抗生素污水处理

抗生素污水处理
抗生素污水处理

抗生素生产废水治理技术

抗生素生产废水是一类成分复杂、色度高、生物毒性大、含多种抑制物质的难降解高浓度有机废水。

生物制药行业的废水处理后必须满足以下要求:COD≤300mg/L,BOD5≤150mg/L,NH3-N≤25mg/L,SS≤200mg/L

抗生素废水的处理方法:物化处理、厌氧处理和好氧处理

1 物化处理

目前用于抗生素废水处理的物化方法主要有以下几种:混凝-沉淀、吸附、

气浮、焚烧法和反渗透等,各种方法的处理效果见表1。

物化方法的选择应根据各类抗生素废水特点及试验结果而定。

2 生物处理工艺

生物处理工艺主要有好氧生物处理、厌氧生物处理及厌氧-好氧组合处理工艺。

2.1 好氧生物处理工艺

表 2 汇总了国内外部分抗生素生产废水好氧生物处理工艺及其主要运行参数。由表 2可知,抗生素生产废水的好氧生物处理工艺主要是早期传统活性污

泥法和 70 年代开发的革新替代工艺。但是,由于抗生素生产废水属于高浓度

有机废水,常规好氧工艺活性污泥法难以承受 COD 浓度 10g/L 以上的废水,

需对原废水进行大量稀释,因此,清水、动力消耗很大,导致处理成本很高。

2.2 厌氧生物处理工艺

与好氧处理相比,厌氧法在处理高浓度有机废水方面通常具有以下优点:

(1) 有机物负荷高;(2)污泥产率低,产生的生物污泥易于脱水;(3)

营养物需要量少;(4)不需曝气,能耗低;(5) 可以产生沼气、回收能源;(6) 对水温的适宜范围较广。

抗生素废水厌氧处理中常用工艺有升流式厌氧污泥床(UASB)、厌氧流化

床、厌氧折流板反应器等,处理负荷及效果见表 3。

厌氧生物工艺处理抗生素工业废水的试验研究较多而实际工程应用较少。

高浓度的抗生素有机废水经厌氧处理后,出水 COD仍达 1000~4000mg/L,不

能直接外排,需要再经好氧处理,以保证出水达标排放。但由于厌氧段采用甲烷化,对操作和运行条件要求严格,而且原水中大量易于降解的物质(如有机

酸等)在厌氧生物处理系统中被甲烷化,剩余的主要是难降解或厌氧消化的剩

余产物,因此,后需的好氧处理尽管负荷较低,但是处理效率也很低。

2.3 厌氧-好氧组合工艺

厌氧处理利用高效厌氧工艺容积负荷高、COD去除效率高、耐冲击负荷的优点,减少稀释水量并且能较大幅度地削减 COD,以降低基建、设备投资和运行费用,并回收沼气。厌氧段还有脱色作用,这对于高色度抗生素废水的处理意义较大。

好氧处理目的是保证厌氧出水经处理后达标排放。从工程应用角度应优先采用生物接触氧化和 SBR 工艺(序批式活性污泥法)。

表 4 汇总了国内外部分抗生素生产废水厌氧-好氧生物处理工艺及其主要运行参数。

2.2.4 水解酸化-好氧工艺

2-、高浓度氨氮对产甲烷菌的抑制以及沼气产量由于抗生素废水中高 SO

4

低、利用价值不高等原因,近年来研究者们开始尝试以厌氧水解(酸化)取代厌氧发酵。经过水解酸化,废水的 COD降解虽不明显,但废水中大量难降解有机物转化为易降解有机物,提高了废水的可生化性,利于后续好氧生物降解。而且产酸菌的世代周期短、对温度以及有机负荷的适应性都强于产甲烷菌,保证了水解反应的高效率稳定运行。厌氧水解工艺是考虑到产甲烷菌与水解产酸菌生长速率不同,在反应器中利用水流动的淘洗作用造成甲烷菌在反应器中难于繁殖,将厌氧处理控制在反应时间短的厌氧处理第一阶段。厌氧水解处理可以作为各种生化处理的预处理,由于不需曝气而大大降低了生产运行成本,可提高污水的可生化性,降低后续生物处理的负荷,大量削减后续好氧处理工艺的曝气量,而广泛的应用于难生物降解的制药、化工、造纸等高浓度有机废水的处理中。

表5汇总了国内外部分抗生素生产废水水解酸化-好氧生物处理工艺及其主要运行参数。

此外,水解酸化反应器不需设气体分离和收集系统,无需封闭,无需搅拌设备,因此造价低,且便于维修;反应器可在常温条件下运行,不需外界提供热源和供氧,出水无不良气体,节约能耗,降低了运行费用;此外还有耐冲击负荷,污泥产率低,占地少等优点,在工程中有推广的价值。

从表 5 看出,好氧工艺基本采用生物接触氧化工艺,该工艺具有生物量成功的经验。

点。该技术目前被广泛应用于工业废水处理中,并且在制药废水处理方面已有

大、处理效率高、占地面积小、运行管理方便、污泥产量低、耐冲击负荷等优

磺胺类药物的作用机理与应用

常见磺胺类药物简介及合理应用指导 胡树罗浩万硕 摘要:磺胺药(Sulfonamides)为比较常用的一类药物,具有抗菌谱广、可以口服、吸收较迅速等优点。有的磺胺药(如磺胺嘧啶,SD)能通过血脑屏障渗入脑脊液、作用稳定、且药效不易消失。但如果使用磺胺药缺乏科学的指导往往会带来一系列严重的不良反应,如何合理的使用磺胺类药物是本文介绍的重点。 关键字:磺胺药应用指导 引言 磺胺类药是人工合成的应用最早的化学药品。由于抗菌谱广、价格低、化学性质稳定、使用方便.既可注射用又可服。特别是高效、长效、广谱的磺胺药和增效剂使磺胺类药品在临床上的应用仅次于抗生素。但磺胺类药品同时也存在用量大、不良反应较多、细菌易产生耐药性等缺点。如使用不当会出现很多问题。 正文 1.常见的磺胺药 1.1磺胺药的合成及结构 1.1.1磺胺药的基本结构 一类具有抑菌活性的化学合成药,为对氨基苯磺酰胺(简称磺胺)的衍生物: 1.1.2磺胺药基本的合成方法

