蛋白质分离纯化的步骤
蛋白质的分离纯化方法

1、透析和超过滤 w利用蛋白质分子不能透过半透膜将其 与小分子物质分开 w半透膜为玻璃纸或纤维素材料
加
压
血液透析
血液
透析液
小分子溶出 小分子被带出
透析机
利用蛋白质分子不能穿越半透膜的性质,将蛋白提取液置 于透析袋中,透析袋置于纯水,蒸馏水,或缓冲液中,蛋白质 溶液中的小分子物质穿越半透膜,从而实现纯化蛋白质的 目的.
• 从离心管底部钻空,分段收集 样品,实现蛋白质分离
3、凝胶过滤
凝胶一般由葡聚糖制 成,含有很多微孔
小分子蛋白质进入微 孔内,因而滞流时间长
大分子蛋白质不能进 入微孔而径直流出
3、凝胶过滤
(二)利用溶解度差别的纯化方法
1.等电点沉淀 调整溶液pH 不同蛋白在各自 pI处依次沉淀
2.盐溶和盐析 3.有机溶剂分级分离法
w降低介电常数 w争夺水化膜
等电聚焦电泳
双向电泳
(三)利用电荷差异
离子交换层析 蛋白质按照在相应pH条
件下所带电荷的不同而 以不同的速率向下移动 带有更多负电荷的蛋白 质以更快的速率被洗脱 分段收集渗出液,实现蛋 白质的分离
(四)利用对配体的特异生物学 亲和力的纯化方法
具有பைடு நூலகம்强的专一性
亲和色谱颗粒
利用压力或离心力,强 行使水或其他小分子 溶质透过半透膜,而使 蛋白质留在膜上,以达 到纯化的目的(脱盐和 浓缩)
2、密度梯度离心
• 将蔗糖溶液加入离心管中进行 离心建立蔗糖梯度
• 仔细将蛋白质样品(混合物)加 入蔗糖梯度的顶端,再次离心 沉降
• 当蛋白质达到和自己相同的密 度梯度时停止移动
• 于是在不同的蔗糖梯度中存在 的蛋白质不同
简述蛋白质分离纯化的基本方法

简述蛋白质分离纯化的基本方法蛋白质是有机体重要的组成部分,由氨基酸编码,执行了多种生物功能,例如促进新陈代谢,生物合成,免疫等。
为了获得高纯度的蛋白质,必须将其从其他成分中分离和纯化。
这就是蛋白质纯化。
蛋白质纯化的基本方法包括:一、分子大小法蛋白质主要通过分子过滤器来分离和纯化。
该过程基于分子间的亲和性原理,通过过滤器膜的通透性以及不同蛋白质的大小差异将蛋白质从溶液中分离出来。
二、萃取技术萃取技术是基于蛋白质的共沉淀特性,通过不同的有机溶剂来区分和分离蛋白质,将沉淀的蛋白组分收集后,再进行精细回收。
三、离子交换技术离子交换技术也是基于蛋白质的离子属性,采用各类加压装置,以及特殊离子交换模块以及合成模块,来实现将收集物分离筛选后回收。
四、双模立体技术双模立体技术是采用两种不同的液体体系,如水基和有机溶剂基,在不同的状态或浓度下对蛋白质进行再离析技术,从而实现蛋白质的有效分离纯化。
五、凝胶精分技术凝胶精分技术是改良和发展起来的一种新型蛋白质分离纯化技术,主要基于交叉链结构,可以基本上实现同一类分子配体分子完整地分离纯化。
六、共晶引擎技术共晶引擎技术可基于共晶相邻能量差异,通过电荷,配体结合等不同形式来改变分子的邻近能量,从而有效的将蛋白质分离出来。
以上就是蛋白质分离纯化的基本方法,可以从不同的角度神明蛋白质的性质,以达到有效的提纯的目的。
蛋白质的分离纯化对解析有机体内蛋白质的结构和功能,也极为重要。
目前,已经有很多高级的技术和模块来实现蛋白质分离纯化,例如蛋白质分子调控,杂交等。
通过有效利用上述方法,可以有效精细和完整得提纯高纯度的蛋白质。
蛋白质的分离纯化和表征

蛋白质的分离纯化和表征
第21页
2. 盐析 在蛋白质水溶液中,加入大量高浓度强
电解质盐如硫酸铵、氯化钠、硫酸钠等, 可破坏蛋质分子表面水化层,中和它们电 荷,因而使蛋白质沉淀析出,这种现象称 为盐析。
而低浓度盐溶液加入蛋白质溶液中,会 造成蛋白质溶解度增加,该现象称为盐溶。
盐析机理:破坏蛋白质水化膜,中和表面 净电荷。
灵敏度高,能检测1微克蛋白,重复性好。
蛋白质的分离纯化和表征
第48页
蛋白质纯度判定
各种层析单峰,电泳单带,双向电泳单点, 末端氨基酸测定一个,溶解度曲线单转折。
蛋白质的分离纯化和表征
第49页
盐溶盐溶—盐析
• 等电点沉淀蛋白质溶液中加入NaCl后沉淀 溶解—盐溶
• 原因?
