大学物理第6章 真空中的静电场 课后习题及答案

大学物理第6章 真空中的静电场 课后习题及答案
大学物理第6章 真空中的静电场 课后习题及答案

第6章 真空中的静电场 习题及答案

1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零?

解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷

q +的右侧,它受到的合力才可能为0,所以

2

00

2

00

)

1(π4)

1(π42-=

+x qq x qq εε

故 223+=x

2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?

解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以

2

2

20)

33(

π4130cos π41

2

a q q a

q

'=

?εε

故 q q 3

3-

='

(2)与三角形边长无关。

3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为

)

(42

2

0R x dq dE +=

πε

根据电荷分布的对称性知,0==z y E E

2

3

2

2

)

(41 cos R x xdq dE dE x +=

=πε

θ

式中:θ为dq 到场点的连线与x 轴负向的夹角。

?+=

2

32

2

0)

(4dq R x x

E x πε

2

32

2

10

)

(24R x R x +?=

πλπε

2

32201)(2R x x

R

+=

ελ

下面求直线段受到的电场力。在直线段上取dx dq 2λ=,dq 受到的电场力大小为

dq E dF x =dx R x x

R 2

3

2

2

21)

(2+=

ελλ

方向沿x 轴正方向。

直线段受到的电场力大小为

?=dF F dx R x x R

l

?

+=

2

32

2

21)

(ελλ2

()??

?

??

?+-=

2

/12

2

211

1

R

l R R

ελλ2

方向沿x 轴正方向。

4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。求: (1)圆心处O 点的场强;

(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。 解:(1)在半圆环上取?λλRd l dq ==d ,它在O 点产生场强大小为

2

0π4R

dq dE ε=

?ελ

d R

0π4=

,方向沿半径向外

根据电荷分布的对称性知,0=y E

?

?ελ

?d R

dE dE x sin π4sin 0=

=

R

d R

E x 000

π2sin π4ελ

??ελ

π

=

=

?

故 R

E E x 0π2ελ

=

=,方向沿x 轴正向。

(2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度为零。 5.如图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度。

解:建立图示坐标系。在均匀带电细直杆上取dx L

q dx dq =

=λ,dq 在P 点产生的场强大小为

2

02

044x

dx

x

dq dE πελπε=

=

,方向沿x 轴负方向。

故 P 点场强大小为 ?

?+=

=L

d d

P x

dx

dE E 2

04πελ

()

L d d q

+π=

04ε

方向沿x 轴负方向。

6. 一半径为R 的均匀带电半球面,其电荷面密度为σ,求球心处电场强度的大小。

解:建立图示坐标系。将均匀带电半球面看成许多均匀带电细圆环,应用场强叠加原理求解。 在半球面上取宽度为dl 的细圆环,其带电量rdl dS dq πσσ2?=?=θθπσd R sin 22

?=, dq 在O 点产生场强大小为(参见教材中均匀带电圆环轴线上的场强公式)

2

3

2

20)(4r x xdq

dE +=πε ,方向沿x 轴负方向 利用几何关系,θcos R x =,θsin R r =统一积分变量,得

2

3

2

20)(4r x xdq

dE +=πε θθπσθπεd R R

R sin 2cos 412

3

0?=

L

θθθεσ

d cos sin 20

=

因为所有的细圆环在在O 点产生的场强方向均沿为x 轴负方向,所以球心处电场强度的大小为

?=

dE E θθθεσ

πd cos sin 22

/0

?

=

4εσ

=

方向沿x 轴负方向。

7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ,如图所示。试求通过小孔中心O 并与平面垂直的直线上各点的场强。

解:应用补偿法和场强叠加原理求解。

若把半径为R 的圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平面等效为一个完整的“无限大”带电平面和一个电荷面密度为σσ-='的半径为R 的带电圆盘,由场强叠加原理知,P 点的场强等效于“无限大”带电平面和带电圆盘在该处产生的场强的矢量和。

“无限大”带电平面在P 点产生的场强大小为

12εσ=

E ,方向沿x 轴正方向

半径为R 、电荷面密度σσ-='的圆盘在P 点产生的场强大小为(参见教材中均匀带电圆盘轴线上的场强公式)

022εσ

=E )1(2

2x

R x +-,方向沿x 轴负方向 故 P 点的场强大小为 2

20212x

R x E E E +=

-=εσ 方向沿x 轴正方向。

8. (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电场强度通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电场强度通量是多少?