磺胺药的生产一般都以乙酰苯胺(退热冰)为起始原料,经磺酸氯磺化得对乙酰氨基苯磺酰氯。对乙酰氨基苯磺酰氯经氨水胺化、碱液水解和盐酸中和便得磺胺(SN)。磺胺与硝酸胍、纯碱熔融,处理后得磺胺脒。磺胺和磺胺脒曾是磺胺药常用品种,现在它们和对乙酰氨基苯磺酰氯都只作为磺胺药生产的中间体。磺胺嘧啶和磺胺甲基异異塞唑的生产方法不同。①磺胺嘧啶:在N,N′- 二甲基甲酰胺中,依次加入三氯化磷和乙烯基乙醚进行加成反应,所得加成物与磺胺脒在甲醇钠中进行环合反应,即得磺胺嘧啶钠盐,再经酸析和精制便得成品。②磺胺甲基异異塞唑:草酸二乙酯与丙酮在甲醇钠作用下缩合成为乙酰丙酮酸乙酯,与盐酸羟胺进行环合,便得5-甲基异異塞唑-3-甲酸乙酯。经氨水胺解和次氯酸钠霍夫曼降解,便得3-氨基-5-甲基异異塞唑。后者与对乙酰氨基苯磺酰氯在缚酸剂作用下缩合,便得乙酰化物,最后经碱液水解、酸析和精制便得成品。 1.2短效及中效磺胺 1.2.1 磺胺噻唑(ST)国作为消炎片单独使用,也和SD、SM2!联合作为三磺合剂。本品疗效虽然较好,但毒性强、副作用多,有被其他磺胺药取代的趋势 1.2.2磺胺嘧啶(SD)仍然是国外公认的优良药物,其抗菌作用和疗效均较好,口服后有较多药物(40%-80%)进入脑脊液中。由于脑膜炎双球菌菌株对本品耐药者日益增多,故本品在某些地区已不是治疗流脑的首选药物。缺点为乙酰化率较高,应用后有出现结晶尿和血尿的可能。鉴于其半衰期为17h,宜称之为中效磺胺,而常用的剂量和服药间期(每4-6h 1 次,每次1g)显然是过大和过短。 1.2.3 磺胺甲基嘧啶(SM1)抗菌作用和疗效与SD 大致相同,其最大缺点为出现血尿和结晶尿的机会较多。其半衰期为24h.,已和一些长效磺胺如SMP、SMD 等的半衰期相接近,因此以往的服药方法,每日2-3h 次,每次1-2g 可能不妥当,也可能是结晶尿之所以较多的重要原因之一。 1.2.4 磺胺二甲基嘧啶(SM2)抗菌作用较弱,临床疗效也较SD和SM1为差,其优点为不易出现血尿或结晶尿。本品及其乙酰化衍生物均比较易于溶解,毒性较低,也是三磺合剂中主要成分之—。 1.2.5 磺胺二甲异嘧啶抗菌作用较SD差,但较SM1为强。本品的主要优点为乙酰化率低,

抗生素废水特点及处理研究

摘要:分析了抗生素制药废水的来源及特点,对目前抗生素制药废水处理中应用的各种物化处理、生物处理及多种方法组合的生化处理技术进行了综述,并对各种处理方法的应用特点进行了分析,为该类废水的治理工艺选择提供参考。 关键词:抗生素制药废水物化处理、生物处理、组合生化技术。 抗生素自被人类发现以来,就一直广泛被用于临床医学中,是人类控制感染性疾病,保障身体健康及防治动植物病害的重要化学药物。随着制药行业的发展,抗生素的种类也不断增加,至今已逾百种。我国的抗生素生产业发展迅猛,现已有300多家企业生产占世界原料药产量的20%-30%的70多个品种的抗生素,成为世界上主要的抗生素制剂生产国之一。但是,由于生产工艺及技术的原因,抗生素生产中仍然存在着原料利用率低、提炼纯度低、废水中残留抗菌素含量高等问题势必造成对环境的严重污染,从而制约制药企业的发展。因此,研究各种有效的处理方式显得十分重要。 1 抗生素制药废水的来源和特点 国内生产抗生素主要以粮食、糖蜜等为主要原料,生产工艺包括微生物发酵、过滤、萃取结晶、化学方法提取、精制等过程,产生的废水主要包括提取和精制过程中的发酵废水;溶剂回收过程中的浓废水;生产设备洗涤和地板冲洗用水;废冷却水;发酵罐排放的废发酵母液。废水中污染物的主要成分为:发酵残余营养物(如葡萄糖、蛋白质和无机盐之类)、发酵代谢物、酸、碱、有机溶剂和其它化工原料等。 其特点为: a、难降解有机物浓度高; b、废水水量、水质变化幅度大、规律性差; c、废水中含有抗生素药物和大量胶体物质,DH变化大,带有颜色和气味。 2 抗生素废水的处理方法 与一般工业废水相似,抗生素废水的处理方法也可归纳为以下几种:物化处理方法、生化处理方法以及多种方法的组合生化处理等。 2.1物化处理方法 物化法包括混凝沉淀、吸附法、光降解、焚烧、电解和萃取等等 2 .1.1混凝沉淀法 由于抗生素生产废水成分复杂,有机物含量高,同时还含有少量的残留抗生素,在采用生化处理时,残留抗生素对微生物的强烈抑制作用造成废水处理过程复杂、成本高、效果不稳定。吴敦虎等人采用自制的聚合氯化硫酸铝( P A C S ) 和聚合氯化硫酸铝铁( P A F C S ) 处理大连制药厂废水,一次混凝处理与二次混凝处理CO Dc 去除率在8 0%以上,p H、C O Dc 、S S均可达到国家排放标准。此外,采用含钙离子复合絮凝剂对抗生素制药废水进行混凝处理,C O Dc r 去除率可达71%-77%,s s去除率达87%-89%,可大幅度地削减废水中残留抗生素的抑菌效力。 2.1.2 吸附法 吸附法可作为高浓度有机废水经生物处理后的深度处理。张满生等利用两级炉渣吸附和三级活性炭吸附对青海制药集团原料药生产废水进行深度处理,当进水CODcr为1145 mg/L 时,三级吸附后CODcr可降至300 mg/L以下。该方法投资小,工艺简单操作方便,易管理。 2.1.3光降解法 李灵芝,李建渠等以TiOSO4为原料,采取SAS工艺制备了TiO2和掺铁的光催化剂,对某制药废水( CODcr=1309mg/L)进行了降解实验。研究了光源、煅烧温度、掺铁比例、p H值、附加条件对废水降解率的影响。结果表明:700℃制备的Ti02 )在紫外光和太阳光下的降解率分别77%和70%。掺铁比例为0.5%的TiO2对废水的降解率为81%。p H=2的废水降解

