遥感期末知识点

遥感期末知识点
遥感期末知识点

——内江师范学院

遥感:是通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被测目标、区域和现象的有用信息。

遥感分类:按平台高度分为航空、航天和地面测量;按遥感波段分为光学和微波;按成像信号能量来源分为被动式和主动式;按应用分为多种,从空间尺度分为全球遥感、区域遥感和局地遥感,从地表类型分为海洋遥感、陆地遥感和大气遥感,从行业分为环境遥感、农业遥感、林业遥感、水文遥感和地质遥感等。

航天遥感目前的另外一个发展趋势是小卫星。小卫星:主要是指体积小、重量轻和功能单一的卫星,使用小火箭或搭载发射,研制周期短,卫星成本大为降低。

EOS计划的目标,主要是科学认识全球尺度范围内整个地球系统及其各圈层之间的相互作用及其作用机理等,进而预测未来10年到1个世纪地球系统的变化及其人类的影响。EOS计划的主要特点:①一个史无前例的规模巨大的国际综合性空间计划;②计划的提出和实施过程都以科技研究为先导;③EOS是空间、遥感、电子和计算机等世界领先技术的最高水平的集中体现。

地物的空间特征:①现状特征②点状特征③面特征

构成地物的十项基本特征即为尺寸、形状、阴影、色调/颜色、纹理、图案、高程/深度、地形/地势、位置和相关布局。

辐射亮度与方向无关的辐射源就是漫辐射源

介质的固有光学特性可以由吸收系数和体散射相函数来决定。但截至目前在遥感中的大多数地物波普库中,几乎没有包含介质的固有光学特性。

大气散射包括大气分子的锐利散射和大粒子气溶胶的米氏散射。

到达地面的辐照度主要有以下几个影响因素:①太阳直射辐照度;②天空漫射辐照度;③地表与大气之间的多次散射漫射辐照度。

均匀一致朗伯地物的地表与大气信号:观测像元的经大气光束衰减后的地表反射信号,大气对太阳光的散射信号,和周围像元的信号贡献。

航空遥感的特点:①可以居高临下地观察②可以记录动态现象③扩大了光谱感应范围④可以提高空间分辨率和几何保真

航天遥感的用途:①对太空飞行器上装载的遥感器进行模拟实验,辩证其可靠性和有效性,如MAS和MODIS的航空模拟遥感器。

航空遥感平台分类:①低空平台:飞行高度在2000m一下,对流层下层飞行的航空器。②中空平台:飞行高度在2000~6000m左右、对流层中层飞行的航空器。③高空平台:飞行高度在12000m以上、对流层顶部同温层下层飞行的航空器。

航片类型:航空像片按倾角可分为垂直摄影和倾斜摄影航片。将倾角小于3°的均匀称为垂直摄影,将垂直摄影得到的航片称为水平航片。水平航片上的地物影像,一般与地物顶部形状基本相似,航片各部分比例尺大致相同。

目前我国常用的航片像幅有18cm*18cm、23cm*23cm和30cm*30cm3种。在航片四边,通常印有摄影状态的记录,有框标、像主点、压平线、水准器、时表、焦距、航摄地区编号和像片编号。除此之外,在航片底边还有灰阶,即标有标准密度值的一系列按某一密度值递增的中性灰密度系列,它反映了该胶片对细部的表达能力和对地物反差和辐射水平的表达范围航空像片是中心投影,地形图是垂直投影。中心投影和垂直投影的区别:①投影距离的影响②投影面倾斜的影响③地形起伏的影响

航片上某一线段长度与地面相应线段长度之比,称为航片比例尺。

航高一定时,焦距越大,航片比例尺越大。

相比于航空遥感,航天遥感具有以下优势:①具有更大的覆盖面积②“再访”观测能力③地面特征的定量测量④半自动处理和分析能力⑤相对低成本效益

与地面运动的物体一样,卫星的运动状态也可以用一系列参数来描述。而建立适当的坐标系是确定各个参数的参照基础。常用的坐标系为赤道坐标系。

赤道坐标系是取赤道面为基准面,以地球自转轴和从地心指向春分点的直线为坐标轴所构成的坐标系。

轨道的形状一般可分为圆(近圆)轨道和椭圆轨道。

根据轨道倾角的大小可以分为顺行轨道、逆行轨道、赤道轨道和极地轨道。极地轨道是指卫星轨道通过地球两极,但是严格意义的极地轨道较少,而是多采用近极地轨道,即轨道平面与地球自转轴的夹角略小于90°,具有合适偏角的近极地轨道卫星借助“再访”能力几乎覆盖全球地表。

太阳同步轨道:该轨道上的卫星和太阳夹角是固定的,其可以满足卫星每次以相同太阳时和高度经过地面上同一点,这样就可以保证遥感器每次对地观测时,地物具有同样的太阳辐射。地球同步轨道:一天绕地球一周,并能够回到原来位置,周期与地球自转相同。如果倾角为0°,即为地球静止轨道。当轨道周期为地球自转周期的整数分之一时称为准同步轨道。

在航天遥感中,扫描系统常采用挥帚式扫描、推扫式扫描和中心投影三种方式。

①挥帚式扫描方式:又称为光机扫描或物面扫描,其原理是在卫星运行的侧向上,利用扫

描镜的来回旋转以反射来自不同位置的地物信息,入射波谱被光学分光计分离成若干较窄波段,再感应相应的探测器产生不同的电信号并被放大记录在多波段的记录设备中。

②推扫式扫描方式:用广角光学系统,在整个视场内成像。它利用卫星的前向运动,借助

于与飞行方向垂直的“扫描”线记录,而构成二维图像,也就是通过卫星与探测器成正交的移动获得的二维信息。具体地说,就是通过仪器中的广角光学系统-------平面反射镜采集地面辐射能,并将之反射到反射镜组,再通过聚焦投射到焦平面的阵列探测元件上。CCD为一种固态光电转换元件。

线性阵列的推扫式扫描方式较挥帚式扫描方式具有以下优点:①线性阵列系统可以为每个探测器提供较长的停留时间,以便更充分地测量每个地面分辨单元的能量。因此,它能够有更强的记录信号和更大的感应范围,增加了相对信噪比,从而得到更强的空间分辨率和辐射分辨率。②记录每行数据的探测元件间有固定关系,且它消除了因扫描过程中扫描镜速度变化所引起的几何误差,具有更大的稳定性。因此,线性阵列系统的几何完整性更好,几何精度高③CCD是固态微电子装置,一般它们体积小、重量轻和耗能低④没有挥帚式扫描的机械运动部件,线性系统稳定性更好,且结构的可靠性高,使用寿命更长。

推扫式扫描也有固有的问题:①大量探测器之间灵敏度的差异,往往会产生带状噪声,需要进行校准;②CCD探测器灵敏度多限于可见光和近红外,更长波段的探测受到限制;③推扫式扫描的总视场一般小于挥帚式扫描。

遥感数字图像数据常以不同的数据格式存在在磁带或光盘中,主要有BSQ、BIL、BIP、HDF 和行程编码。

图像校正和恢复主要包括图像的几何校正、辐射校正和噪声消除3个方面。

几何校正:几何畸变常常来源于传感器平台的维度、高度、速度的变化,并受到诸如全景畸变、地球曲率、大气反射、地形的高低以及传感器的IFOV(瞬时视场角)早扫描过程中所具有的非线性特征等多种因素的影响。几何校正的目的就是纠正这些因素导致的畸变,以使校正后的图像具有最大的几何精度。在几何校正中,经常采用最近邻法、双线性内插法或三次卷积法对图像重采用来实现几何校正。