解:(1)由高斯定理0

d εq

S E s

?=? 求解。立方体六个面,当q 在立方体中心时,每个面上电通

量相等,所以通过各面电通量为

6εq e =

Φ

(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则通过边长a 2的正方形各面的电通量0

6εq e =

Φ

对于边长a 的正方形,如果它不包含q 所在的顶点,则0

24εq e =Φ,如果它包含q 所在顶点,

则0=Φe 。

9. 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强。 解:如图所示,电荷面密度为1σ的平面产生的场强大小为

12εσ=

E ,方向垂直于该平面指向外侧

电荷面密度为2σ的平面产生的场强大小为

22εσ=

E ,方向垂直于该平面指向外侧

由场强叠加原理得 两面之间,)(21210

21σσε-=

-=E E E ,方向垂直于平面向右 1σ面左侧,)(2121021σσε+=+=E E E ,方向垂直于平面向左 2σ面右侧,)(21210

21σσε+=

+=E E E ,方向垂直于平面向右

10. 如图所示,一球壳体的内外半径分别为1R 和2R ,电荷均匀地分布在壳体内,电荷体密度为ρ(0>ρ)。试求各区域的电场强度分布。

解:电场具有球对称分布,以r 为半径作同心球面为高斯面。由高斯定理∑?=

?i

S

q

S d E 0

1

ε 得

i q r E ∑=

?0

21

4επ

当1R r <时,0=∑i q ,所以 0=E

当21R r R <<时,)3

434

(3

13

R r q i ππρ-

=∑,所以

2

03

133)

(r R r E ερ-=

当2R r >时,)3

43

4(3

13

2R R q i ππρ-

=∑,所以

2

03

13

23)

(r

R R E ερ-=

11. 有两个均匀带电的同心带电球面,半径分别为1R 和2R (12R R >),若大球面的面电荷密度为σ,且大球面外的电场强度为零。求:(1)小球面上的面电荷密度;(2)大球面内各点的电场强度。

解:(1)电场具有球对称分布,以r 为半径作同心球面为高斯面。由高斯定理∑?=

?i

S

q

S d E 0

1

ε 得

i q r

E ∑=

?0

2

1

4επ

当2R r >时,0=E ,0442

12

2=?'+?=∑R R q i πσπσ,所以

σσ2

1

2)R R (

-='

(2)当1R r <时,0=∑i q ,所以 0=E

当21R r R <<时,2

22144R R q i πσπσ-=?'=∑,所以

2

2)

εσr R E (

-=

负号表示场强方向沿径向指向球心。

12. 一厚度为d 的无限大的带电平板,平板内均匀带电,其体电荷密度为ρ,求板内外的场强。

解:电场分布具有面对称性,取同轴闭合圆柱面为高斯面,圆柱面与平板垂直,设两底面圆到

平板中心的距离均为x ,底面圆的面积为S ?。由高斯定理∑?=

?i

S

q

S d E 0

1ε 得

=??S

S d E i q S E S E ∑=+??+??0

10ε 当2

d x <

时(平板内部),S x q i ???=∑2ρ,所以

ερx E =

当2

d x >

(平板外部),S d q i ???=∑ρ,所以

2ερd

E =

13. 半径为R 的无限长直圆柱体均匀带电,体电荷密度为ρ,求其场强分布。

解:电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r ,

应用高斯定理求解。

i S

q rl E S E ∑=?=??0

1

π2d ε

(1) 当R r <时, l r q i 2

πρ?=∑,所以

2ερr

E =

(2) 当R r >时,l R q i 2πρ?=∑,所以

r

R

E 02

2ερ=

14.一半径为R 的均匀带电圆盘,电荷面密度为σ,设无穷远处为电势零点,求圆盘中心O 点的电势。

解:取半径为r 、dr 的细圆环rdr dS dq πσσ2?==,则dq 在O 点产生的电势为

024εσπεdr

r

dq dV =

=

圆盘中心O 点的电势为

dr dV V R

??