抗生素污水处理

抗生素生产废水治理技术 抗生素生产废水是一类成分复杂、色度高、生物毒性大、含多种抑制物质的难降解高浓度有机废水。 生物制药行业的废水处理后必须满足以下要求:CO住300mg/L, BOD侈 150mg/L, NH3-N K 25mg/L, SSc 200mg/L 抗生素废水的处理方法:物化处理、厌氧处理和好氧处理 1物化处理 目前用于抗生素废水处理的物化方法主要有以下几种:混凝-沉淀、吸附、 气浮、焚烧法和反渗透等,各种方法的处理效果见表1。 物化方法的选择应根据各类抗生素废水特点及试验结果而定。 表1物化方法处埠讥半秦废术效果 生物处理工艺主要有好氧生物处理、厌氧生物处理及厌氧-好氧组合处理工 -f-p 乙。 2.1 好氧生物处理工艺 表2汇总了国内外部分抗生素生产废水好氧生物处理工艺及其主要运行参数。由表2可知,抗生素生产废水的好氧生物处理工艺主要是早期传统活性污泥法和70年代开发的革新替代工艺。但是,由于抗生素生产废水属于高浓度

有机废水,常规好氧工艺活性污泥法难以承受COD浓度1Og/L以上的废水, 需对原废水进行大量稀释,因此,清水、动力消耗很大,导致处理成本很高。 2.2 厌氧生物处理工艺 与好氧处理相比,厌氧法在处理高浓度有机废水方面通常具有以下优点: (1)有机物负荷高;(2)污泥产率低,产生的生物污泥易于脱水;(3) 营养物需要量少;(4)不需曝气,能耗低;(5)可以产生沼气、回收能源;(6)对水温的适宜范围较广。 抗生素废水厌氧处理中常用工艺有升流式厌氧污泥床(UASB)、厌氧流化 床、厌氧折流板反应器等,处理负荷及效果见表3。 厌氧生物工艺处理抗生素工业废水的试验研究较多而实际工程应用较少。 高浓度的抗生素有机废水经厌氧处理后,出水COD仍达1000?4000mg/L,不能直接外排,需要再经好氧处理,以保证出水达标排放。但由于厌氧段采用甲 烷化,对操作和运行条件要求严格,而且原水中大量易于降解的物质(如有机酸等)在厌氧生物处理系统中被甲烷化,剩余的主要是难降解或厌氧消化的剩余产物,因此,后需的好氧处理尽管负荷较低,但是处理效率也很低。 2.3 厌氧-好氧组合工艺 厌氧处理利用高效厌氧工艺容积负荷高、CODfc除效率高、耐冲击负荷的优点,减少稀释水量并且能较大幅度地削减COD以降低基建、设备投资和运行费用,并回收沼气。厌氧段还有脱色作用,这对于高色度抗生素废水的处理意义较大。 好氧处理目的是保证厌氧出水经处理后达标排放。从工程应用角度应优 先采用生物接触氧化和SBR工艺(序批式活性污泥法)。 表4汇总了国内外部分抗生素生产废水厌氧-好氧生物处理工艺及其主要运行参数。

抗生素类废水处理方法的研究

抗生素类废水处理方法的研究 摘要:近年来,随着我国经济的持续高速发展,环境污染问题日益成为了国民聚焦的热点问题。在我国诸多环境污染问题当中,最为凸显的是水污染问题。抗生素类废水有着成分复杂、COD浓度高、难生物降解、污染性强等特点。抗生素进入环境会对生物造成深远的影响,如何去除抗生素的残留引起许多国家的关注。抗生素在环境中主要发生物理化学降解和生物降解,生物降解过程具有抗性的微生物菌株发挥主要的功效,因此近些年利用微生物技术处理抗生素残留污染成为研究热点。本文对抗生素废水的处理方法尤其是对具有抗生素降解功能的微生物资源和利用复合菌系处理抗生素残留的生物技术进行概括总结,并对微生物处理抗生素技术的不足和发展方向进行展望。 关键词:抗生素;来源;危害;处理方法;微生物 前言 抗生素是一类能杀死或抑制微生物生长的药物,通常是指由细菌、真菌和放线菌等微生物在新陈代谢活动中形成的,兼备抗病原体和活性组分的物质[1-3]。数十年来已被大量应用。抗生素主要包括β-内酰胺类、大环内酯类、四环素类、链霉素和氯霉素等五大类,能在不同程度上起到抑菌、抗菌和杀菌作用,以用途来分,还可分为人用和兽用两种[4]。当前常用的抗生素大多是从微生物培养液中提取出来的,也有部分是利用化学手段进行人工合成的。 抗生素类药物主要用于治疗人和动物的各种疾病,同时也长期添加于动物饲料中以预防疾病和促进动物生长,投加在农业产品中催熟农产品,此类抗生素药物大部分经由人类和动物排泄物,农业和污水排放以原药或者代谢产物的形式进入环境[5,6]。由于排泄物中大多数残留抗生素的半衰期比较长,部分被吸附在底泥等固相环境中,而小易被固相吸附的部分,则容易富集在水生动物体内,对生物体产生慢性毒性效应[7]。抗生素在国内外的水环境中均有检出,甚至在部分生物体内也有检出,其对生态环境以及对人类健康的潜在危害,已经成为人们日益关注的环境污染问题。