分子在等电点时,相互吸引,聚合沉淀,加入少
许盐离子后破坏了这种吸引力,使分子分散,溶
于水中 蛋白质的分离纯化和表征
第9页
盐析 盐析((NH4)2SO4)
• 向蛋白质溶液中加入大量硫酸铵后蛋白质 会沉淀析出
• 原因?
蛋白质脱去水化层而聚集沉淀
蛋白质的分离纯化和表征
第46页
蛋白质含量测定Ⅱ
3.Folin-酚法(Lowry法) 蛋白质中酪氨酸或半胱氨酸,能与Folin-酚试
剂起氧化还原反应,生成蓝色化合物,500nm比 色测定。
Folin-酚试剂配制比较复杂。 4.BCA法
蛋白质还原Cu2 +成Cu+,与4,4’-二羧基-2,2’-二 喹啉(BCA)形成配合物,显紫色,比色测定。
到达最高值。
蛋白质的分离纯化和表征
第13页
三、蛋白质分离纯化普通标准
总目标:增加制品纯度或比活 1.前处理:因动/植物/细菌而异 2.粗分级分离:采取盐析/等电点沉淀/有 机溶剂分级分离等方法 3.细分级分离:采取凝胶过滤、离子交换 层析、吸附层析以及亲和层析等 4.结晶
分离纯化蛋白质的方法

分离纯化蛋白质的方法蛋白质是生命体内最基本的分子,它们参与了生命体内的许多重要生物学过程,如代谢、信号转导、免疫防御等。
因此,对蛋白质的研究具有重要的科学意义。
但是,蛋白质在生物体内的含量很少,且与其他成分相混合,因此需要通过分离纯化的方法来获取纯净的蛋白质样品。
本文将介绍几种常用的分离纯化蛋白质的方法。
1. 溶液层析法溶液层析法是一种常用的蛋白质分离纯化方法。
它基于蛋白质在不同的化学性质和结构特征下在固定相中的不同亲和力,通过不同的溶液组成、pH值、离子强度等条件来分离纯化蛋白质。
溶液层析法的操作简单、效果好,可以分离出高纯度的蛋白质。
但是,它需要对分离材料的性质和蛋白质的性质有深入的了解,以便选择合适的分离条件。
此外,溶液层析法需要大量的分离材料和实验室设备,成本较高。
2. 凝胶层析法凝胶层析法是一种基于蛋白质分子大小、形状和电荷等性质的分离纯化方法。
它利用凝胶作为分离材料,通过分子筛效应、凝胶孔道大小和分子电荷等因素来分离不同大小和电荷的蛋白质。
凝胶层析法具有操作简单、分离效果好、成本低等优点。
但是,它需要长时间的分离过程,而且凝胶的孔径大小和材料的性质会影响分离效果。
此外,凝胶层析法只能分离相对较小的蛋白质,对大分子蛋白质的分离效果较差。
3. 电泳法电泳法是一种通过电场作用将不同电荷的蛋白质分离的方法。
它利用电泳移动速度与蛋白质质量和电荷密度之间的关系,将蛋白质分离纯化。
电泳法具有操作简单、分离效果好、成本低等优点。
但是,它需要专业的电泳设备和实验技能,而且对蛋白质的性质和电泳条件有较高的要求。
此外,电泳法只能分离相对较小的蛋白质,对大分子蛋白质的分离效果较差。
4. 亲和层析法亲和层析法是一种基于蛋白质与其配体之间的亲和作用来分离纯化蛋白质的方法。
它利用配体与蛋白质的特异性结合来分离纯化目标蛋白质。
亲和层析法具有分离效果好、选择性高、可重复使用等优点。
但是,它需要高纯度的配体和专业的实验技能,而且对蛋白质的性质和配体的选择有较高的要求。
盐析蛋白的工艺

盐析蛋白的工艺
盐析蛋白是一种从蛋白质溶液中分离纯化蛋白质的工艺。
它通常包括以下步骤:
1. 提取蛋白质:从原料中提取蛋白质,如鸡蛋、奶制品或植物蛋白。
2. 去除杂质:将提取的蛋白质溶液进行初步处理,去除杂质和不溶性物质。
3. 加盐:向蛋白质溶液中加入盐类,如氯化钠或硫酸铵。
盐的加入可以改变蛋白质的溶解度,促使蛋白质沉淀析出。
4. 沉淀蛋白质:随着盐浓度的增加,蛋白质开始逐渐沉淀。
这时可以通过离心或过滤等方法将沉淀的蛋白质分离出来。
5. 洗涤:对沉淀的蛋白质进行洗涤,去除残留的盐和杂质。
6. 干燥或浓缩:将洗涤后的蛋白质进行干燥或浓缩,得到最终的盐析蛋白产品。
盐析蛋白的工艺可以根据不同的需要进行调整,以获得特定酸碱度、溶解度和纯度的蛋白质产品。
这种工艺适用于食品、医药、生物工程等领域的蛋白质分离和纯化。
蛋白纯化方法

蛋白纯化方法一、离心。
离心是一种常用的蛋白纯化方法,它利用蛋白质在不同离心速度下沉降速度的差异来分离蛋白。