在大多数应用中,通常需要进行太阳高度角校正、日地距离校正和大气纠正。

目前,消除条带噪音常用的方法有:矩匹配法、直方图匹配法和均匀区法等。

图像增强:将原来不清晰的图像变清晰或将原来不够突出的特定图像信号和特征显现出来的图像处理方法

应用最为普遍的图像增强技术包括反差处理、空间特征处理和多波段图像处理。

反差处理:因为诸多因素导致图像对比度低,对比度增强是将图像中亮度范围拉伸或压缩成显示系统指定的亮度显示范围,从而提高图像全部或者局部的对比度。

直方图规定化:直方图均衡化可以使一幅图像对应的直方图在各个灰度值上较为均匀的分布,由于实际的需要,有时我们并不需要使直方图均匀分布,而是让它的直方图具有特定的形态,这个过程就是直方图规定化。

空间特征处理:⑴空间领域平滑滤波:①领域平均法②改进领域法⑵空域图像锐化⑶频域法主成分分析指设法将原来的指标重新组合成一组新的互相无关的几个综合指标来代替原来指标,同时根据实际需要从中选取几个较少的综合指标尽可能多地反映原来的汉字表的信息光谱波段之间的相关性受到下列因素的影响:①物质光谱相关性②地形③传感器波段重叠为了描述一副图像视觉观察上的彩色成分,我们一般不用红、绿、蓝3个颜色成分的比例,而是用色度(H)\强度(I)、饱和度(S)来描述物体对应的彩色、亮度、色彩纯度。通常,对于一副图像,强度、色度、饱和度的操作比红、绿、蓝三颜色的操作更容易预期视觉效果,在图像处理前把RGB成分转化为HIS成分可以对彩色拉伸提供更多的控制。我们把RGB 到HIS的转化称为彩色空间变换(CST).

专题地图:表示的是可识别的地表特征的空间分布状态,它用信息而不是数据描述一个给定的区域。遥感图像专题分类就是遥感图像转换成专题地图的过程。

遥感图像专题分类的基本过程如下:

(1)预处理:通过空间变换或光谱变换,对初始输入图像进行一些处理。

(2)分类:人工提取特殊像元以训练分类器或自动集群生成训练标准,使其能够识别某一范畴,在特征空间内确定判别函数。主要包括监督分类和非监督分类。

(3)标注:应用上一步的判别函数对图像的每一个像元进行分类。如果是监督分类,标注的精度取决于判别函数;如果是非监督分类,则需要对这一步进行监督。

监督分类:根据已知训练区提供的样本,通过选择特征函数,建立判别函数,把图像中各个像元点归化到给定类中的分类处理。

监督分类的优点:①它不需要迭代运算,因而电脑的计算量相对较小,速度较快;②由于其训练样本是人工选取的,类特征受到分析者先验知识的限制,因而分类精度一般较高。

监督分类的不足:训练区的选取任务繁重且需要技巧,并要求分析者具有对目标区域的地理及遥感的先验知识。如果一幅多光谱图像包含足够的可视差异,那么通过简单目视即可进行适当的训练区选取。然而,大多数情况下,人们必须借助其他的信息,例如野外数据或现存地图,来找出每一类别的典型区域。

非监督分类:根据图像数据本身的统计特征及点群的分布情况,从纯统计学的角度对图像数据进行类别划分的分类处理叫做非监督分类。常用的算法有K-均值聚类、ISODATA等

非监督分类的优点:①不需要人工的选取训练区,操作更为简便②不需要分析者具备相关的先验知识,对分析者的要求较低③其数据的内在结构由算法决定,而不受外界知识的约束,也较少受人工主观因素的影响。

非监督分类的不足:①分类结果的精度依赖于所提供或生成的初始分割参数,一般低于监督分类的精度②它没有考虑空间关联信息,因此也对噪声更加敏感。

热红外遥感:就是利用星载或机载的传感器收集、记录地物的热红外信息,并利用这种信息来识别地物和反演地表参数的技术系统,在红外遥感研究中居于主导地位。

热辐射:由经典力学的理论成果可知,只要物体的温度高于绝对零度,就会不断发射红外能量,即向外发射具有一定能量和波谱分布的电磁波,就称之为热辐射。其辐射能量的强度和

波谱分布是由物质类型和温度决定的。

温度包括真实温度、辐射温度、亮度温度和地表温度。

真实温度:指分子运动温度即动力学温度,它是物质内部分子的平均热能,由物体分子平均不规则的振动导致。

辐射温度、亮度温度:地表的真实温度往往难以精确测量,我们使用红外传感器获得的地物向外的辐射能量,大多数热传感器系统记录的都是地面物质的辐亮度。

比辐射率:是描述非黑体热辐射能力与热辐射方向性的重要参数。描述地球自身的辐射能力。在热平衡的条件下,物体的比辐射率等于其吸收率。

微波遥感:就是利用某种传感器接收地面各种地物发射或发射的微波信号,藉以识别、分析地物,提取所需的信息,

微波是电磁波的一种形式。微波同可见光、红外线、X射线、γ射线以及无线电波一样,实质上也是一种电磁波,它的波长为1~1000mm,一般分为毫米波、厘米波、分米波和米波。微波遥感的特点:①微波能穿透云、雾、雨和雪,具有全天候的工作能力②微波对地物有一定穿透能力③微波可以提供不同于可见光和红外遥感所能提供的某些信息④主动微波遥感不仅可以记录电磁波的幅度信息,还可以记录电磁波的极化和相位信息。⑤微波波段可以覆盖更多的倍频程⑥微波对某些目标的鉴别能力更强

根据大气对微波的吸收带分布,一般采用2.06~2.22mm、3.0~3.75mm、7.5~11.5mm和20mm 以上的波长,作为微波遥感的大气窗口。

遥感期末复习题

遥感定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。 遥感的特点:大面积的同步观测;时效性;数据的综合性和可比性;经济性;局限性 遥感数据的类型:按平台分(地面遥感、航空遥感、航天遥感数据) 按电磁波段分(可见光遥感、红外遥感、微波遥感、紫外遥感数据等) 按传感器的工作方式分(主动遥感、被动遥感数据) 遥感数据的应用领域 林业:清查森林资源、监测森林火灾和病虫害。 农业:作物估产、作物长势及病虫害预报。 水文与海洋:水资源调查、水资源动态研究、冰雪监控、海洋渔业。 国土资源:国土资源调查、规划和政府决策。 气象:天气预报、气候预报、全球气候演变研究。 遥感的发展简况 照相机、气球、飞机构成初期遥感技术系统。 1962年在美国密歇根大学召开的第一次国际环境遥感讨论会上,美国海军研究局的Eretyn Pruitt(伊·普鲁伊特)首次提出“Remote Sensing”一词,会后被普遍采用至今。 二次大战中的航空侦察促进了航空摄影技术的发展。 传感器一般由信息收集、探测系统、信息处理和信息输出4部分组成。 电磁波的特性 电磁波是横波在真空中以光速传播电磁波具有波粒二象性(包括波动性和粒子性) 辐射测量 区分辐射能量(W)、辐射通量、辐射通量密度(E)、辐照度(I)、辐射出射度(M)、辐射亮度(L)绝对黑体 如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。它的吸收率α(λ,T)≡1,反射率ρ (λ,T) ≡0,与物体的温度和电磁波长无关。黑色的烟煤、恒星、太阳被认为是最接近黑体辐射的辐射源。黑体辐射的三个特性 1、辐射通量密度随波长连续变化,每条曲线只有一个最大值。 2、温度越高,辐射通量密度越大,不同温度的曲线不同。 3、随着温度的升高,辐射最大值所对应的波长向短波方向移动。 维恩位移定律:随着温度的升高,辐射最大值对应的峰值波长向短波方向移动。 基尔霍夫定律: (2)实际物体的辐射 基尔霍夫定律表现了实际物体的辐射出射度Mi与同温度、同波长绝对黑体辐射出射度的关系,αi 是此条件下的吸收系数(0<α<1).有时也称为比辐射率或发射率ε,表示实际物体辐射与黑体辐射之比,M= εM0 按照发射率与波长的关系,把地物分为:黑体或绝对黑体:发射率为1,常数。 灰体(grey body):发射率小于1,常数选择性辐射体:反射率小于1,且随波长而变化。