磺胺类药物的综述

磺胺类药物的综述集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

磺胺类药的应用综述 摘要:磺胺类药物是人工合成的最早的一类化学治疗药物,在与细菌作斗争和保护人类健康中起重要作用。磺胺类药物用于临床已近50年,它具有抗菌谱较广、性质稳定、使用简便、生产时不耗用粮食等优点,磺胺类药物抗菌作用强,治疗范围广,在当今这个抗菌药百出不穷的时代,磺胺类药仍起着重要的作用。 关键字:发现发展分类抗菌机理应用原则耐药性不良反应 20世纪初,人们对细菌性疾病尚束手无策。直到磺胺类药物的发现,最先在1933年用人工合成的红色偶氮染料百浪多息治疗葡萄球菌血症患者。20世纪40年代之后,磺胺类药物仍有独特的抗菌机理、光谱抗菌、性质稳定、使用方便、价格低廉而用于临床的重要化学治疗药物之一。 1、磺胺类药物的发展 Domagk就发现百浪多息对感染链球菌的小白鼠有很强的保护作用,临床上用于治疗动物感染性疾病也得到满意的疗效。1935年Domagk发表了他的试验结果后,相继发现百浪多息中的有效基团是对氨苯磺胺,从此又合成一系列的磺胺类药物,其中有数种供用于临床,这样,在感染性疾病的化学治疗上开拓了一个新领域。一些过去被认为对动物是可怕的感染性疾病,使养殖户蒙受经济损失,如细菌性烈性传染病导致的死亡率用磺胺类药后都显着降低。然而,自青霉素、链霉素等抗菌素相继问世后,磺胺类的地位逐渐被抗菌素所取代,应用范围缩小了。最近一些年来,抗菌素的发展很快。但抗菌素的应用中仍有些问题未能彻底解决,如抗药性及不利反应等。由于抗药性的发展,抗菌素的用量虽然愈来愈大,而治疗效率却有逐渐降低的趋势,而且几乎所有抗菌素都各有其一定的不利反应,有的甚至是很严重的。所以不断寻找新的有效的抗菌药物,仍是很迫切的需要[2]。在此期间,磺胺类也有了很大的新发展,如某些乙酞化率低、肾合并症少的磺胺,某些长效磺胺以及增效剂的发现,克服了过去一些磺胺制剂的缺点,并增强了抗菌作用,扩大了应用的范围。于是磺胺类又重新被重视起来。 2、磺胺类药物的分类 磺胺药种类繁多,临床常用的有10余种,根据肠道吸收程度和临床用途,分为三大类,①肠道易吸收的磺胺药,包括(SM2)、磺胺异唑(SIZ)磺胺嘧啶(SD)、磺胺甲基异唑(SMZ)磺胺甲氧嘧啶(SMD)、磺胺二甲氧嘧啶(SDM)等,此类药物主要用于全身性的感染治疗,比如、尿路感染、伤寒、骨髓炎等,②肠道难吸收的磺胺药。比如酞磺胺噻唑(PST)等,因为这类药能在肠道内保持较高的浓度,所以只要用于肠道的感染如肠炎,③外用磺胺药。包括磺胺醋酰(SA)、磺胺嘧啶银盐(SD-Ag)、甲磺灭脓(SML),这些主要用于灼伤感染、化脓性创面感杂、眼科疾病等[4]。 3、磺胺类药的抗菌机理 细菌不能直接利用其生长环境中的,而是利用环境中的对氨苯甲酸(PABA)和二氢喋啶、谷氨酸在菌体内的二氢叶酸催化下合成二氢叶酸。二氢叶酸在的作用下形成四氢叶酸,四氢叶酸作为一碳单位转移酶的辅酶,参与核酸前体物(嘌呤、嘧啶)的合成。而核酸是细菌生长繁殖所必须的成分[6]。磺胺药的化学结构与PABA类似,能与PABA竞争二氢叶酸合成酶,影响了二氢叶酸的合成,因而使细菌生长和繁殖受到抑制。由于磺胺药只能抑菌而无杀菌作用,所以消除体内病原菌最终需依靠的防御能力。 4、磺胺类药在动物临床上的应用原则 动物全身性的感染:(SM2)、磺胺异唑(SIZ)磺胺嘧啶(SD)、磺胺甲基异唑(SMZ)磺胺甲氧嘧啶(SMD)、磺胺二甲氧嘧啶(SDM)等,用于巴士杆菌病、乳腺炎、子宫内膜炎、腹膜炎、败血症、呼吸道消化道泌尿道感染。 动物肠道感染:磺胺琥珀先磺胺噻唑、酞磺胺噻唑。 动物局部感染:醋酸磺胺米隆、磺胺醋酰钠、磺胺嘧啶银。 动物尿路感染:磺胺二甲嘧啶、磺胺间甲氧嘧啶、磺胺对甲氧嘧啶。 球虫:磺胺恶喹啉、磺胺二甲嘧啶、磺胺间甲氧嘧啶、磺胺地索辛。 脑炎:磺胺嘧啶、 乳腺炎:磺胺二甲嘧啶[1]。 剂量原则:首次倍量,使血药浓度迅速达到有效抑菌浓度,以后维持量,症状消失后2到3天。

牛奶中抗生素残留及其检测

牛奶中抗生素残留及其检测 徐州市畜禽水产品检测中心 摘要:抗生素在畜牧业中广泛应用,这造成了牛奶中大量残留抗生素。本文论述了牛奶中残留抗生素的原因及其危害性,并列举了目前较为流行的牛奶中抗生素残留的检测方法,介绍了其检测原理。为了了解徐州市牛奶中抗生素的残留情况,随机抽取样品40份,分别采用TTC法和纸片法对样品进行抗生素残留的检测,以农业部2001年发布的无公害食品牛奶中“抗生素不得检出”为判断标准。调查结果显示徐州市牛奶中有部分牛奶存在抗生素的残留。 关键词:牛奶,抗生素残留,国标TTC,微生物法 Assay on Residue of Antibiotics in Milk Abstracts: Antibiotics are used in stockbreeding abroad, and It is the reason why there is residue of antibiotics in milk. The reason and hazard of antibiotics residue are discussed in this paper. Several kinds of popular antibiotics screening test are listed and their principle is introduce simultaneously. In order to know the situation of antibiotics residue in milk from Xuzhou, we selected 40 samples at random. And detected the residue of antibiotics in milk by TTC and paper disc. Antibiotics should not be detected from milk according to the standard issued by the department of agriculture in 2001, but the test results showed that the residue of antibiotics in milk from Xuzhou is higher. Key words: milk, antibiotics residue, TTC, microbial test 抗生素是治疗动物疾病的常用药物,并作为饲料成分被广泛使用。但抗生素容易在动物体内及其产品中残留,经过食用后进入人体,给人类的健康造成危害。目前人们对牛奶的消费量越来越大,牛奶中残留的抗生素会对饮用者的身体健康造成危害,也会对牛奶发酵过程的发酵剂产生抑制作用,从而使牛奶变质造成经济损失。牛奶中抗生素残留的问题日益受到社会的重视。 一牛奶中抗生素残留情况的简介 1抗生素的种类介绍 抗生素类是主要的兽药添加剂和兽药残留物质,约占药物添加剂的60%,在世界及我国的农产品或食品进出口贸易中,常需检测的抗生素残留主要有以下六类: ⑴内酰胺类:内酰胺类抗生素主要用于抗革兰氏阳性细菌感染,也能有效抑制抗革兰氏阴性细