通过逐步调整离心速度和时间,可以将混合物中的不同颗粒分离开来,从而得到目标蛋白的富集样品。
离心方法操作简单,适用于大多数蛋白质的初步富集。
二、凝胶过滤层析。
凝胶过滤层析是一种分子大小分离的方法,通过在凝胶柱中筛选不同大小的蛋白质分子,实现蛋白的分离和纯化。
这种方法操作简便,分离效果好,适用于大多数蛋白质的纯化。
三、离子交换层析。
离子交换层析是一种利用蛋白质表面电荷差异进行分离的方法。
在离子交换柱中,蛋白质会根据其表面电荷与离子交换树脂发生相互作用,从而实现蛋白质的分离和纯化。
这种方法操作简单,分离效果好,适用于具有不同电荷特性的蛋白质。
四、亲和层析。
亲和层析是一种利用蛋白质与亲和层析介质之间特异性结合进行分离的方法。
通过选择合适的亲和层析介质,可以实现对特定蛋白质的高效分离和纯化。
这种方法操作简单,适用于特定蛋白质的纯化。
五、逆流层析。
逆流层析是一种利用蛋白质与逆流层析介质之间的亲和性进行分离的方法。
通过逆流层析柱中的逆流洗脱,可以实现对蛋白质的高效分离和纯化。
这种方法操作简单,适用于特定蛋白质的纯化。
总结。
蛋白纯化是生物化学研究中不可或缺的重要步骤,选择合适的纯化方法对于获得高纯度的蛋白样品至关重要。
本文介绍了几种常用的蛋白纯化方法,包括离心、凝胶过滤层析、离子交换层析、亲和层析和逆流层析,希望能为您的实验提供一些参考。
在实际操作中,需要根据目标蛋白的特性和实验要求选择合适的纯化方法,并结合实际情况进行优化,以获得高质量的蛋白样品。
祝您的实验顺利,取得理想的结果!。
常用的蛋白质纯化方法和原理
常用的蛋白质纯化方法和原理蛋白质的纯化是生物化学研究中非常重要的一步,纯化蛋白质可以用于结构解析、功能研究、动态过程研究等各种生物学实验。
常用的蛋白质纯化方法有盐析法、凝胶过滤法、离子交换色谱法、亲和色谱法、逆渗透法和层析法等。
下面将对这些方法的原理和步骤进行详细阐述。
1. 盐析法盐析法是根据蛋白质在溶液中的溶解性随盐浓度的变化而变化的原理进行蛋白质的纯化。
该方法是利用蛋白质在高盐浓度下与水结合能力降低,使其从溶液中沉淀出来。
应用盐析法时,需要先调节溶液的盐浓度使蛋白质溶解,然后逐渐加入盐使其过饱和,蛋白质便会析出。
最后通过离心将蛋白质的沉淀物分离,得到纯化的蛋白质。
2. 凝胶过滤法凝胶过滤法是利用凝胶的pores 来分离蛋白质的一种方法。
凝胶通常是聚丙烯酰胺(也称作Polyacrylamide)或琼脂糖。
研究者将蛋白质样品加入到过滤膜上,较小的蛋白质能够通过pores,较大的分子则被排出。
通过选择不同大小的凝胶孔径,可以根据蛋白质的大小来选择合适数目的过滤膜。
凝胶过滤法需要进行缓冲液体积的连续换流,将蛋白质与其他杂质分离开来。
3. 离子交换色谱法离子交换色谱法是利用蛋白质与离子交换基质之间静电吸引力的不同而分离的方法。
离子交换基质通常是富含正离子或负离子的高分子材料。
在离子交换色谱法中,样品溶液在特定的pH 下流经离子交换基质,带有不同电荷的蛋白质能够与基质发生反应,吸附在基质上。
为了获得纯化蛋白质,需要通过梯度洗脱,逐渐改变缓冲液pH 或离子浓度,使吸附在离子交换基质上的蛋白质逐渐释放出来。
4. 亲和色谱法亲和色谱法是利用蛋白质与特定的配体相互作用特异性进行分离的方法。
配体可以是天然物质,如金属离子、辅酶或抗体,也可以是人工合成的结构。
在亲和色谱法中,样品溶液经过含有配体的固定相,与配体发生特异性相互作用,蛋白质与其它组分分离。
然后可以通过改变某些条件(如pH、温度或离子浓度)来洗脱纯化的蛋白质。
蛋白纯化的原理
蛋白纯化的原理
蛋白纯化是从复杂的生物组织或液体中提取和分离目标蛋白质的过程。
蛋白纯化的目的是去除其他杂质,并获得高纯度的目标蛋白质样品,以便进行进一步的研究或应用。
蛋白纯化的原理基于不同蛋白质的物理和化学特性的差异,通常采用一系列步骤来进行分离和纯化。
1. 细胞破碎:将含有目标蛋白质的生物样品(例如细胞和组织)进行破碎,以释放细胞内的蛋白质。
2. 澄清:通过离心等方法去除碎细胞中的大颗粒物质,如细胞核、细胞碎片和凝集物,得到澄清液。
3. 分离:根据蛋白质的一些基本性质进行初步分离。
常见的方法包括透析、凝胶过滤、离子交换层析、分子筛分离等。