遥感原理与应用知识点

第一章 1、遥感的定义:通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息 2、广义的遥感:在不直接接触的情况下,对目标物或自然现象远距离感知的一种探测技术。 3、狭义的遥感:指在高空和外层空间的各种平台上,应用各种传感器(摄影仪、扫描仪和雷达等)获取地表的信息,通过数据的传输和处理,从而实现研究地面物体形状、大小、位置、性质以及环境的相互关系。 4、探测依据:目标物与电磁波的相互作用,构成了目标物的电磁波特性。(信息被探测的依据)传感器能收集地表信息,因为地表任何物体表面都辐射电磁波,同时也反射入照的电磁波。地表任何物体表面,随其材料、结构、物理/化学特性,呈现自己的波谱辐射亮度。 5、遥感的特点:1)手段多,获取的信息量大。波段的延长(可见光、红外、微波)使对地球的观测走向了全天候全天时。 2)宏观性,综合性。覆盖范围大,信息丰富,一景TM影像185×185km2,可见的,潜在的各类地表景观信息。 3)时间周期短。重复探测,有利于进行动态分析 6、遥感数据处理过程 7、遥感系统:1)被探测目标携带信息 2)电磁波辐射信息的获取 3)信息的传输和记录 4)信息的处理和应用 第三章 1、电磁波的概念:在真空或物质中电场和磁场的相互振荡以及振动而进行传输的能量波。 2、电磁波特征(特征及体现):1)波动性:电磁辐射以波动的形式在空间中传播 2)粒子性:以电磁波形式传播出去的能量为辐射能,其传播也表现为光子组成的粒子流的运动 紫外线、X射线、γ射线——粒子性 可见光、红外线——波动性、粒子性 微波、无线电波——波动性 3、叠加原理:当空间同时存在由两个或两个以上的波源产生的波时,每个波并不因其他的波的存在而改变其传播规律,仍保持原有的频率(或波长)和振动方向,按照自己的传播方向继续前进,而空间相遇的点的振动的物理量,则等于各个独立波在该点激起的振动的物理量之和。 4、相干性与非相干性:由叠加原理可知,当两列频率、振动方向相同,相位相同或相位差恒定的电磁波叠加时,在空间会出现某些地方的振动始终加强,另一些地方的振动始终减弱或完全抵消,这种现象叫电磁波的相干性。没有固定相位关系的两列电磁波叠加时,没有一定的规律可循,这种现象叫电磁波的非相干性

遥感复习资料

1.遥感:应用探测仪器,不与探测目标接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感的系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分。 3.遥感的分类:按遥感平台分-地面遥感、航空遥感、航天遥感、航宇遥感;按传感器的探测波段分-紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感;按工作方式分-主动遥感和被动遥感;按遥感的应用领域分-大体研究领域可分为外层空间遥感、大气层遥感、陆地遥感、海洋遥感等,具体应用领域资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、水文遥感、城市遥感等。 4.遥感的特点:①大面积的同步观测;②时效性;③数据的综合性和可比性;④经济型;⑤局限性。 5.电磁波谱:按电磁波在真空中传播的波长和频率,递增或递减排列,则构成了电磁波谱。 该波谱以频率从高到低排列,可以划分成γ射线、Χ射线、紫外线、可见光、红外线、无线电波。6.遥感中较多使用可见光、红外和微波波段。 7.?电磁波性质:①是 横波;②在真空以光 速传播;③满足f·λ =c E=h·f E 为能量,单位:j;h 为普朗克常数;f为频 率;λ为波长;c为 光速;④电磁波具有 波粒二象征。 8.?发射率或比辐射 率:记作ε,表示实 际物体辐射与黑体辐 射之比,M=εM0. 9.太阳常数:是指不 受大气影响,在距太 阳一个天文单位内, 垂直于太阳光辐射方 向上,单位面积时间 黑体所接收的太阳辐 射能量。太阳辐射 的光谱室连续的光 谱,且辐射特性与绝 对黑体辐射特性基本 一致,能量各个波段 的比例不同。 10.地表接收的太阳 辐射度曲线与大气层 外的曲线不同,差异 主要是地球大气引起 的。 11.大气层次自下而 上:对流层、平流层 (飞机)、(中间层、 热层、散逸层)电离 层、(氮层、质子层) 外大气层。 12.散射现象的实质 是电磁波在传输中遇 到大气微粒而产生的 一种衍射现象。 13.?大气散射有三种 情况:①瑞利散射, 特点是散射强度与波 长的四次方(λ4)成 反比,I∝λ-4,即波长 越长,散射越弱;② 米氏散射③无选择性 散射,特点是散射强 度与波长无关,任何 波长的散射强度相 同。 14.大气窗口:通常把 电磁波通过大气层时 较少被反射、吸收或 散射的,透过率较高 的波段称为大气窗 口。 15.?植被的反射波谱 曲线分为三段:可见 光波段(0.4~0.76μ m)有一个小的反射 峰,位置在0.55μm (绿)处,两侧0.45 μm(蓝)和0.67μm (红)则有两个吸收 带。在近红外波段 (0.7~0.8μm)有一 反射的“陡坡”,至 1.1μm附近有一峰 值,形成植被的独有 特征。在中红外波段 (1.3~2.5μm)受到 绿色植物含水量的影 响,吸收率大增,反 射率大大下降,特别 以1.45μm、1.95μm 和 2.7μm为中心是 水的吸收带,形成低 谷。 16.轨道倾角=90°极 轨卫星,接近90°近 极轨卫星。 17.遥感平台是搭载 传感器的工具。根据 运载工具的类型,可 分为航天平台、航空 平台和地面平台。 18.?气象卫星特点: ①轨道,分为两种, 低轨和高轨,低轨就 是近极地太阳同步轨 道,简称极地轨道; 高轨是指地球同步轨 道,轨道高度 36000km左右,绕地 球一周需24小时。② 短周期重复观测;③ 成像面积大,有利于 获得宏观同步信息, 减少数据处理容量; ④资料来源连续、实 时性强、成本低。 19.气象卫星资料的 应用领域:天气分析 和气象预报、气候研 究和气候变迁的研 究、资源环境其他领 域。 20.海洋遥感的特点: (1)需要高空和空间 的遥感平台,以进行 大面积同步覆盖的观 测;(2)以微波为主; (3)电磁波与激光、 声波的结合是扩大海 洋遥感探测手段的一 条新路;(4)海面实 测资料的校正。 21.?摄影机有分幅式 和全景式摄影机、多 光谱、数码摄像机。 22.光机扫描的几何 特征取决于它的瞬时 视场角和总视场角。 (1)瞬时视场角(2 θ)扫描镜在一瞬时 时间可以视为静止状 态,此时,接受到的 目标地物的电磁波辐 射,限制在一个很小 的角度之内,这个角 度称为瞬时视场角, 即扫描仪的空间分辨 率 (2)总视场角(2Φ) 扫描带的地面宽度称 总视场。从遥感平台 到地面扫面带外侧所 构成的夹角,成总视 场角,也为总扫描角。 23.成像光谱仪:即能 成像又能获取目标光 谱曲线的“谱像合一” 的技术,称为成像光 谱技术,按该原理制 成的扫描仪称为成像 光谱仪。 24.?微波遥感是指通 过微波传感器获取从 目标地物发射或反射 的微波辐射,经过判 读处理来识别地物的 技术。 特点:1>能全天候、 全天时工作;2>对冰、 雪、森林、土壤等具 有一定穿透能力;3> 对海洋遥感具有特殊 意义;4>对海洋遥感 具有特殊意义;5>分 辨率较低,但特征明 显。 ②微波遥感份有源 (主动)和无源(被 动)两大类。(1)主 动微波遥感是指通过 向目标地物发射微波 并接收其后向散射信 号来实现对地观测遥 感方式,主要是雷达、 侧视雷达、合成孔径 侧视雷达。(2)?被 动微波遥感,通过传 感器,接收来自目标 地物发射的微波,而 达到探测目的的遥感 方式。微波辐射计和 微波散射计。 25.?遥感图像是遥感 探测目标的信息载 体。将遥感图像归纳 为三方面特征,即几 何特征、物理特征和 时间特征。这三方面 特征的表现参数即为 空间分辨率、光谱分 辨率、辐射分辨率和 时间分辨率。 (1)图像的空间分 辨率指像素所代表的 地面范围的大小,即 扫描仪的瞬时视场, 或地面物体能分辨的 最小单元(像元)。 (2)波谱分辨率是 指传感器在接收目标 辐射的波谱时能分辨 的最小波长间隔。间 隔愈小,分辨率愈高。 它的选择必须考虑目 标的光谱特征值。 (3)辐射分辨率是 指传感器接收波谱信