高浓度抗生素化学制药废水的处理

高浓度抗生素化学制药废水的处理* 卓世孔1程汉林白明超 (广州环发经贸发展公司,广州510180) 摘要采用微电解-厌氧水解-生物铁法-混凝串联工艺处理头孢类抗生素化学制药高浓度有机废水,结果表明,当微电解、厌氧水解和生物铁法水力停留时间分别为4、24和6 h,进水COD Cr 4000~4500 mg/L,BOD5 800~1200 mg/L,出水可达地方排放标准。 关键词抗生素微电解厌氧水解生物铁混凝 Treatment of high concentration organic wastewater from antibiotic pharmacy industry Zhuo Shikong, Cheng Hanlin, Bai Mingchao. Guangzhou Huanfa Economy Trade Development Company, Guangdong, 510180 Abstract: High concentration organic wastewater from cephalosporin antibiotic pharmacy industry was treated by the “micro electrolysis-anaerobic hydrolysis-biological iron-coagulating” technology. The result indicates that the effluent COD Cr and BOD5are below the first grade standards of the local wastewater drainage in the second period, when the COD Cr and BOD5 load is kept at 4000~4500 mg/L and 800~1200 mg/L, and the HRT of micro-electrolysis, anaerobic hydrolysis and biological iron is 4 h, 24 h and 6 h, respectively. Keywords: Antibiotic Micro-electrolysis Anaerobic hydrolysis Biological iron Coagulating 抗生素化学制药废水是一类浓度高、色度高、含难生物降解物和微生物生长抑制剂的高浓度有机废水,是制药废水中最难处理的废水之一,是我国制药行业废水治理的重点。目前国内外抗生素工业废水处理技术研究时有报导,但实际应用的治理技术不多且不成熟[1],而专门针对头孢类抗生素化学制药废水的处理研究未见报导。本文采用微电解-厌氧水解-生物铁法-混凝工艺, 对某制药厂头孢类抗生素化学制药高浓度有机废水进行了试验研究。 1 材料与方法 1.1 废水来源与水质特性 试验用废水取自某化学制药厂集水池,该厂生产头孢类抗生素原料药,如头孢硫脒、头孢曲松钠、头孢哌酮钠、头孢噻肟钠、头孢他啶等,每日废水排放量数百吨。废水组成复杂,除含有抗生素残留物、抗生素生产中间体、未反应的原料外,还含有少量合成过程中使用的有机溶剂,如乙醇、丙酮、二氯甲烷、吡啶、噻吩等。废水水质情况如表1所示。 表1 废水水质情况 1第一作者:卓世孔,男,1956年出生,工程师,主要从事环境污染治理和研究。 * 广州市重点污染源防治项目(穗环计[2002]126号)

环境中抗生素残留潜在风险及其研究进展_王冰

第30卷第3期2007年3月 环境科学与技术 环境中抗生素残留潜在风险及其研究进展 王冰1,孙成1*,胡冠九2 (1.南京大学环境学院污染控制与资源化研究国家重点实验室,南京210093;2.江苏省环境监测中心,南京210036)摘要:抗生素是一类目前在各国广泛应用的药物,主要通过粪便散布于环境中。在一些国家的河流和湖泊已经检测到了不同种类的抗生素,其在环境中的残留引起了研究者的关注。文章就抗生素的生产和使用、环境中抗生素的暴露途径以及其生态影响进行了综合归纳,并对目前国内外的研究进展进行了分析和讨论,提出了今后的研究重点和方向。 关键词:抗生素;暴露途径;环境风险 中图分类号:X701文献标识码:A文章编号:1003-6504(2007)03-00108-04 近年来,抗生素的滥用、大量耐药性致病菌的出现引起了人们对抗生素的广泛关注,并且,人们不仅关心抗生素的生产、投放市场和使用情况,抗生素在环境中的残留、归趋以及对环境的影响亦成为焦点。目前国内相关研究工作开展较少,国外的研究已取得一定成果。因此,本文根据近年的文献综合分析了抗生素的使用、环境中抗生素残留以及其潜在的环境风险,并提出了今后的研究重点和方向。 1抗生素的使用与性质 1.1抗生素的使用及生物体内代谢转化 抗生素是由微生物产生的在低浓度下能抑制其他微生物生长的小分子天然有机化合物[1]。目前被广泛使用的抗生素,按照化学结构分类,可分为β-内酰胺类、喹诺酮类、四环素类、氨基葡糖苷类、大环内酯类、多肽类等。 自从1929年青霉素被发现并临床应用,抗生素作为一种重要的药物广泛用于医药、畜牧业和水产养殖业,并且近年来种类和数量快速增长。在抗生素的多种用途中,医用和兽用的用量各占一半左右。据统计,澳大利亚每年抗生素36%用于人类,8%用于兽药,56%混入饲料当中[2]。 我国是抗生素的生产和使用大国。1997年德国青霉素产量为900t[3],1998年丹麦抗生素总产量为87t[4]。而我国,2003年仅青霉素产量就为28000t,占世界总产量的60%;土霉素产量10000t,占世界总产量的65%;多西环素产量也为世界第一[2]。并且我国抗生素的使用量非常大,数据显示我国药物处方中抗生素占70%,与西方国家30%比例相比,反映了我国抗生素滥用情况严重[2]。 抗生素被机体吸收后,少部分经过羟基化、裂解和葡萄糖苷酸化等代谢反应生成无活性的产物,而很大一部分的以原形通过粪便和尿液配出体外[3,5-6]。在环境中,一些代谢物甚至能重新转变为最初的活性药物。曾有文献报导在液体肥料中氯霉素糖苷酸可转变为氯霉素,N-4-乙酰基磺胺甲嘧啶转变为磺胺甲嘧啶[7]。1.2环境中抗生素的来源及归趋 抗生素的污染为点源和面源排放相结合,其进入环境的途径可归纳为图1。抗生素由于其挥发性差,在环境中的主要迁移途径为水体和食物链[2,7]。 抗生素制药主要包括发酵、 化学合成、提取和成药四个阶段,其成药过程所产生的废水含有多种难降解的生物毒性物质和较高浓度的活性抗生素,它们对废水生化处理中微生物的生长有很强的抑制作用,加之生产过程中废水排放的不连续性及浓度波动较大等特点,使抗生素生产废水很难降解[6,8]。但从排放量来看,环境中抗生素的主要来源是医药和畜牧养殖业的使用和排泄而不是生产工厂的工业废水。 残留于人畜粪便的抗生素,一部分可通过肥料的施用、径流等进入水体,而大部分作为废水进入污水处理厂,再随污水处理厂流出的水进入水体。目前污水处理厂对抗生素不能彻底去除,故大量的抗生素及其代谢产物最终进入水体。 另一方面,水产养殖业也广泛使用抗生素,通过 作者简介:王冰(1982-),女,硕士,主要从事环境中抗生素检测和生态影响研究;*通讯作者:教授,(电子信箱)envidean@nju.edu.cn。 108 ??