这些方法主要基于蛋白质的分子大小、电荷、亲疏水性或亲合性等特性进行分离。
4. 纯化:采用更具选择性的方法进一步纯化目标蛋白质。
比如使用亲和层析,利用特定配体与目标蛋白质的特异性结合来实现分离;或者采用电泳技术,如凝胶电泳、等电聚焦电泳等。
5. 确认:通过测定分离纯化后蛋白质样品的特征,如电泳分析、质谱分析等,验证目标蛋白质的纯度和活性。
不同的蛋白纯化方法可以根据目标蛋白质的特性和需求进行组合和优化,以达到高效、快速和高纯度的纯化效果。
蛋白质的分离纯化
蛋白质的分离纯化一,蛋白质(包括酶)的提取大部份蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质那么溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采纳不同溶剂提取分离和纯化蛋白质及酶。
(一)水溶液提取法稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。
提取的温度要视有效成份性质而定。
一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。
但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。
为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。
下面着重讨论提取液的pH值和盐浓度的选择。
1、pH值蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。
用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。
2、盐浓度稀浓度可促进蛋白质的溶,称为盐溶作用。
同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以摩尔。
升浓度为宜。
缓冲液常采用磷酸盐和碳酸盐等渗盐溶液。
(二)有机溶剂提取法一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的必然的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。
但必需在低温下操作。
丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶专门优越,一是因为丁醇亲脂性强,专门是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为%)可不能引发酶的变性失活。
另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。
蛋白质的纯化的方法及原理
蛋白质的纯化的方法及原理蛋白质的纯化是从其来源中去除其他有机物和无机物,使其成为纯净的蛋白质样品的过程。
蛋白质纯化的方法可以根据需要选择,其中常用的方法包括盐析、凝胶过滤、电泳、金属柱层析、亲和层析、离子交换层析、逆相高效液相色谱等。
下面将详细介绍这些方法及其原理。
一、盐析盐析是利用不同浓度的盐溶液对蛋白质溶液进行逐渐稀释,从而使蛋白质发生沉淀的过程。
纯化蛋白质的关键是利用蛋白质与溶剂中离子之间的相互作用来控制蛋白质的溶解和沉淀过程。
在盐析中,通过选择离子强度和种类可以调整蛋白质溶液中所需溶剂化离子的浓度,达到沉淀和纯化蛋白质的目的。
二、凝胶过滤凝胶过滤是一种分子筛分离方法,利用不同孔径的凝胶进行分离。
凝胶的孔径能够排除较大分子,如核酸和细胞碎片,而较小分子,如蛋白质则能通过孔隙,实现纯化。
该方法简单易行,不需要任何特殊设备,适用于中小分子量的蛋白质纯化。
三、电泳电泳是利用蛋白质在电场中的移动性差异进行分离和纯化的方法。
常用的电泳方法有平板电泳、SDS-PAGE(聚丙烯酰胺凝胶电泳)和Western blotting (免疫印迹法)等。
电泳能够根据蛋白质的电荷、分子大小和不同的电场力,在凝胶中分离蛋白质,使其形成带状。