遥感原理与方法期末考试复习

遥感原理与方法期末考试复习 第一章绪论 ★遥感的定义?遥感对地观测有什么特点? 广义遥感:泛指一切无接触的远距离探测,包括对电磁场、力场(磁力、重力)、机械波(声波、地震波)等的探测。实际工作中,重力、磁力、声波、地震波等的探测被划为物探(物理探测)的范畴,只有电磁波探测属于遥感的范畴。 狭义:是指对地观测,即从不同高度的工作平台上通过传感器,对地球表面目标的电磁波反射或辐射信息进行探测,并经信息记录、传输、处理和解译分析,对地球的资源与环境进行探测和监测的综合性技术。 定义:遥感是指不与目标物直接接触,应用探测仪器,接收目标物的电磁波信息,并对这些信息进行加工分析处理,从而识别目标物的性质及变化的综合性对地观测技术。 英文定义:Remote Sensing 简写为RS(3S之一) 空间特点—全局与局部观测并举,宏观与微观信息兼取 时相特点—快速连续的观测能力 光谱特点—技术手段多样,可获取海量信息 经济特点—应用领域广泛,经济效益高 ★遥感技术系统有哪几部分组成?每部分的作用。 信息获取是遥感技术系统的中心工作 信息记录与传输工作主要涉及地面控制系统 信息处理通过各种技术手段对遥感探测所获得的信息进行各种处理 信息应用是遥感的最终目的,包括专业应用和综合应用 ☆遥感有哪几种分类方法及哪些分类? 1)按遥感平台分:地面遥感、航空遥感和航天遥感 2)按工作方式分:主动式和被动式遥感.ps【主动式遥感是指传感器自身带有能发射电磁波的辐射源,工作时向探测区发射电磁波,然后接收目标物反射或散射的电磁波信息。被动式遥感是传感器本身不发射电磁波,而是直接接受地物反射的太阳光线或地物自身的热辐射。】 3)按工作波段分:紫外、可见光、红外、微波遥感、多光谱和高光谱遥感 4)按记录方式分:成像和非成像遥感 5)按应用领域分:外层空间、大气层、陆地、海洋遥感等,具体应用领域可分为城市遥感、环境、农业和林业遥感、地质、气象、军事遥感等。 遥感对地观测技术现状及发展展望? 现状(国内): 1)民用遥感卫星像系列化和业务化方向发展 2)传感器技术发展迅速 3)航空遥感系统日趋完善 4)国产化地球空间信息系统软件发展迅速 5)应用领域不断扩展 发展展望: 1)研制新一代传感器,以获得分辨率更高、质量更好的遥感数据 2)遥感图像信息处理技术发展迅速

遥感原理期末复习资料(知识点汇总)

遥感的定义: 遥感是指利用飞机、卫星或其他飞行器等运载工具(平台)上安装的某种装置(传感器),探测目标的特征信息(电磁波的反射或发射辐射),经过传输、处理,从中提取感兴趣信息的过程 遥感类型:按平台分为地面遥感、航空遥感、航天遥感、宇航遥感 遥感信息特点: (1)真实性、客观性 (2)探测范围大 (3)资料新颖且能迅速反应动态变化 (4)成图迅速 (5)收集资料方便 遥感系统的组成: 1、目标的信息特性 2、目标信息的传输 3、空间信息的采集 4、地面接收与预处理 5、信息处理 6、信息分析与应用

电磁波:交互变化的电磁场在空间的传播。 (1)电磁波与电磁波谱红外划分 ※紫外线:波长范围为0.01~0.38um,太阳光谱中只有0.3~0.38um波长的光到达地面,对油污染敏感,但探测高度在2000m 以下。 ※可见光:波长范围0.38~0.76um,人眼对可见光有敏锐的感觉,是遥感技术应用中的重要波段。 ※红外线:波长范围为0.76~1000um,根据性质可分为近红外、中红外、远红外和超远红外。 ※微波:波长范围为1mm~1m,穿透性好,不受云雾的影响。红外划分: ※近红外:0.76~3.0um,与可见光相似。 ※中红外:3.0~6.0um,地面常温下的辐射波长,有热感,又

叫热红外。 ※远红外:6.0~15.0um,地面常温下的辐射波长,有热感,又叫热红外。 ※超远红外:15.0~1000um,多被大气吸收,遥感探测器一般无法探测。 偏振:指横波的振动矢量偏于某些方向的现象或振动方向对于传播方向的不对称性。 黑体:在任何温度下,对各种波长的电磁辐射的吸收系数等于1(100%)的物体。 ※黑体辐射:黑体的热辐射称为黑体辐射。 黑体辐射定律:包括普朗克定律,玻尔兹曼定律,维恩位移定律,瑞里—金斯公式(注:基尔霍夫定律是一般物体发射定律。) 发射率概念:地物的辐射出射度(单位面积上发出的辐射总通量)W与同温度下的黑体辐射出射度 W黑的比值。 按照发射率与波长的关系,把地物分为: 黑体或绝对黑体:发射率为1,常数 灰体:发射率小于1,常数 选择性辐射体:反射率小于1,且随波长而变化。 物体的发射辐射—基尔霍夫定律:在一定温度下,地物单位面积上的辐射通量W和吸收率之比,对于任何物体都是一个常数,并等于该温度下同面积黑体辐射通量W 黑。在给定的温度下,物体的发射率=吸收率(同一波段);吸收率越大,发射率也越