磺胺类抗菌药

磺胺类抗菌药 一、概述 磺胺类药物属广谱抑菌药,曾广泛用于临床。 【化学及分类】磺胺药是人工合成的对氨基苯磺酰胺衍生物,药物分子中含有苯环、对位氨基和磺酰胺基。磺胺药分为三类,包括用于全身性感染的肠道易吸收类、用于肠道感染的肠道难吸收类如柳氮磺吡啶以及外用磺胺类如磺胺米隆(SML)和磺胺嘧啶银(SD-Ag)。其中肠道易吸收类又根据药物半衰期,进一步分为短效类:磺胺异噁唑(SIZ)和磺胺二甲嘧啶,中效类:磺胺嘧啶(SD)和磺胺甲噁唑(SMZ),以及长效类:磺胺多辛和磺胺间甲氧嘧啶(SMM) 磺胺多辛与乙胺嘧啶合用,治疗对氯喹耐药的恶性疟疾。 【抗菌谱】对大多数革兰阳性菌和阴性菌有良好的抗菌活性,其中最敏感的是A 群链球菌、肺炎链球菌、脑膜炎奈瑟菌、淋病奈瑟菌、鼠疫耶氏菌和诺卡菌属;其次是大肠埃希菌、志贺菌属、布鲁菌属、变形杆菌属和沙门菌属;也对沙眼衣原体、疟原虫、卡氏肺孢子虫和弓形虫滋养体有抑制作用。但是,对支原体、立克次体和螺旋体无效,甚至可促进立克次体生长。磺胺米隆和磺胺嘧啶银尚对铜绿假单胞菌有效。 【作用机制】对磺胺药敏感的细菌,在生长繁殖过程中不能利用现成的叶酸,必须以碟啶、对氨苯甲酸(PABA)为原料,在二氢蝶酸合酶的作用下生成二氢蝶酸,后者与谷氨酸生成二氢叶酸。在二氢叶酸还原酶催化下,二氢叶酸被还原为四氢叶酸。四氢叶酸活化后,可作为一碳基团载体的辅酶参与嘧啶核苷酸和嘌呤的合成。磺胺药与对氨苯甲酸的结构相似,可与之竞争二氢蝶酸合酶,阻止细菌二氢叶酸合成,从而发挥抑菌作用。PABA与二氢叶酸合酶的亲和力比磺胺药强数千倍以上,使用磺胺药时,应首剂加倍。脓液或坏死组织中含有大量的PABA,局麻药普鲁卡因在体内也能水解产生PABA,它们均可减弱磺胺药的抗菌作用。【耐药性】细菌通过基因突变或质粒介导,产生耐药性。 【体内过程】治疗全身感染的药物体内分布广泛,血浆蛋白结合率为25%~95%,血浆蛋白结合率低的药物易于通过血脑屏障。磺胺药主要在肝脏代谢为无活性的乙酰化物,也可与葡糖醛酸结合。主要从肾脏以原型药、乙酰化物、葡糖醛酸结合物三种形式排泄。磺胺药及其乙酰化物在碱性尿液中溶解度高,在酸性尿液中易结晶析出,乙酰化物的溶解度低于原型药物。肠道难吸收类药物必须在肠腔内水解,使对位氨基游离后才能发挥抗菌作用。 【不良反应及禁忌症】1.泌尿系统损害:尿液中的磺胺药一旦结晶析出,可产生结晶尿、血尿、疼痛和尿闭等症状。服用磺胺嘧啶或磺胺甲噁唑时,应适当增加饮水量并同服等量碳酸氢钠以碱化尿液,服药超过一周者,应定期检查尿液;2.过敏反应:局部用药或服用长效制剂易发生。药疹和皮疹分别多发生于药后5~10天和7~9天。偶见多形性红斑;偶见剥脱性皮炎,严重者可致死。本药有交叉过敏反应,有过敏史者禁用;3.血液系统反应:长期用药可能抑制骨髓造血功能,导致白细胞减少症、血小板减少症甚至再生障碍性贫血,发生率极低但可致死。用药期间应定期检查血常规4.神经系统反应:少数病人出现头晕、头痛、乏力、萎靡和失眠等症状,用药期间不应从事高空作业和驾驶;5.其他:口服引起恶心、呕吐、上腹部不适和食欲不振;餐后服或同服碳酸氢钠可减轻反应。可致肝损害甚至急性肝坏死,肝功能受损者避免使用。新生儿、早产儿、孕妇和哺乳期妇女不应使用磺胺药,以免药物竞争血浆蛋白,使新生儿或早产儿血中游离胆红素增

养殖废水处理方案

养殖场废水处理方案养殖场废水如何处理 养殖废水主要包括动物尿液、部分粪便和养殖栏冲洗水,水中富含氮、磷、有机物、高悬浮物,是一种高浓度有机废水。养殖场污染物的污染成分极为复杂,见表2-2。主要包括:氮、磷等水体富营养化物质;氨气、硫化氢、甲烷、甲醇、甲胺、二甲基硫醚等恶臭气体;铁、锌、锰、钴、碘等矿物元素;铜、砷、汞、硒等重金属物质;抗生素、抗氧化剂、激素等兽药残留物;大肠杆菌、炭疽、禽流感、五号病、布氏杆菌病、结核病等人畜共患传染病病菌。下面由台江环保为你推荐养殖场废水处理方案,了解下养殖场废水该如何处理。 养殖场污水处理的模式演变 第一代处理工艺:厌氧-还田模式 粪便污水还田作肥料是一种传统的、最经济有效的处置方法,可以使粪尿污水不排向外界环境,达到零排放。分散户养方式的粪污处理均是采用这种方法。这种模式适用于远离城市,经济比较落后,土地宽广的规模化猪场。养殖场周围必须要有足够的农田消纳粪便污水。要求养殖规模不大,当地劳动力价格低,大量使用人工清粪,冲洗水量少。 在美国,粪污还田前一般不经过专门的厌氧消化装置进行沼气发酵,而是贮存一定时间后直接灌田。由于担心传播畜禽疾病和人畜共患病,畜禽粪便废水经过生物处理之后再适度地应用于农田已成为新趋势。德国、丹麦、奥地利等欧洲国家则是将粪便污水经过中温或高温厌氧消化后再进行还田利用,这样可以达到寄生虫卵和病原菌的无害化。 国内一般采用厌氧消化后再还田利用,这样可以避免有机物浓度过高引起烂根和烧苗,同时,经过厌氧发酵,可以回收能源—甲烷,并且能杀灭部分寄生虫卵和病原微生物。 第二代处理工艺:厌氧-还田模式 养殖废水经过厌氧消化处理后,再采用氧化塘、土地处理系统或人工湿地等自然处理系统对厌氧消化液进行后处理。适用于离城市较远,经济欠发达,气温较高,土地宽广,地价较低、有滩涂、荒地、林地或低洼地可作废水自然处理系统的地区。规模化猪场规模一般不能太大,对于猪场而言,一般年出栏在5万头以下为宜,以人工清粪为主,水冲为辅,冲洗水量中等。 第三代处理工艺:厌氧-好氧处理模式(工业化处理模式) 厌氧-好氧处理模式的养殖场水处理系统由预处理、厌氧处理、好氧处理、后处理、污泥处理及沼气净化、贮存与利用等部分组成。需要较为复杂的机械设备和要求较高的构筑物,其设计、运转均需要受过较高教育的技术人员来执行。 厌氧-好氧处理模式适用于地处大城市近郊,经济发达,土地紧张,没有足够的农田消纳规模化猪场粪污的地区。采用这种模式的养殖场规模较大,一般出栏在5万头规模以上,当地劳动力价格昂贵,主要使用水冲清粪,冲洗水量大。 第四代处理工艺:厌氧-好氧-膜生物反应器工艺