==

2εσ

2εσR

=

15. 真空中两个半径都为R 的共轴圆环,相距为l 。两圆环均匀带电,电荷线密度分别是λ+和

λ-。取两环的轴线为x 轴,坐标原点O 离两环中心的距离均为

2

l ,如图所示。求x 轴上任一点的

电势。设无穷远处为电势零点。

解:在右边带电圆环上取dq ,它在x 轴上任一点P 产生的的电势为

2

2

)2/(4R

l x dq

dV +-=

πε

右边带电圆环在P 产生的的电势为

??+-=

=+dq R

l x dV V 2

20

)2/(41

πε

2

2

)2/(2R

l x R

+-=

ελ

同理,左边带电圆环在P 产生的电势为

2

20)2/(2R

l x R

V ++-=

-ελ 由电势叠加原理知,P 的电势为

2ελR V V V =+=-+-

+-22)2/(1

(R

l x ))2/(1

2

2

R

l x ++

16. 真空中一半径为R 的球形区域内均匀分布着体电荷密度为ρ的正电荷,该区域内a 点离球心的距离为

R 3

1

,b 点离球心的距离为

R 3

2

。求a 、b 两点间的电势差ab U

解:电场分布具有轴对称性,以O 为球心、作半径为r 的同心球面为高斯面。由高斯定理∑?

=?i S

q S d E 0

1ε 得

当R r <时,3

23

41

4r r E πρεπ?

=

? ,所以

3ερr

E =

a 、

b 两点间的电势差为

??=b a

ab r d E U

2

3

/23

/183ερερR

dr r

R R =

=

?

17.细长圆柱形电容器由同轴的内、外圆柱面构成,其半径分别为a 和a 3,两圆柱面间为真空。电容器充电后内、外两圆柱面之间的电势差为U 。求:

(1)内圆柱面上单位长度所带的电量λ;

(2)在离轴线距离a r 2=处的电场强度大小。 解:(1)电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r ,应用高斯定理求解。

i S

q rl E S E ∑=

?=??0

1

π2d ε 内、外两圆柱面之间,l q i λ=∑,所以

r

E 02πελ

=

内、外两圆柱面之间的电势差为

dr r

r d E U a

a

a

a

?

?

=

?=

3032πελ

3ln 20

πε

λ

=

内圆柱面上单位长度所带的电量为

3

ln 20U πελ=

(2)将λ代人场强大小的表达式得,3

ln r U E =

在离轴线距离a r 2=处的电场强度大小为

3

ln 2a U

E =

18. 如图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为R 2,现将另

一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功。

解:O 点的电势为

R q V O 0π4ε=

0π40=-+

R

q ε

C 点的电势为

R

q

V C 3π40?=

εR

q

0π4ε-+

R

q 0π6ε-

=

电场力作的功为

R

q q V V q A o C O 00π6)(ε=

-=

19.如图所示,均匀带电的细圆环半径为R ,所带电量为Q (0>Q ),圆环的圆心为O ,一质量为m ,带电量为q (0>q )的粒子位于圆环轴线上的P 点处,P 点离O 点的距离为d 。求:

(1)粒子所受的电场力F

的大小和方向;

(2)该带电粒子在电场力F

的作用下从P 点由静止开始沿轴线运动,当粒子运动到无穷远处

时的速度为多大?

解:(1)均匀带电的细圆环在P 点处产生的场强大小为(参见教材中均匀带电圆环轴线上的场强公式)

23

220)(41d R Qd

E x +=πε,方向沿OP 向右 粒子所受的电场力的大小

2

32

2

0)

(4d R qQd qE F x +=

=πε,方向沿OP 向右

(2)在细圆环上取dq ,dq 在P 点产生的电势为

r

dq dV 04πε=

2

2

4d

R dq +=πε

P 点的电势为

??+==

dq

d

R dV V 2

20

41

πε

2

2

4d

R Q +=

πε

由动能定理得,02

1)0(2

-=-=υ

m V q A

2

2

02d

R m

qQ +=

πευ

大学物理静电场知识点总结

大学物理静电场知识点总结 1. 电荷的基本特征:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特性(3)是相对论性不变量(4)微观粒子所带电荷总是存在一种对称性 2. 电荷守恒定律 :一个与外界没有电荷交换的孤立系统,无论发生什么变化,整个系统的电荷总量必定保持不变。 3.点电荷:点电荷是一个宏观范围的理想模型,在可忽略带电体自身的线度时才成立。 4.库仑定律: 表示了两个电荷之间的静电相互作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间相互作用的规律 12 12123 012 14q q F r r πε= 5. 电场强度 :是描述电场状况的最基本的物理量之一,反映了电 场的基 0 F E q = 6. 电场强度的计算: (1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得 (2)带电体产生的电场强度,可以根据电场的叠加原理来求解 πεπε== = ∑? n i i 3 3i 1 0i q 11 dq E r E r 44r r (3)具有一定对称性的带电体所产生的电场强度,可以根据高斯定