遥感概论知识点整理

第一章绪论 遥感 广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测。狭义:应用探测仪器,不与探测目标接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 遥感探测系统 根据通感的定义,遥感系统包括被测目标的信息特征、信息的获取、信息的 传输与记录、信息的处理和信息的应用五大部分 主动遥感和被动遥感 主动遥感和被动遥感,主动遥感由探测器主动发射一定电磁波能量并接收目标的后向散射信号;被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量 与常规观测相比,遥感观测的特点 遥感观测可以实现大面积同步观测,并且不受地形阻隔等限制。 遥感探测,尤其是空间遥感探测,可以在短时间对同一地区进行重复探测,发现地球上许多事物的动态变化。 与传统地面调查和考察比较,遥感数据可以较大程度地排除人为干扰。 与传统的方法相比,可以大节省人力、物力、财力和时间,具有很高的经济效益和社会效益。 分别从遥感平台、传感器类型、工作方式和应用简述遥感类型 遥感平台:地面遥感,航空遥感,航天遥感,航宇遥感

传感器:紫外遥感,可见光遥感,红外遥感,微波遥感,多波段遥感 工作方式:主动遥感和被动遥感,成像遥感和非成像遥感 应用:外层空间遥感,大气层遥感,陆地遥感,海洋遥感 第二章电磁辐射与地物光谱特征 基本概念: 电磁波谱 按电磁波在真空中传播的波长或频率,递增或递减排序,构成了电磁波谱。 按照波长递减的顺序: 长波,中波和短波,超短波,微波,红外波段(超远红外,远红外,中红外,近红外),可见光(红橙黄绿青蓝紫,0.38~0.76微米),紫外线,X射线,γ射线。朗伯源、朗伯面 辐射亮度L与观察角无关的辐射源,称为朗伯源。一些粗糙的表面可近似看做朗伯源。严格来说,只有绝对黑体才是朗伯源。对于漫反射面,当入射幅照度一定时,从任何角度观察反射面,其反射亮度是一个常数,这种反射面称朗伯面。把反射比为1的朗伯面叫做理想朗伯面。 绝对黑体、灰体、选择辐射体 绝对黑体:一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。 灰体:没有显著的选择吸收,吸收率虽然小于1,但基本不随波长变化,这种物体叫灰体。如果发射率与波长无关,那么可把物体叫作灰体,否则叫选择性辐射体

遥感复习资料

名词解释: 1、遥感:是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2、地理信息系统:它是在计算机硬、软件系统支持下,对整个或部分地球表面空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。 3、电磁波:当电磁震荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁震荡在空间传播,这就是电磁波。 4、电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减,则构成了电磁波谱。 5、大气窗口:电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段。 6、遥感图像目视解译:指专业人员通过直接观察或借助铺助仪器判读在遥感图像上获取特定目标地物信息的过程。 7、遥感数字图像:以数字形式表示的遥感影像。 8、监督分类:包括利用训练区样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。 9、非监督分类:不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱信息进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的各个类别的实际属性进行确认。 10、地理实体:是地理数据库中的实体,是指在现实世界中再也不能划分为同类现象的现象。 11、拓扑关系:用来描述实体间相邻、连通、包含和相交等关系。 12、矢量数据:计算机对地理实体的隐式描述。 13、栅格数据:计算机对地理实体的显式描述。 14、数据库:为了一定目的,在计算机系统中以特定的结构组织,存储和应用相关联数据的集合。 15、空间数据库:是地理信息系统在计算机物理存储介质上存储的与应用相关的地理空间数据的总和。 16、关系模型:是根据数学概念建立的,它把数据的逻辑结构归结为满足一定条件的二维表形式。 17、叠置分析:是将有关主题层组成的各个数据层面进行叠置产生一个新的数据层面。

《遥感复习知识点》word版

第一章:绪论 1.遥感概念:遥远的感知 广义:遥感泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测。 狭义:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感系统: 目标物的电磁波谱特性:信息源 信息的获取:传感器、遥感平台 信息的接收:传输与记录 信息的处理:信息恢复、辐射校正、图像变换 信息的应用:信息获取的目的 3.遥感分类 按遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感 按传感器的探测波段分:紫外遥感(0.05-0.38)可见光遥感(0.38-0.76)红外遥感(0.76-1000) 微波遥感(1mm-10m)多波段遥感(波段在可见光和红外波段内的窄波段)按工作方式分:主动遥感和被动遥感、成像遥感和非成像遥感 按遥感的应用领域分:外层空间遥感、大气层遥感、陆地遥感、海洋遥感等 资源遥感、环境遥感、气象遥感、农业、林业、渔业、水质、水文遥感···4.遥感的特点 大面积的同步观测:遥感平台越高,视角越宽广,观测范围越广;不受地形阻隔 时效性:短时间内对同一地区进行重复探测、对天气预报、水灾火灾、军事作用 数据的综合性和可比性:红外遥感昼夜均可探测、微波遥感全天探测,由于探测波段、成像方式、成像时间、数据记录可按照要求设计,使其获得的数据具有同一性、相似 性,加上传感器都可兼容,所以数据具有可比性 经济性:与传统方法相比,大大减少人力、物力、财力和时间 局限性:目前遥感技术所利用的电磁波还有限,仅是其中几个波段范围;对许多地物的某些特征不能准确反映;信息的提取方法、挖掘技术不够完善 第二章:电磁辐射基础 1.电磁波谱与电磁辐射 电磁波谱:电磁波在真空中传播的波长或频率按递增或递减排列 波谱以频率从高到低排列可划分为γ射线、X射线、紫外线、可见光、红外线、无线电波。紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有0.3~0.38μm波长的光到达地面,对油污染敏感,但探测高度在2000 m以下。 可见光:波长范围:0.38~0.76μm,人眼对可见光有敏锐的感觉,是遥感技术应用中的重要波段。 红外线:波长范围为0.76~1000μm,根据性质分为近红外、中红外、远红外和超远红外。 近红外:0.76~3.0μm,与可见光相似。 中红外:3.0~6.0μm,地面常温下的辐射波长,有热感,又叫热红外。