制药厂抗生素废水处理工艺设计

制药厂抗生素废水处理工艺设计 摘要 本次毕业设计以制药厂抗生素废水为主要水源,设计抗生素废水的主要处理工艺。该废水生物化学需氧量高,而且有高浓度的BOD和COD,有机物,以及悬浮固体(SS)。在资料分析基础上,比较了现在的多种抗生素废水处理,最终确定以水解酸化+两级生物处理(AB法)处理抗生素废水。该设计工艺中包括了相关处理构筑物设计计算,通过设计,使该厂废水处理水达到国家排放标准。 关键词:抗生素废水、水解酸化、AB法、COD、BOD

Pharmaceutical antibiotic wastewater treatment process design Abstract The graduation design with pharmaceutical factory antibiotic wastewater as the main source of antibiotic wastewater, design the main treatment process. The wastewater biological chemical oxygen demand (COD) high, and have high levels of BOD and COD, organic matter, and suspended solids (SS). Based on the data analysis, compares the variety of antibiotic wastewater treatment now, and finally determined that two levels by hydrolysis acidification + biological treatment (AB method) deal with antibiotic wastewater. This design process includes correlation processing structures design calculation, through the design, make the factory wastewater treatment water reach national emission standard. Key words:pharmary sewage, sewage treatment,difflunce-acidificatio, Adsorption-Biodegratio n、BOD、COD

磺胺类药物

磺胺类药物在抗菌药物发展史上占有十分重要的地位,近年来由于抗生素和喹诺酮类药物的发展,使得磺胺类药物在临床上的使用不那么突出,但随着细菌耐药性研究的进展,抗生素和喹诺酮类药物不良反应的报导逐渐增多,磺胺类药物又重新被人们认识。在兽医临床上,由于它价格便宜,疗效确实,使用越来越广泛。近年来随着磺胺类新药合成的增加,毒副作用正在逐渐变小,而在动物体内代谢半衰期延长,它们在兽医治疗学上的重要性将被重新评价。 磺胺类药物除了治疗敏感菌所致传染病外,通常情况下还用于马、牛、传染性脑膜炎,羊下痢、猪的下痢和弓形体病。对于禽类球虫病的治疗,磺胺类药物是不可或缺的,对住白细胞虫病更具有较好疗效。 磺胺药物系同一基本结构衍生的系列化合物,结构相似,名称相近,人们时常混淆。有时将两种不同药物当作一种药物,有时又将一个药物当成两个药物。笔者在查阅一些资料的基础上,将常用药品整理列表,以供使用时参考。 一、全身感染用药 名称英文名称缩写别名 磺胺噻唑 Sulfathiazole ST 消治龙 磺胺异噁 唑Sulfafurazole SIZ 菌得清 磺胺二甲异恶唑 磺胺二甲Sulfadimidine SM2

嘧啶 磺胺二甲 异嘧啶 Sulfisomidine SM2′′磺胺索嘧啶 磺胺嘧啶 Sulfadiazine SD 大安 磺胺达嗪 磺胺甲基 异噁唑 Sulfamethoxazole SMZ 新诺明新明磺磺胺苯吡 唑 Sulfaphenazole SPP 磺胺氯哒 嗪 Sulfachlorpyridazine 磺胺甲氧 哒嗪Sulfamethoxypyridazine S MP 长效磺胺长效磺胺 -A 磺胺甲氧嗪 磺胺对甲 氧嘧啶Sulfadimethoxydiazine SMD 消炎磺 磺胺-5-甲氧嘧啶 磺胺二甲 氧嘧啶Sulfadimethoxine SDM 磺胺-2,6-二甲氧嘧啶 磺胺间二甲氧嘧啶 磺胺邻二 甲氧嘧啶Sulfadimoxine SDM′ 周效磺胺磺胺多 辛磺胺-5,6-二甲氧 嘧啶 磺胺间甲 氧嘧啶Sulfamonomethoxine SMM 制菌磺泰灭净长 效磺胺-C

牛奶中抗生素残留的几种常用检测方法

牛奶中抗生素残留的几种常用检测方法 随着奶牛饲养业的发展,抗生素在预防和治疗奶牛疾病方面得到广泛的应用。生鲜牛奶中抗生素的来源主要是:第一,治疗泌乳期病牛时使用的抗生素会从奶牛体内移行到乳腺残留进入牛奶中,资料表明治疗后的奶牛,其挤出的牛奶5天内都有抗生素残留;其二,为了预防奶牛疾病并提高产量,在奶牛饲料中添加抗生素也会造成牛奶中抗生素的残留;第三,由于牧场管理不善,挤奶、储奶没有严格的卫生制度和配套的设施,人为添加或造成牛奶抗生素的污染。 牛奶中含有抗生素,不仅对人的健康造成很大的危害,而且对乳品加工企业带来经济损失(因无法生成酸奶和奶酪)。因此必须严格控制牛奶中抗生素残留,除了要做好科学饲养、精心管理;正确挤奶和预防疾病外,还要规范抗生素的使用,按国标中有关规定,用药后的奶牛5天后所产的牛奶才可作为原料乳,并且要检测其残留。世界粮农组织(FAO)、世界卫生组织(WHO)、欧盟(EC)及美国的食品和药品管理局(FDA)等对食品中抗生素最大残留量都有明确的规定,我国也有鲜奶中抗生素残留量检验标准(—94)。 目前,鲜奶中抗生素残留的检测方法大致分为三类:生物测定法(微生物测定法、放射受体测定法)、免疫法(放射免疫法、荧光免疫法、酶联免疫法)、理化分析法(波谱法、色谱及联用技术)。下面介绍几种常用的牛奶中抗生素残留检测方法。 TTC法 TTC法是我国鲜奶中抗生素残留量检验标准(—94)的检测法,属生物检测法。其测定原理基于抗生素对微生物的抑制作用。如果牛奶中含有抗生素,则加入菌种(嗜热链球菌)经培育~3小时后,加入TTC指示剂(三苯基四氮唑)不发生还原反应,所以样品呈无色状态;如果牛奶中不含抗生素,则样品呈红色.这样实验后样品颜色不变的为阳性,样品染成红色的为阴性。 TTC法的具体操作步骤: 1.菌液制备:将单菌种(嗜热链球菌)以脱脂乳为培养基,在36±1℃培养箱中培 养15小时后,再以脱脂乳以至于1:1稀释待用; 2.取待检样液9mL,在80℃水浴加热5分钟后冷却到37℃以下,加活菌液1mL,在36℃±1℃水浴2小时,加入4%的TTC指示剂, 36℃±1℃水浴培养30分钟; 3.若样液颜色不变为阳性,呈红色为阴性;若阳性的样液,再置于水浴中培养30 分钟,不显色的为阳性,呈红色为阴性. TTC法测定各种抗生素的灵敏度为:青霉素:4ppb,链霉素:500ppb,庆大霉 素:400ppb,卡那霉素:5000ppb.它具有费用低,易开展的优点;缺点是耗时长,要求操作人员需有一定专业知识且实验过程中菌液的制备、水浴过程控制都要求严格遵守操作规程,否则易出现假阳性,以致出现检验结果的不稳定性。Delvotest sp法(戴尔沃检测法) 该法最早在香港传到广东的,其使用是基于20世纪80年代初香港要求广东出口的生奶必须“无抗”且要求采用Delvotest法检测。该方法也是生物测定法,其试剂是由荷兰DSM公司生产并由AOAC认证。原理是利用微生物—嗜热芽胞菌在64℃条件下培养~3小时后会产酸,酸引起指示剂BCP(溴甲酚紫)变为黄色;若牛奶样品中不含抗生素,培养后样品呈黄色,如样品中含有抗生素, 嗜热芽胞菌生长受到抑制而无法产酸,指示剂将不变色.