通过切割所需蛋白质的带状区域,可以实现对目标蛋白质的纯化。
四、金属柱层析金属柱层析是利用金属离子与蛋白质之间的亲和性进行分离的方法。
金属柱通常被配制成金属离子亲和基质,并固定在柱子上。
目标蛋白质通过与金属离子发生亲和作用而被保留在柱中,其他杂质则从柱中流出。
通过调节洗脱缓冲液的离子浓度和pH值,可实现对目标蛋白质的纯化。
五、亲和层析亲和层析是利用配体与其特异性结合的蛋白质进行分离和纯化的方法。
通常将配体固定在柱子上,待蛋白质样品通过柱子时,目标蛋白质与配体结合,其他杂质则流失。
通过改变洗脱缓冲液的条件,如离子浓度、pH值和络合剂的添加,可以实现目标蛋白质的纯化。
六、离子交换层析离子交换层析是一种利用蛋白质与离子交换基质之间的相互作用进行分离和纯化的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质分离纯化的一般程序可分为以下几个步骤:(一)材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。
所以要采用适当的方法将组织和细胞破碎。
常用的破碎组织细胞的方法有:1.机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。
常用设备有,高速组织捣碎机、匀浆器、研钵等。
2.渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。
3.反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。
这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。
4.超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。
5.酶法如用溶菌酶破坏微生物细胞等。
(―)蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。
抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。
如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。
在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。
(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。
比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。
常用的有下列几种方法:1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。
2.盐析法不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。
被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。
3.有机溶剂沉淀法中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。
能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。
此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。
由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。
(四)样品的进一步分离纯化用等电点沉淀法、盐析法所得到的蛋白质一般含有其他蛋白质杂质,须进一步分离提纯才能得到有一定纯度的样品。
常用的纯化方法有:凝胶过滤层析、离子交换纤维素层析、亲和层析等等。
有时还需要这几种方法联合使用才能得到较高纯度的蛋白质样品。
卵清蛋白分离提取及纯化的具体试验步骤一、实验目的与原理鸡卵粘蛋白存在于鸡蛋清中,对胰蛋白酶有强烈的抑制作用,高纯度的鸡卵粘蛋白抑制胰蛋白酶的分子酶的分子比为l:lo鸡卵粘蛋白在中性或酸性溶液中对热和高浓度的腺都是相当稳定的,而在碱性溶液中较不稳定。