理来求解 (4)根据电荷的分布求电势,然后通过电势与电场强度的关系求得电场强度 7.电场线: 是一些虚构线,引入其目的是为了直观形象地表示电场强度的分布 (1)电场线是这样的线:a .曲线上每点的切线方向与该点的电场强度方向一致 b .曲线分布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。 (2)电场线的性质:a .起于正电荷(或无穷远),止于负电荷(或无穷远)。b .不闭合,也不在没电荷的地方中断。c .两条电场线在没有电荷的地方不会相交 8. 电通量: φ= ??? e s E dS (1)电通量是一个抽象的概念,如果把它与电场线联系起来,可以把曲面S 的电通量理解为穿过曲面的电场线的条数。(2)电通量是标量,有正负之分。 9. 高斯定理: ε?= ∑ ?? s S 01 E dS i (里) q (1)定理中的E 是由空间所有的电荷(包括高斯面内和面外的电荷)共同产生。(2)任何闭合曲面S 的电通量只决定于该闭合曲面所包围的电荷,而与S 以外的电荷无关 10. 静电场属于保守力:静电场属于保守力的充分必要条件是,电荷在电场中移动,电场力所做的功只与该电荷的始末位置有关,而与

大学物理课后题答案

习 题 四 4-1 质量为m =的弹丸,其出口速率为300s m ,设弹丸在枪筒中前进所受到的合力 9800400x F -=。开抢时,子弹在x =0处,试求枪筒的长度。 [解] 设枪筒长度为L ,由动能定理知 2022121mv mv A -= 其中??-==L L dx x Fdx A 00)9 8000400( 9 40004002 L L - = 而00=v , 所以有: 22 300002.05.09 4000400??=-L L 化简可得: m 45.00 813604002==+-L L L 即枪筒长度为。 4-2 在光滑的水平桌面上平放有如图所示的固定的半圆形屏障。质量为m 的滑块以初速度0v 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,试证明:当滑块从屏障的另一端滑出时,摩擦力所作的功为() 12 1220-= -πμe mv W [证明] 物体受力:屏障对它的压力N ,方向指向圆心,摩擦力f 方向与运动方向相反,大小为 N f μ= (1) 另外,在竖直方向上受重力和水平桌面的支撑力,二者互相平衡与运动无关。 由牛顿运动定律 切向 t ma f =- (2) 法向 R v m N 2 = (3) 联立上述三式解得 R v a 2 t μ-= 又 s v v t s s v t v a d d d d d d d d t === 所以 R v s v v 2 d d μ -= 即 s R v v d d μ-=

两边积分,且利用初始条件s =0时,0v v =得 0ln ln v s R v +- =μ 即 s R e v v μ -=0 由动能定理 2 022 121mv mv W -= ,当滑块从另一端滑出即R s π=时,摩擦力所做的功为 () 12 1212122020220-=-=--πμ πμ e mv mv e mv W R R 4-3 质量为m 的质点开始处于静止状态,在外力F 的作用下沿直线运动。已知 T t F F π2sin 0=,方向与直线平行。求:(1)在0到T 的时间内,力F 的冲量的大小;(2)在0到2T 时间内,力F 冲量的大小;(3)在0到2T 时间内,力F 所作的总功;(4)讨论质点的运动情况。 [解]由冲量的定义?=1 2 d t t t F I ,在直线情况下,求冲量I 的大小可用代数量的积分,即 ?= 1 2 d t t t F I (1) 从t =0到 t=T ,冲量的大小为: ?= =T t F I 01d ?-=T T T t T F t T t F 0 00]2cos [2d 2sin πππ=0 (2) 从t =0到 t =T /2,冲量的大小为 π πππ0000 0022 2 2]2cos [2d 2sin d TF T t T F t T t F t F I T T T =-=== ?? (3) 初速度00=v ,由冲量定理 0mv mv I -= 当 t =T /2时,质点的速度m TF m I v π0== 又由动能定理,力F 所作的功 m F T m F mT mv mv mv A 22022 22022 20222212121ππ===-= (4) 质点的加速度)/2sin()/(0T t m F a π=,在t =0到t =T /2时间内,a >0,质点 作初速度为零的加速运动,t =T /2时,a =0,速度达到最大;在t =T /2到t =T 时间内,a <0,但v >0,故质点作减速运动,t =T 时 a =0,速度达到最小,等于零;此后,质点又进行下一