抗生素废水处理

抗生素废水处理 发布时间:2012-9-27 14:21:59 中国污水处理工程网 抗生素生产废水属于难降解有机废水,特别是残留的抗生素对微生物的强烈抑制作用,可造成废水处理过程复杂、成本高和效果不稳定。因此在抗生素废水的处理过程中,采用物理处理方法或作为后续生化处理的预处理方法以降低水中的悬浮物和减少废水中的生物抑制性物质。 一、抗生素废水处理物理方法 目前应用的抗生素废水处理物理方法主要包括混凝、沉淀、气浮、吸附、反渗透和过滤等。 1、抗生素废水处理混凝法是在加入凝聚剂后通过搅拌使失去电荷的颗粒相互接触而絮凝形成絮状体,便于其沉淀或过滤而达到分离的目的。采用凝聚处理后,不仅能有效地降低污染物的浓度,而且废水的生物降解性能也得到改善。在抗生素制药工业废水处理中常用的凝聚剂有:聚合硫酸铁、氯化铁、亚铁盐、聚合氯化硫酸铝、聚合氯化铝、聚合氯化硫酸铝铁、聚丙烯酰胺(PAM)等。 2、沉淀是利用重力沉淀分离将密度比水大的悬浮颗粒从水中分离或除去。 3、气浮法是利用高度分散的微小气泡作为载体吸附废水中的污染物,使其视密度小于水而上浮,实现固液或液液分离的过程。通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。 4、吸附法是指利用多孔性固体吸附废水中某种或几种污染物,以回收或去除污染物,从而使废水得到净化的方法。常用的吸附剂有活性炭、活性煤、腐殖酸类、吸附树脂等。该方法投资小、工艺简单、操作方便,易管理,较适宜对原有污水厂进行工艺改进。 5、反渗透法是利用半透膜将浓、稀溶液隔开,以压力差作为推动力,施加超过溶液渗透压的压力,使其改变自然渗透方向,将浓溶液中的水压渗到稀溶液一侧,可实现废水浓缩和净化目的。 6、吹脱法当氨氮浓度大大超过微生物允许的浓度时,在采用生物处理过程中,微生物受到NH3-N的抑制作用,难以取得良好的处理效果。赶氨脱氮往往是废水处理效果好坏的关键。在制药工业废水处理中,常用吹脱法来降低氨氮含量,如乙胺碘呋酮废水的赶氨脱氮。 二、抗生素废水处理化学方法 抗生素废水处理1、光催化氧化法 该技术可有效地降解制药废水中的有机物浓度,且具有性能稳定、对废水无选择性、反应条件温和、无二次污染等优点,具有很好的应用前景。以TiO2作催化剂,利用流化床光催化反应器处理制药废水,考察了在不同工艺条件下的光催化效果,结果表明:进水COD分别为596、861mg/L时,采用不同的试验条件,光照150min后光催化氧化阶段出水COD分别为113、124mg/L,去除率分别为81.0%、85.6%,且BOD5/COD值也可由0.2增至0.5,提

抗生素残留现状及检测方法

抗生素残留现状及检测方法 随着我国经济的快速发展,人们追求效益最大化,抗生素的 使用越来越普遍,如用抗生素治疗奶牛的乳腺炎;畜禽养殖户在 饲料中添加抗生素和激素,提高种畜的抗病能力和食欲;水产养 殖用户为了让大闸蟹加快脱壳过程、长得肥大生猛,给蟹喂食大 量抗生素和激素等。我国是抗生素生产和使用大国,据统计每年约有6000吨抗生素用于饲料添加剂,占全球抗生素饲料添加剂的50%。 抗生素的大量滥用已经严重威胁到人们的身体健康,专家指出,经常食用含有抗生素的食品,即使是微量的,也能使人出现荨麻疹或造成过敏性休克。时常摄入含有抗生素的食品,可使某些菌株产生耐药性,从而带来预防与治疗某些人畜疾病的困难。如果长期食用抗生素残留的食物,可造成人体中一些非致病菌的死亡,使菌群平衡失调或引起核黄素缺乏症和紫癜性损伤。特别是氯霉素的滥用,极易损害人类骨髓的造血功能,并由此导致再生障碍性贫血的发生。两年前,四川资阳地区曾暴发猪链球菌疫情,微生物专家李明远教授认为,很可能是养殖业者长期在猪饲料里滥用抗生素导致的。 常用抗生素包括β-内酰胺类、四环素类,氨基糖苷类,大环内酯类,磺胺类等,世界各国均对抗生素的使用量提出严格标准,欧盟的标准比日本和美国的标准更加严格,限量值更低,我国要想保障本国食品安全并出口产品到上述国家,就必须加强我国的自身的检测能力。 一般来说,肉类(畜禽),鱼虾(水产),蛋类,奶类,饲料、蜂蜜等产品需要进行抗生素检测,常用方法包括:液相色谱或液相色谱与质谱联用,微生物抑制法和酶联免疫方法。 色谱方法是一种理化检测方法,一般要经过样品的提取、脱蛋白、离心、层析柱净化、衍生化等步骤,能检测抗生素的具体含量,敏感性较高,但检测程序复杂,费用较高,需购买色谱仪等检测设备,不适合小型检验室。 微生物抑制法和酶联免疫方法属于筛选方法,操作简便、快速,消耗成本低,不需要购买大型仪器,但阳性结果需要其他方法进行确认。酶联免疫方法存在一定的假阳性,下面针对微生物方法进行详细介绍。

相关文档
最新文档