由于鸡卵粘蛋白对胰蛋白酶有强烈的抑制作用,因此可以用鸡卵粘蛋白做亲和配基配制纯化胰酶的亲和材料。
二、材料与试剂:1.材料:新鲜鸡蛋2只2:仪器:抽滤瓶500- lOOOmK烧结漏斗、移液器、磁力搅拌器3:试剂:10%TCA,用固体NaOH 调调PH 至1.05— 1. 10,需要50ml、5N HCL、5N NaOH、冷丙酮、胰蛋白酶液、BAEE-O. 05M , PH8. OTris-HCL 缓冲液(每ml 含0. 34BAEE 和2.22mgCaCL2) , 50ml pH8. 0, 0. IM Tris-HCL 缓冲液三、操作步骤1,取两只新鲜鸡蛋,得蛋清50ml,置于烧杯中,外用温水浴25C — 30C,在不断搅拌条件下,缓慢加入等体积得三氯乙酸一丙酮(1:2V/V),立即出现大量白色絮状沉淀,加完后最终PH约3. 5,再继续搅拌30min,然后在4C冰箱中放置过夜。
2,次日用布氏漏斗抽滤,得黄绿色清液。
3,边搅拌边加入4C预冷的丙酮200ml沉淀蛋白,在4C放置2h之后将上清液小心倒入瓶中回收,下部沉淀部分于4000rpm离心5min,收集沉淀。
4,将沉淀溶于10ml无离子水中,对无离子水(50倍)透析4h,换水两次,再对碳酸钠缓冲液透析过夜,4000rpm离心10min ,去除不溶物。
抗菌蛋白分纯的步骤准备试剂:异丙醇含0. 3M盐酸弧的95汇醇无水乙醇1%SDS操作步骤:1.取沉淀DNA后剩余的上清,用异丙醇沉淀蛋白质。
每使用lml TRIzol加1. 5ml异丙醇,室温放置10分钟,2〜8C 12000Xg离心10分钟弃上清。
2.用含0. 3M盐酸弧的95%L醇洗涤蛋白质沉淀。
每使用lmlTRIzol加2ml洗涤液,室温放置20分钟,2〜8C 7500Xg离心5分钟,弃上清,重复两次。
用2nd无水乙醇同样方法再洗一次。
3.真空抽干蛋白质沉淀5-10分钟,用1%SD溶解蛋白质,反复吸打,50C温浴使其完全溶解,不溶物2〜8C lOOOOXg离心10分钟除去。
分离得到的蛋白质样品可用于Western Blot 或-5至-20 C保存备用。
注意事项:1.蛋白质沉淀可保存在含0.3M盐酸弧的95聽醇或无水乙醇中2-8° C—个月以上或- 5至-20 C—年以上。
2.用0.1% SDS在2-8C透析三次,lOOOOXg离心10分钟取上清即可用于WesternBlot o常见问题分析:得率低:A.样品裂解或匀浆处理不彻底。
B.最后得到的蛋白质沉淀未完全溶解。
蛋白质降解:组织取出后没有马上处理或冷冻。
电泳时条带变形:蛋白质沉淀洗涤不充分。
丫球蛋白分离,纯化,鉴定的方法(包括原理,步骤,预期结果,注意事项)[原理]血清中蛋白质按电泳法一般可分为五类:清蛋白、a, 1-球蛋白、a 2-球蛋白、B - 球蛋白和丫 -球蛋白,其中丫 -球蛋白含量约占16%, 100ml血清中约含1.2g左右。
首先利用清蛋白和球蛋白在高浓度中性盐溶液中(常用硫酸钱)溶解度的差异而进行沉淀分离,此为盐析法。
半饱和硫酸钱溶液可使球蛋白沉淀析出,清蛋白则仍溶解在溶液中,经离心分离,沉淀部分即为含有丫-球蛋白的粗制品。
用盐析法分离而得的蛋白质中含有大量的中性盐,会妨碍蛋白质进一步纯化,因此首先必须去除。
常用的方法有透析法、凝胶层析法等。
本实验釆用凝胶层析法,其目的是利用蛋白质与无机盐类之间分子量的差异。
当溶液通过SephadexG—25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒的网孑L,而分子直径小的无机盐能进入凝胶颗粒的网孔之中.因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而可达到去盐的目的。
脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们等电点的不同可进行分离。
a—球蛋白、B -球蛋白的PK6.0 ;丫一球蛋白的PI为7.2左右。
因此在PH6. 3的缓冲溶液中,各类球蛋白所带电荷不同。