遥感知识点系统归纳

遥感指非接触的,远距离的探测技术。 遥感卫星则是指用作外层空间遥感平台的人造卫星。遥感卫星主要用于科学试验、国土资源普查、农作物估产和防灾减灾等领域。它可以在轨道上运行数年,能在规定的时间内覆盖整个地球或指定的任何区域。当沿地球同步轨道运行时,它能连续地对地球表面某指定地域进行远距离的探测。所有的遥感卫星都需要有遥感卫星地面站,卫星获得的图像数据通过无线电波传输到地面站,地面站发出指令以控制卫星运行和工作。 9月8日,搭载遥感卫星二十一号的长征四号乙运载火箭点火升空。当日11时22分,我国在太原卫星发射中心用长征四号乙运载火箭,成功将遥感卫星二十一号发射升空,卫星顺利进入预定轨道。此次任务还同时搭载发射了国防科技大学研制的天拓二号卫星。遥感卫星二十一号,主要用于科学试验、国土资源普查、农作物估产及防灾减灾等领域。天拓二号卫星主要用于小卫星技术试验。这是长征系列运载火箭的第193次飞行。 19日11时15分,我国在太原卫星发射中心用长征四号乙运载火箭成功发射“高分二号”卫星,卫星顺利进入预定轨道。据了解,这颗卫星系目前我国分辨率最高的光学对地观测卫星,使国产光学遥感卫星空间分辨率首次精确到1米。 光学遥感卫星的分辨率优于1米即达到亚米级,是现在国际上遥感卫星最高分辨率等级。“高分二号”卫星是高分辨率对地观测系统重大专项首批启动立项的重要项目之一。“高分二号”卫星投入使用后,将与在轨运行的“高分一号”卫星相互配合,推动高分辨率卫星数据应用,为土地利用动态监测等行业和首都经济圈等区域应用提供服务支撑。 第一章、绪论 遥感(Remote Sensing):从远处探测、感知物体或事物的技术。即不直接接触物体本身,从远处通过各种传感器探测和接收来自目标物体的信息,经过信息的传输及其处理分析,来识别物体的属性及其分布等特征的综合技术。 遥感的系统组成:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分。 遥感按传感器的探测波段分类: 紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感。 遥感的特点:宏观性、综合性。覆盖范围大、信息丰富。 (简填)多波段性。波段的延长使对地球的观测走向了全天候。 多时相性。重复探测,有利于进行动态分析。 第二章、电磁辐射与地物光谱特征 瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。 粒子直径小于波长.(N/CO2/O3/O) 对可见光明显,波长越长散射越弱. 影像中霭、雾产生的主要原因. 米氏散射:当微粒的直径与辐射波长差不多时的大气散射。 粒子直径与波长相当.(烟/尘埃/小水滴) 方向性明显. 潮湿天气影响大. 无选择性散射:当微粒的直径比辐射波长大得多时所发生的散射。符合无选择性散射条件的波段中,任何波段的散射强度相同。 粒子直径比波长大得多.(水滴) 散射强度与波长无关. 大气窗口概念:由于大气层的反射、散射和吸收作用,使得太阳辐射的各波段受到衰减的作用轻重不

河南大学遥感期末复习资料

第一讲作业:1.遥感的概念以及狭义遥感的特点 广义的遥感:即遥远的感知,泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测。 狭义的遥感:运用探测仪器,不与探测目标相接触,从远处记录目标的电磁波特性,通过分析,揭示物体的物理特性及变化的综合性探测技术。 狭义的遥感具有以下三个特点: 1.运用探测仪器进行探测 2.仅记录物体的电磁波特性 3.揭示物体的物理特性及变化 2.遥感系统的组成 总的来说,遥感系统的组成可以分为四个部分。 1.信息源。信息源是指遥感需要对其探测的目标物。 2.信息获取。信息获取是指运用遥感技术装备接受、记录目标物电磁波特性的探测过程。 3.信息处理。信息处理是指运用光学仪器和计算机设备对所获取的遥感信息进行校正、分 析和解译处理的技术过程。

4.信息应用。信息应用是根据不同的目的将遥感信息应用于各个领域的过程。 3.遥感的工作波段以及它们具有的特性 遥感中较多地使用可见光、红外、微波波段以及紫外线的一部分。 特性:1.可见光:鉴别物质特征的主要波段,以光学摄影或扫描方式接收和记录反射特征。 2.红外线:近红外的性质与可见光相似,红外遥感主要采用热感应方式探测地物本身的 辐射,可以全天时遥感。 3.微波:分为毫米波、厘米波、分米波,具有热辐射性质,可以全天候全天时遥感探测, 可采用主动和被动方式成像,具有一定的穿透能力。 4.紫外线:用于探测碳酸盐分布和油污染的监测,一般高空遥感不宜采用。 4.遥感平台的种类 地面遥感平台、航空遥感平台以及航天遥感平台。 5.遥感器的成像方式 遥感器:搭载在遥感平台上,接收、记录目标物电磁波特性的仪器,包括照相机、扫描仪、成像雷达等。 遥感器成像方式: 摄影成像类型(光学/电成像类型)

海洋遥感复习知识点

海洋遥感复习知识点

————————————————————————————————作者:————————————————————————————————日期:

名词解释、填空 1.海面亮温:低于实际物体的温度 指物体的辐射功率等于某一黑体的辐射功率时,该黑体的绝对温度即为亮度温度。 2.发射率:观测物体的辐射能量与同观测物体具有相同热力学温度的黑体的辐射能量之比 根据发射率,=1黑体,0~1灰体 3.大气气溶胶:悬浮在空气中的来自地球表面的小的液体或固体颗粒。 气溶胶类型:海洋型、陆地型、火山爆发 自然(陆地海洋火山);人为(汽车尾气、污染物) 4.瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。 散射率与波长的四次方成反比,因此,瑞利散射的强度随着波长变短而迅速增大。对可见光的影响较大。 米散射:当微粒的直径与辐射波长差不多时的大气散射。气溶胶引起的,对波长依赖性很小 无选择散射:云,所有光都被散射回来 5.大气层结构简答, 根据温度分布,垂向划分:对流层、平流层、中间层、热成层、外大气层 1)对流层:有各种天气现象,强烈对流/温湿分布不均匀/航空活动区,对遥感最重要 2)平流层/同温层:天气现象少/空气稳定/水汽、沙尘少,温度随高度增加而增加 3)中间层:温度随高度增加而减少,对遥感的辐射传递几乎没影响 4)热成层:温度随高度增加而增加,高度电离状态,短波电磁波被电离层折返回地面 6.一类水体:浮游植物及其共变的碎屑主导海水光谱特性; 二类水体:除浮游植物外的其他物质在海水光谱特性中起主导作用海洋初级生产力:把无机碳变成有机碳的单位时间的速率,和叶绿素浓度、光照、光照时间、光穿透距离有关 7.遥感反射比(可见光、海色遥感):公式、向上辐亮度和向下辐照度之比,Rw和Ed之 比 归一化离水辐亮度:假设太阳在正上,把大气分子散射衰减消除的离水辐亮度 8.黄色物质:有色可溶有机物,陆源(植被,棕黄酸),海洋(动物死亡分解) 9.生物光学算法:通过离水辐亮度去推导海水中的各主分浓度的算法。由海水上面的离水 辐亮度推导叶绿素浓度、泥沙浓度、k490衰减系数、透明度等。