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

大学物理静电场

真空中的静电场 一、选择题 1.如图4—2所示,半径为 的半球面置于电场强度为 的 均匀电场中,选半球面的外法线为面法线正方向,则通过该半球面 的电场强度通量ΦE 为: A . B .0 C . D . E . () 2.如图所示,闭合面S 内有一点电荷Q ,P 为S 面上一点,在 S 面外A 点有一点电荷'Q ,若将电荷'Q 移至B 点,则; ()A S 面的总通量改变,P 点场强不变; ()B S 面的总通量不变,P 点场强改变; ()C S 面的总通量和P 点场强都不变; ()D S 面的总通量和P 点场强都改变。 3.两块平行平板,相距d ,板面积均为S ,分别均匀带电+q 和―q ,若两板的线度远大于d ,则它们的相互作用力的大小为: A . B . C . D . 4.真空中两块互相平行的无限大均匀带电平面。其电荷密度分别为σ+和2σ+,两板之间的距离为d ,两板间的电场强度大小为 A .0 B. 023εσ C.0 εσ D. 02εσ 5.两无限长的均匀带电直线相互平行,相距2a ,线电荷密度分别为λ+ 和λ- ,则每单位 长度的带电直线受的作用力的大小为 A.2202a λπε B.2204a λπε C.220a λπε D.2 2 08a λπε 6.某区域静电场的电场线分布情况如图4—5所示,一负电荷从M 点移到N 点,有人根据此图做出下列几点结论,其中哪点是正确的? A .电场强度E M >E N ,电场力做正功; B .电势U M <U N ,电场力做负功; C .电势能W M <W N ,电场力做负功; D .负电荷电势能增加,电场力做正功。 Q ’ A P S Q B

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理静电场总结

第七章、静 电 场 一、两个基本物理量(场强和电势) 1、电场强度 ⑴、 试验电荷在电场中不同点所受电场力的大小、方向都可能不同;而在 同一点,电场力的大小与试验电荷电量成正比,若试验电荷异号,则所 受电场力的方向相反。我们就用 q F 来表示电场中某点的电场强度,用 E 表示,即q F E = 对电场强度的理解: ①反映电场本身性质,与所放电荷无关。 ②E 的大小为单位电荷在该点所受电场力,E 的方向为正电荷所受电场力 的方向。 ③单位为N/C 或V/m ④电场中空间各点场强的大小和方向都相同称为匀强电场 ⑵、点电荷的电场强度 以点电荷Q 所在处为原点O,任取一点P(场点),点O 到点P 的位矢为r ,把试 验电荷q 放在P 点,有库仑定律可知,所受电场力为: r Q q F E 2 041επ== ⑶常见电场公式 无限大均匀带电板附近电场: εσ 02= E

2、电势 ⑴、电场中给定的电势能的大小除与电场本身的性质有关外,还与检验电荷 有关,而比值 q E pa 0 则与电荷的大小和正负无关,它反映了静电场中某给 定点的性质。为此我们用一个物理量-电势来反映这个性质。即q E p V 0 = ⑵、对电势的几点说明 ①单位为伏特V ②通常选取无穷远处或大地为电势零点,则有: ?∞ ?==p p dr E V q E 0 即P 点的电势等于场强沿任意路径从P 点到无穷远处的线积分。 ⑶常见电势公式 点电荷电势分布:r q V επ04= 半径为R 的均匀带点球面电势分布:R q V επ04= ()R r ≤≤0 r q V επ04= ()R r ≥ 二、四定理 1、场强叠加定理 点电荷系所激发的电场中某点处的电场强度等于各个点电荷单独存在时对 该点的电场强度的矢量和。即

