圆锥螺旋线,一端用同轴线
内导体馈电,另一端处于自由状态或与同轴线外导体联接。螺旋天线的几何结构
参数为:

D=螺旋直径
S=螺距
n=圈数
d=螺旋导体(线)的直径
1=轴向长度=nS
为了消除同轴线外皮上电流,通常在螺旋线末端接一个直径为Z0=同轴线的
特性阻抗的金属圆盘,这样就组成了一个螺旋天线。

螺旋天线的辐射特性主要取决于天线直径与波长比D/λ。
当D/λ=(0.25~0.46),螺旋的周长L在一个波长左右,最大的辐射方向在轴
线方向,称之为轴向模螺旋天线,实际工程中也多采用这样的

天线。
轴向模螺旋天线对导线尺寸和螺旋节距不敏感,在工程中比较好建造使用,
其优化的重要参数有波束宽度,增益,阻抗以及轴比。

(1)
本螺旋天线阵馈电时采取轴向馈电,适用于0.8≤Cλ≤1.2,12°≤α≤14°时,在
20%的误差范围内为R=140Cλ。借助适当的匹配段,在螺旋最底部的1/4圈制成
平行于接地面的锥削过渡段,将140Ω~150Ω的螺旋阻抗变换为50Ω的同轴线阻
抗。在安装螺旋天线时,需要计算介质垫片与接地面的间距h,如式(2)所示:

(2)
式中:ω是馈点处导体的宽度,h=导体离地面的高度,εr是介质垫片的相对
介电常数,Z0是同轴线的特性阻抗。

1.1建立螺旋天线模型
本文所设计的螺旋天线要求工作频段在125MHz~500MHz 内,该阵列的增
益在中心频率250MHz时约为15dBi,驻波比小于2。建模过程中,考虑到工作
频率在超短波及微波波段,电流主要集中在导体表面,模型中螺旋线可用实心金
属代替。

1.2仿真和优化
螺旋天线的辐射特性主要取决于天线直径波长比D/λ,根据实际工程所应用
的轴向模螺旋天线,在当D/λ=(0.25~0.46)这个限制条件下,为方便后续设计
与优化,我们将螺旋天线的主要参数C和α均设为变量,由于设计指标要求增
益大于15dBi。根据计算,可将α取值区间选为[12,14],对应C取值区间为[3/4,
4/3]。我们可以在参数扫描设置中对α和C同时进行扫描,比较结果选取最佳值;
或者分别进行参扫,然后根据参数对考察的电特性曲线(比如:VSWR)的影响
趋势向最佳值逼近。经过升角扫参和螺旋节距的变化引起C的变化优化过程,
最终选取

[α,C]=[12.4°,0.98],螺旋圈数为10圈。
1.3仿真及实验结果
对端口基模的电场进行仿真,模式类型为TEM波,在相位为0度时,传播
常数是18.1504,线阻抗为41Ω满足天线设计要求。

对设计出的螺旋天线的三维远场图进行仿真,设置频率观察点为中心频率
250HMz,显示全空间的方向系数图。得到辐射的最大功率在正z方向上,天线
的增益满足要求,增益大于15dBi。
对比仿真天线和实测天线的VSWR图可以看出仿真结果与测试结果一致性
比较好。驻波比变化趋势在全频带内基本一致,在某些频率点上的驻波比计算结
果与测试结果存在差别,其原因主要是由于加工精度误差及地面的影响造成的。

2结论
经过测试,应用CST的仿真结果与实验测试的结果具有比较好的一致性,
按此设计制作的天线达到了设计要求,为后续工作中可以此天线为单元进行螺旋
天线阵设计提供了可靠的设计依据,具有一定的参考价值。最终设计出一个高增
益的螺旋天线阵,为电晕放电探测系统天线部分研制提供了良好支持。

参考文献
[1]王红丽.超宽带(UWB)四臂平面螺旋天线仿真设计[D].同济大学,2008.
[2]Nakano H, Takeda H, Honma T, et al. Extremely low profile helix radiating a
circularly polarized wave[J].IEEE Trans on Antennas and Propagation,1991.

[3]Nakano H,Takeda H, Kitamura Y, et al. Low profile helical array antenna fed
from a radial waveguide [J].IEEE Trans on Antennas and Propagation,1992.

[4]刘尚合,等.静电理论与防护[M].北京:兵器工业出版社.
[5]Fred P.Venditti, Hervert Reno. Electromagnetic Radiation from Corona
Discharges[R].Final Report, Contract: N00019-74-0334,25 January 1977.

[6]魏文元,等.天线原理[M].西安:西安电子科技大学出版社,1985.
[7]刘庆想,李相强,袁成卫,等.高功率双层径向线螺旋阵列天线理论分析与数
值模拟[J].电子学报,2005.

[8]John D.Kraus.天线[M].北京:电子工业出版社.
[9]李相强,刘庆想,赵柳,等.36单元高功率双层径向线螺旋阵列天线功率容量
研究[J].强激光与粒子束,2007.

[10]李相强,刘庆想,赵柳.高功率单层径向线螺旋阵列天线的设计和模拟[M].
强激光与粒子束,2005.

相关文档
最新文档