遥感数字图像处理考试知识点整理

遥感 第一章 1遥感数字图像;遥感数字图像的分类方式和对应类别。 (1)定义:遥感数字图像是数字形式的遥感图像。不同的地物能够反射或辐射不同波长的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。 (2)可见图像和不可见图像 单波段和多波段,超波段 数字图像和模拟图像 2遥感图像的成像方式(三大种:摄影、扫描、雷达)。 (1)摄影,扫描属于被动遥感 雷达属于主动遥感 (2)摄影:根据芦化银物质在关照条件下回发生分解这一机制,将卤化银物质均匀涂在片基上,制成感光胶片 扫描:扫描类遥感传感器逐点逐行地以时序方式获取的二维图像 雷达:由发射机向侧面发射一束窄波段,地物反射的脉冲,由无线接收后被接收机接收 3遥感图像的数字化(模数转换)过程——两大过程:采样、量化,名词解释。 采样:将空间上连续的图像变换成离散点的操作称为采样,即:图像空间位置的数字化。采样是空间离散。 量化:遥感模拟图像经离散采样后,可得到由M×N个像素点组合表示的图像,但其灰度(或彩色)仍是连续的,还不能用计算机处理。它们还要进一步离散并归并到各个区间,分别用有限个整数来表示,这称之为量化,即:图像灰度的数字化。量化属于亮度属性离散。 遥感图像数字化过程两个特点:亮度和空 4遥感数字图像的存储空间大小的计算。 图像的灰度级有:2,64,128,256 存储一幅大小为M*N,灰度量化位数G的图像,所需要的存储空间(图像数据量)为M*N*G(bit) 1B=8bit 1KB=1024B 1MB=1024KB 1GB=1024MB TM空间分辨:1,2,3,4,5,7为30米,6为120米 5遥感数字图像的分辨率(时间、空间、光谱、辐射分辨率); (1)时间分辨率:指对同一地点进行遥感采样的时间间隔即采样的时间频率,也称重访周期空间分辨率:指图像像素所代表的相应地面范围的大小,空间分辨率愈高,像素所代表的范围愈小 光谱分辨率:光谱分辨率是指成像的波段范围,分得愈细,波段愈多,光谱分辨率愈高 辐射分辨率:是传感器区分反射或发射的电磁波辐射强度差异的能力。高辐射分辨率可以区分信号强度的微小差异。 (2)常见传感器和空间分辨率书17-18页 6遥感数字图像的数据(数据级别、数据存储格式、元数据定义) (1)数据级别: 0级产品:未经过任何校正的原始图像数据 1级产品:经过了初步辐射校正的图像校正 2级产品:经过了系统级的几何校正,即根据卫星的轨道和姿态等参数以及地面系统中的有关参数对原始数据进行几何校正。产品的几何精度由上述参数和处理模型决定。 3级产品:经过几何精校正,即利用地面控制点对图像进行了校正,使之具有了更精确的地理坐标信息。产品的几何精度要求在亚像素量级上。 不同点:不同级别的产品使用条件不同,但是他们都是数据的集合,是信息量的汇总。一般来说,都是由元数据和图像基本数据两部分数据汇总的结果。

遥感复习重点

电磁波:在真空或介质中通过传播电磁场的振动而传输电磁能量的波。 电磁波谱:按电磁波在真空中波长或频率依递增或递减顺序划分波段,排列成谱。 方向反射:实际地物表面由于地形起伏,在某个方向上反射最强烈,这种现象称为方向反射。水体的光谱反射特性: –蓝、绿波段为反射带 –近、中红外波段为完全吸收带 植被的光谱反射特性: –蓝(0.45um)、红(0.67um)波段为吸收带 –绿波段(0.55um)为弱反射带 –近红外波段0.7-0.8um反射陡坡,0.8-1.3um有强反射带,但含水量造成反射吸收(1.45um、1.95um、2.7um) 土壤的光谱反射特性: –自然状态下土壤表面的反射率没有明显的峰值和谷值。 –土壤的反射波谱特性曲线与土壤质地组成有关 –土壤反射波谱特性曲线较平滑,因此在不同光谱段的遥感影像上,土壤的亮度区别不明显。

浑水与清水的光谱反射 ? 散射的方式随电磁波波长与大气分子直径、气溶胶微粒大小之间的相 对关系而变, 主要有米氏(Mie)散射、均匀散射、瑞利(Rayleigh )散射等。 ? 介质中不均匀颗粒的直径a 与入射波长λ同数量级时,发生米氏散射 ? 介质中不均匀颗粒的直径a>>入射波长λ时,发生均匀散射,无选择 性散射 ? 介质中不均匀颗粒的直径a 小于入射波长λ的十分之一时,发生瑞利 散射 有些波段的电磁辐射通过大气后衰减较小,透过率较高,对遥感十分有利,这 些波段通常称为“大气窗口”。 辐射传输方程 地表反射率 气层外太阳辐射照度 遥感数字图像:是以数字形式表示的遥感图像。 几何校正:就是从具有几何畸变的图像中消除畸变的过程。其任务是定量地确定图像上的像元坐标(图像坐标)与目标物的地理坐标(地图坐标等)的对应关系(坐标变换式) 多项式校正过程中应注意以下问题: (1)多项式纠正的精度与地面控制点的精度、分布和数量及纠正的范围有关。地面控制点的精度越高、分布越均匀、数量越多,几何纠正的精度就越高。 (2)采用多项式纠正时,在GCP 处的拟合较好,但在其他点的误差可能会较大。平均误差小,并不能保证图像各点的误差都小。 (3)多项式阶数的确定,取决于对图像中几何变形程度的认识。如果变形不复杂,那么1阶多项式就可以满足要求了,并非多项式的阶数越高,纠正的精度越高。 ()()()()[]{}() ()↑+=↑+-?+↓+-=↑+-=λλ λλλλλλλλλλλλτθδεθδθλρθδd g d V e d g d V g s L L L W E E L L L sec exp sec exp cos sec exp 220λρg ()λ0 E

遥感原理与应用知识点汇编

学习-----好资料 第一章电磁波及遥感物理基础 一、名词解释: 1遥感:(1)广义的概念:无接触远距离探测(磁场、力场、机械波); (2)狭义的概念:在遥感平台的支持下,不与目标地物相接触,利用传感器从远处将目标 地物的地磁波信息记录下来,通过处理和分析,揭示出地物性质及其变化的综合性探测技术。2、电磁波:变化的电场和磁场的交替产生,以有限的速度由近及远在空间内传播的过程称为电磁波。 3、电磁波谱:将电磁波在真空中传播的波长或频率递增或递减依次排列为一个序谱,将此序谱称为电磁波谱。 4、绝对黑体:对于任何波长的电磁辐射都全部吸收的物体称为绝对黑体。 5、绝对白体:反射所有波长的电磁辐射。 6、光谱辐射通量密度:单位时间内通过单位面积的辐射能量。 8、大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的电磁辐射波 段。 11、光谱反射率:p =P P/P O X 100%,即物体反射的辐射能量P P占总入射能量R的百分比,称为反射率p。 12、光谱反射特性曲线:按照某物体的反射率随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线。 二、填空题: 1、电磁波谱按频率由高到低排列主要由丫射线、X射线、紫外线、可见光、红外线、微波、无线电波等组成。 2、绝对黑体辐射通量密度是温度T 和波长入的函数。(19页公式) 3、一般物体的总辐射通量密度与绝对温度和发射率成正比关系。 4、维恩位移定律表明绝对黑体的最强辐射波长入乘绝对温度T是常数2897.8。当绝对 黑体的温度增高时,它的辐射峰值波长向短波方向移动。 5、大气层顶上太阳的辐射峰值波长为0.47 卩m。 三、选择题:(单项或多项选择) 1、绝对黑体的(②③) ①反射率等于1②反射率等于0③发射率等于1④发射率等于0。