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理电场部分问题详解

2/εδE o x 02/εδE o x 2/εδ0 2/εδ-E o x 0 2/εδ0 2/εδ-o E x 第六章 电荷的电现象和磁现象 序号 学号 专业、班级 一 选择题 [ C ]1 .一带电体可作为点电荷处理的条件是 (A)电荷必须呈球形分布。 (B)带电体的线度很小。 (C)带电体的线度与其它有关长度相比可忽略不计。 (D)电量很小。 [ D ]2.真空中一“无限大”均匀带负电荷的平面如图所示,其电场的场强分布图线应是(设场强方向向右为正、向左为负) (A ) (B ) (C ) (D ) 二 填空题 1. 在点电荷系的电场中,任一点的电场强度等于 ________________________________略________________________________________________, 这称为场强叠加原理。 2.静电场中某点的电场强度,其数值和方向等于_________略____________________________ ___________________________________________________________________________。 3.两块“无限大”的带电平行电板,其电荷面密度分别为δ(δ> 0)及-2δ,如图所示, 试写出各区域的电场强度E 。 Ⅰ区E 的大小 0 2εσ , 方向 向右 。 Ⅱ区E 的大小 23εσ , 方向 向右 。 δ -x o I II III σ 2-σ 02/εσ0/εσ0 2/2ε0 22εσ

Ⅲ区E 的大小 0 2εσ, 方向 向左 。 4.A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小都为E 0 , 两平面外侧电场强度大小都为 E 0 / 3 ,方向如图。则A 、B 两平面上的电荷面密度分别为 A δ= 3/E 200ε- , B δ = 3/E 400ε 。 三 计算题 1.一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷 q ,如图所示,试以 a , q , θ0表示出圆心O 处的电场强度。 解:建立如图坐标系,在细圆弧上取电荷元l a q q d d 0 ?=θ, 电荷元视为点电荷,它在圆心处产生的场强大小为: θθπεθπεπεd 4d 44d d 0 2003020a q l a q a q E === 方向如图所示。将E d 分解, θθcos d d ,sin d d E E E E y x -=-= 由对称性分析可知,? ==0d x x E E 2 sin 2d cos 4d 0 202 2 02 000 θθπεθ θθπεθθ a q a q E E y y - =-==??- 圆心O 处的电场强度j a q j E E y 2 sin 200 20θθπε- ==

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理静电场总结

第七章、静 电 场 一、两个基本物理量(场强和电势) 1、电场强度 ⑴、 试验电荷在电场中不同点所受电场力的大小、方向都可能不同;而在 同一点,电场力的大小与试验电荷电量成正比,若试验电荷异号,则所 受电场力的方向相反。我们就用 q F 来表示电场中某点的电场强度,用 E 表示,即q F E = 对电场强度的理解: ①反映电场本身性质,与所放电荷无关。 ②E 的大小为单位电荷在该点所受电场力,E 的方向为正电荷所受电场力 的方向。 ③单位为N/C 或V/m ④电场中空间各点场强的大小和方向都相同称为匀强电场 ⑵、点电荷的电场强度 以点电荷Q 所在处为原点O,任取一点P(场点),点O 到点P 的位矢为r ,把试 验电荷q 放在P 点,有库仑定律可知,所受电场力为: r Q q F E 2 041επ== ⑶常见电场公式 无限大均匀带电板附近电场: εσ 02= E 2、电势 ⑴、电场中给定的电势能的大小除与电场本身的性质有关外,还与检验电荷 有关,而比值 q E pa 0 则与电荷的大小和正负无关,它反映了静电场中某给 定点的性质。为此我们用一个物理量-电势来反映这个性质。即q E p V 0 = ⑵、对电势的几点说明 ①单位为伏特V ②通常选取无穷远处或大地为电势零点,则有: ?∞ ?==p p dr E V q E 0