经DEAE二乙基氨基乙基)纤维素阴离子交换层析柱进行层析时,带负电荷的a —球蛋白和B -球蛋白能与DEAE纤维素进行阴离子交换而被结合;带正电荷的丫一球蛋白则不能与DEAE纤维素进行交换结合而直接从层析柱流出。
因此随洗脱液流出的只有丫-球蛋白,从而使丫 -球蛋白粗制品被纯化。
其反应式如下:用上述方法分离得到丫 -球蛋白是否纯净,单一?可将纯化前后的丫 -球蛋白进行电泳比较而鉴定之。
[操作]⑴盐析一一中性盐沉淀:取正常人血清2.0ml于小试管中,加0.9 %氯化钠溶液2. 0ml, 边搅拌混匀边缓慢滴加饱和硫酸钱溶液乙 4. 0ml,混匀后于室温中放置lOmin, 3000r/min离心10min o小心倾去含有清蛋白的上清液,重复洗涤一次,于沉淀中加入0. 0175mol/L磷酸盐缓冲液(pH6. 3)0. 5-1. 0ml使之溶解。
此液即为粗提的丫一球蛋白溶液。
(2)脱盐一一凝胶柱层析①装柱洗净的层析柱保持垂直位置,关闭出口,柱内留下约2.0ml洗脱液。
一次性将疑胶从塑料接口加入层析柱内,打开柱底部出口,调节流速0.3nil/niin。
凝腔随柱内溶液慢慢流下而均匀沉降到层析柱底部,最后使凝胶床达20厘米高,床面上保持有洗脱液,操作过程中注意不能让凝胶床表面露出液面并防止层析床内出现“纹路”。
在凝胶表面可盖一园形滤纸,以免加入液体时冲起胶粒。
②上样与洗脱:可以在凝胶表面上加圆形尼龙滤布或滤纸使表面平整,小心控制凝胶柱下端活塞,使柱上的缓冲液面刚好下降至凝胶床表面,关紧下端出口,用长滴管吸取盐析球蛋白溶液,小心缓慢加到凝胶床表面。
打开下端出口,将流速控制在0. 25ml/min使样品进入凝胶床内。
关闭出口,小心加入少量0. 0175mol/L磷酸盐缓冲液(pH6. 3)洗柱内壁。
打开下端出口,待缓冲液进入凝胶床后再加少量缓冲液。
如此重复三次,以洗净内壁上的样品溶液。
然后可加入适量缓冲液开始洗脱。
加样开始应立即收集洗脱液。
洗脱时接通蠕动泵,流速为0・5nil/niin,用部分收集器收集,每管lml o③洗脱液中NH4与蛋白质的检查:取比色板两个(其中一个为黑色背底),按洗脱液的顺序每管取一滴,分别滴入比色板中,前者加20%磺基水杨酸溶液2滴,出现白色混浊或沉淀即示有蛋白质析出,由此可估计蛋白质在洗脱各管中的分布及浓度;于另一比色板中,加人奈氏试剂应用液1滴,以观察NH4出现的情况。
合并球蛋白含量高的各管,混匀。
除留少量作电泳鉴定外,其余川DEAE千维素阴离子交换柱进一步纯化。
(3)纯化一一DEAE千维素阴离子交换层析:用DEAE纤维素装柱约8-10cm高度,并用0. 0175mol /L磷酸盐缓冲液(pH6. 3)平衡,然后将脱盐后的球蛋白溶液缓慢加于DEAE纤维素阴离子交换柱上,用同一缓冲液洗脱、分管收集。
用20%磺基水杨酸溶液检查蛋白质分布情况。
(装柱、上样、洗脱,收集及蛋白质检查等操作步骤同凝胶层析)。
(4)浓缩一一经DEAE纤维素阴离于交换柱纯化的丫一球蛋白液往往浓度较低。
为便于鉴定,常需浓缩。
收集较浓的纯化的丫一球蛋白溶液2nd,按每ml加0. 2〜0. 25gSephadex G - 25干胶,摇动2-3min, 3000r /min离心5min o上清液即为浓缩的丫 -球蛋白溶液。
(5)鉴定一一乙酸纤维素薄膜电泳取乙酸纤维素薄膜2条,分别将血清、脱盐后的球蛋白、DEAE千维素阴离子交换柱纯化的丫 -球蛋白液等样品点上。
然后参阅实验二十四:乙酸纤维薄膜电泳法进行电泳分离、染色。
比较电泳结果。
[注意事项](1)凝胶及DEAE纤维处理期间,必须小心用倾泻法除去细小颗粒。
这样可使凝胶及千维素颗粒大小均匀,流速稳定,分离效果好。
(2)装柱是层析操作中最重要的一步。
为使柱床装得均匀,务必做到凝胶悬液或DEAE 千维素混悬液不稀不厚,一般浓度为I : 1,进样及洗脱时切勿使床面暴露在空气中,不然柱床会出现气泡或分层现象;加样时必须均匀,切勿搅动床面,否则均会影响分离效果。
(3)本法是利用丫 -球蛋白的等电点与a -、B -球蛋白不同,用离子交换层析法进行分离的。
因此层析过程中用的缓冲液pH要求精确。