遥感资料

第一章概论 1、按视觉可视性可将图像分为可见图像和不可见图像。 2、按图像的明暗程度和空间坐标的连续性,可将图像分为数字图像和模拟图像。 ①按图像明暗程度和空间坐标的连续性,可将图像分为()图像和()图像。 ②根据人眼的视觉可视性,可将图像分为()图像和()图像。 ③数字图像最基本的单位是(),其具有()和()特征。 ④遥感数字图像中,像素值称为()。 ⑤把模拟图像转变成数字图像称为()。 ⑥相同地点的任意图像,其亮度值一定相同。() ⑦像素的亮度值是绝对的。() ⑧遥感数字图像中的0是数值,不表示没有数据。() ⑨遥感数字图像一旦获取,颜色就是确定的。() ⑩遥感数字图像处理是多学科相互渗透的产物。() 1.名词解释 图像,数字图像,遥感,遥感数字图像 2. 问答 ①遥感数字图象处理系统的主要构成有哪些? ②常用的遥感数字图像处理系统有哪些? ③什么是3S技术,简述其关系及应用? ④遥感有哪些应用? 第二章遥感数字图像的获取与存储 1、遥感系统包括遥感试验、信息获取、信息传输、信息处理、信息应用。 2、传感器的分辨率辐射分辨率、光谱分辨率、空间分辨率、时间分辨率、亮度分辨率、角 度分辨率。 3、数字化包括两个过程:采样和量化 4、元数据是关于图像数据特征的表述,是关于数据的数据。 元数据与图像数据同时发布或者嵌入到图像文件中,或者是单独的文件。 5、通用遥感图像数据格式:1、BSQ格式(按照波段顺序依次记录各波段的图像)2、BIL 格式(每个像元按波段次序交叉排序)3、BIP格式(逐行按波段次序排列) ①遥感系统主要包括遥感试验、()、信息传输、()、信息应用五个部分。 ②按工作方式是否有人工辐射源,遥感分为()和()。 ③多光谱扫描仪()和专题制图仪()属于目标面扫描方式。 ④对于传感器的波长范围,()只能在晴朗的白天使用;()具有昼夜工作能力;()有 一定的穿透能力。 ⑤传感器的分辨率主要包括辐射分辨率、()、()和时间分辨率。 ⑥数字化包括两个过程:()和()。 ⑦()是关于数据的数据。 ⑧可见光和近红外光谱波段常用来增强或分离植被或水域。() ⑨电荷耦合器件即是CCD。() ⑩辐射分辨率是传感器记录的电磁光谱中特定波长的范围和数量。()

遥感数字图像处理教程期末复习题

遥感数字图像处理教程 第一章概论 1.1图像和遥感数字图像 1.1.1图像和数字图像 本书定义图像为通过镜头等设备得到的视觉形象 根据人眼的视觉可视性可将图像分为可视图像和不可视图像。可视图像有图片、照片、素描和油画等,以及用透镜、光栅和全息技术产生的各种可见光图像。不可见图像包括不可见光成像和不可测量值 按图像的明暗程度和空间坐标的连续性,可将图像分为数字图像和模拟图像。数字图像是指用计算机存储和处理的图像,是一种空间坐标和灰度不连续、以离散数字原理表达的图像。在计算机内,数字图像表现为二维阵列,属于不可见图像。模拟图像指空间坐标和明暗程度连续变化的、计算机无法直接处理的图像,属于可见图像。 利用计算机技术,可以实现模拟图像和数字图像之间相互转换。把模拟图像转化为数字图像成为模/数转换,记作A/D转换; 数字图像最基本的单位是像素。像素是A/D转换中国的取样点,是计算机图像处理的最小单位;每个像素具有特定的空间位置和属性特征。 1.1.2遥感数字图像 遥感数字图像时数字形式的遥感图像。不同的地物能够反射或辐射不同长波的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。 遥感数字图像中的像素成为亮度值。亮度值的高低由遥感传感器所探测到的地物电磁波的辐射强度决定。由于地物反射或辐射电磁波的性质不同受大气的影响不同,相同地点不同图像的亮度值可能不同。 图像的每个像素对应三维世界中的一个实体、实体的一部分或多个实体。在太阳照射下,一些电磁波被这个实体反射,一些被吸收。反射部分电磁波到达传感器被记录下来,成为特定像素点的值。 1.2压感数字图像处理 1.2.1遥感数字图像处理概述 遥感数字图像处理是利用计算机图像处理系统对遥感图像中的像素进行系列操作的过程。遥感数字图像处理主要包括三个方面 1.图像增强,使用多种方法,如:灰度拉伸、平滑、瑞华、彩色合成、主成分变换K-T变换、代数运算、图像融合等压抑、去除噪声、增强整体图像或突出图像中的特定地物的信息,是图像更容易理解、解释和判读、 图像增强着重强调特定图像特征,在特征提取、图像分析和视觉信息的显示很有用。 2.图像校正:图像校正也成图像回复、图像复原,主要是对传感器或环境造成的退化图像进行模糊消除、噪声滤除、几何失真或非线性校正。 信息提取:根据地物光谱特征和几何特征,确定不同地物信息的提取规则。 1.2.2 遥感数字图像处理系统 数字图像处理需要借助数字图像处理系统来完成。一个完整的遥感数字图像处理系统包括硬件系统和软件系统两大部分。 1.硬件系统 包括计算机、数字化设备、大容量存储、显示器和输出设备以及操作台 1)计算机 是图像处理核心,大的内存和高的CPU速度有助于加快处理的进度。 2)数字化设备

遥感复习重点讲解

名词概念 遥感广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。 定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。 遥感平台 :搭载传感器的载体。 传感器 :收集、探测、记录地物电磁波辐射信息的工具,是遥感技术系统中数据获取的关键设备。 遥感过程 :遥感信息的获取、传输、处理、及其判读分析和应用的全过程。 空间分辨率 :又可称地面分辨率,前者就记录的图像而言,后者就地表而言,其意义相同。能够详细区分最小单元的尺寸或大小,直接影响图像质量 与清晰度。 像元:是将地面信息离散化而形成的网格单元,单位为米(m)。 辐射畸变: 当太阳辐射相同时,图像上像元亮度值的差异直接反映了地物目标光谱反射率的差异。但实际测量时,辐射强度值还收到其他因素的影响而 发生改变。这一改变的部分就是需要改变的部分,故称为辐射校正。 几何畸变 :遥感图像在获取过程中由于多种原因导致景物中目标物相对位置的坐标关系图像中发生变化。(几何位置上发生诸如行列不均匀、像元大小 与地面大小对应不准确、地物形状不规则变化等畸变) 电磁波谱: 按电磁波波长的长短,依次排列制成的一个连续的带谱叫电磁波谱。绝对黑体: 如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。 大气窗口 :由于大气层的反射、散射和吸收作用,使得太阳辐射的各波段受到衰减的作用轻重不同,因而各波段的透射率也各不相同。我们就把受到大 气衰减作用较轻、透射率较高的波段叫大气窗口。 反射率 :地物的反射能量与入射总能量的比。 扫描成像 :是依靠探测元件和扫描镜头对目标地物以瞬时视场为单位进行的逐点、逐行取样,以得到目标地物电磁辐射特性信息,形成一定谱段的 图像。 摄影成像 瞬时视场角 :瞬时视场(IFOV),指遥感器内单个探测元件的受光角度或观测视野,单位为毫弧度(mrad)。IFOV越小,最小可分辨单元(可分像素)越小, 空间分辨率越高。 趋肤深度 :电磁波通过介质时,部分被吸收,强度要衰减。故将电磁波振幅减少1/e倍(37%)的穿透深度定义为趋肤深度H 色调 :地物电磁辐射能量在像片上的模拟记录,在黑白像片上表现为灰度,在彩色像上表现为色彩。 饱和度:(彩度、纯度、色度)指彩色的纯净程度,即彩色相对于光谱色的纯洁度。亮度(明度、光度)指色彩本身的明暗程度。 主成分分析 :是设法将原来众多具有一定相关性(比如P个指标),重新组合成

相关文档
最新文档