即P 点的电势等于场强沿任意路径从P 点到无穷远处的线积分。 ⑶常见电势公式 点电荷电势分布:r q V επ04= 半径为R 的均匀带点球面电势分布:R q V επ04= ()R r ≤≤0 r q V επ04= ()R r ≥ 二、四定理 1、场强叠加定理 点电荷系所激发的电场中某点处的电场强度等于各个点电荷单独存在时对 该点的电场强度的矢量和。即 E E E n E +++= (21) 2、电势叠加定理 V 1 、V 2 ...V n 分别为各点电荷单独存在时在P 点的电势点电荷系 的电场中,某点的电势等于各点电荷单独 存在时在该点电势的代数和。 3、高斯定理 在真空中的静电场内,通过任意封闭曲面的电通量等于该闭合曲面包围的所 有电荷的代数和除以 ε 说明: ①高斯定理是反映静电场性质的一条基本定理。 ②通过任意闭合曲面的电通量只取决于它所包围的电荷的代数和。 ③高斯定理中所说的闭合曲面,通常称为高斯面。 三、静电平衡 1、静电平衡 当一带电体系中的电荷静止不动,从而电场分布不随时间变化时,带电 体系即达到了静电平衡。 说明: ①导体的特点是体内存在自由电荷。在电场作用下,自由电荷可以移动, 从而改变电荷分布;而电荷分布的改变又影响到电场分布。 ②均匀导体的静电平衡条件:体内场强处处为零。 ③导体是个等势体,导体表面是个等势面。 ④导体外靠近其表面的地方场强处处与表面垂直。

大学物理课后习题答案(上)

《大学物理》练习题 No .1 电场强度 班级 ___________ 学号 ___________ ___________ 成绩 ________ 说明:字母为黑体者表示矢量 一、 选择题 1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q 0的大小成反比; (B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变; (C) 试探电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试探电荷q 0,则F = 0,从而E = 0. 2.如图1.1所示,在坐标(a , 0)处放置一点电荷+q ,在坐标(a ,0)处放置另一点电荷q , P 点是x 轴上的一点,坐标为(x , 0).当x >>a 时,该点场强 的大小为: [ D ](A) x q 04πε. (B) 2 04x q πε. (C) 3 02x qa πε (D) 30x qa πε. 3.图1.2所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为 ( x < 0)和 ( x > 0),则xOy 平面上(0, a )点处的场强为: [ A ] (A ) i a 02πελ . (B) 0. (C) i a 04πελ . (D) )(40j +i a πελ . 4. 真空中一“无限大”均匀带负电荷的平面如图1.3所示,其电场的场强 分布图线应是(设场强方向向右为正、向左为负) ? [ D ] 5.在没有其它电荷存在的情况下,一个点电荷q 1受另一点电荷 q 2 的作用力为f 12 ,当放入第三个电荷Q 后,以下说法正确的是 [ C ] (A) f 12的大小不变,但方向改变, q 1所受的总电场力不变; (B) f 12的大小改变了,但方向没变, q 1受的总电场力不变; (C) f 12的大小和方向都不会改变, 但q 1受的总电场力发生了变化; -q -a +q a P (x,0) x x y O 图1.1 +λ -λ ? (0, a ) x y O 图1.2 σ -x O E x 02εσ O 02εσ-E x O 0 2εσ-E x 02εσO 02εσ -O E x 02εσ(D)图1.3

大学物理教程 上 课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 或1= (2)将1t s =和2t s =代入,有 11r i =u r r , 241r i j =+u r r r 位移的大小 r ==r V (3) 2x dx v t dt = = 2x x dv a dt = =, 2y y dv a dt == 当2t s =时,速度和加速度分别为 22a i j =+r r r m/s 2 1-4 设质点的运动方程为 cos sin ()r R ti R t j SI ωω=+r r r ,式中的R 、ω均为常量。求(1)质点的速度;(2)速率的变化率。 解 (1)质点的速度为 (2)质点的速率为 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34,

2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作 用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的 阻力(空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 即 dv k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等 于地球半径的2倍(即2R ),试以,m R 和引力恒量G 及地球的质量M 表示出: (1) 卫星的动能; (2) 卫星在地球引力场中的引力势能. 解 (1) 人造卫星绕地球做圆周运动,地球引力作为向心力,有 卫星的动能为 212 6k GMm E mv R == (2)卫星的引力势能为 2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以 500/m s 的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后 停止。求: (1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少。

大学物理教案真空中的静电场

第五章真空中的静电场 第一节电荷、库仑定律 一、 电荷 电子具有电荷191.6021910e C -=-?(库仑),质子具有电荷 191.6021910p C e -=?,中子不带电。物理学对电荷的认识可概括为: (1)电荷和质量一样,是基本粒子的固有属性; (2)电荷有两种:正电荷和负电荷,一切基本粒子只可能具有电子或质子所具有电荷的整数倍; (3)电荷具有守恒性; (4)电荷之间的相互作用,是通过电场作媒质传递的。 不同质料物体相摩擦后,每个物体有若干电子脱离原子束缚,进入到对方物体中去,双方失去电子数目不一样,一个净获得电子,一个净失去电子,这就是摩擦起电。核反应中,电荷也是守恒的,例如 用α粒子42He 去轰击氮核147 N ,结果生成178O 和质子11H 反应前后,电荷总数皆为9e 。 根据(2),电荷€电场€电荷,质量€引力场€质量。 在电解液中,自由电荷是酸碱盐溶质分子离解成的正、负离子;在电离的气体中,自由电荷也是正、负离子,不过负离子往往就是电子;在超导中,传导电流的粒子是电子对(库珀对),还可能是极化子、双极化子、孤子等。

从微观上去看,电荷是分立的,宏观上来看,其最小变化量与宏观粒子系统的总电荷量比较完全可被当作无穷小处理。所以宏观小微观大的带电体,电荷的连续性与分立性得到了统一。 二、 库仑定律 12301 4q q F r r πε=r r 或122014r q q F e r πε=r r 0ε为真空电容率(vacuumpermittivity), 其数值为()()1222122208.85418781810/8.8510/C N m C N m ε--=??≈?? 介质中的库仑力 0r εεε=是电介质的介电常数,r ε是相对介电常数。 电介质中作用力比真空中小,是因为介质极化后,在点电荷周围出现了束缚电荷。它削弱了原点电荷之间的作用。 三、 叠加原理 实验表明,如果同时存在多个点电荷相互作用,则任意两个点电荷之间的相互作用,并

大学物理静电场知识点总结

大学物理静电场知识点 总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学物理静电场知识点总结 1. 电荷的基本特征:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特性(3)是相对论性不变量(4)微观粒子所带电荷总是存在一种对称性 2. 电荷守恒定律 :一个与外界没有电荷交换的孤立系统,无论发生什么变化,整个系统的电荷总量必定保持不变。 3.点电荷:点电荷是一个宏观范围的理想模型,在可忽略带电体自身的线度时才成立。 4.库仑定律: 表示了两个电荷之间的静电相互作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间相互作用的规律 12 12123 0121 4q q F r r πε= 5. 电场强度 :是描述电场状况的最基本的物理量之一,反映了电 场的基 0 F E q = 6. 电场强度的计算: (1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得 (2)带电体产生的电场强度,可以根据电场的叠加原理来求解 πεπε== = ∑ ? n i i 33i 1 i q 11dq E r E r 44r r

(3)具有一定对称性的带电体所产生的电场强度,可以根据高斯定理来求解 (4)根据电荷的分布求电势,然后通过电势与电场强度的关系求得电场强度 7.电场线: 是一些虚构线,引入其目的是为了直观形象地表示电场强度的分布 (1)电场线是这样的线:a .曲线上每点的切线方向与该点的电场强度方向一致 b .曲线分布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。 (2)电场线的性质:a .起于正电荷(或无穷远),止于负电荷(或无穷远)。b .不闭合,也不在没电荷的地方中断。c .两条电场线在没有电荷的地方不会相交 8. 电通量: φ= ??? e s E dS (1)电通量是一个抽象的概念,如果把它与电场线联系起来,可以把曲面S 的电通量理解为穿过曲面的电场线的条数。(2)电通量是标量,有正负之分。 9. 高斯定理: ε?= ∑?? s S 01 E dS i (里) q (1)定理中的E 是由空间所有的电荷(包括高斯面内和面外的电荷)共同产生。(2)任何闭合曲面S 的电通量只决定于该闭合曲面所包围的电荷,而与S 以外的电荷无关

大学物理课后习题答案第九章

第9章 电稳感应和电磁场 习题及答案 1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化: 23(65)10t t Wb -Φ=++?。求2t s =时,回路中感应电动势的大小和方向。 解:310)62(-?+-=Φ - =t dt d ε 当s t 2=时,V 01.0-=ε 由楞次定律知,感应电动势方向为逆时针方向 2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。已知导轨处于均匀磁 场B ?中,B ?的方向与回路的法线成60°角,如图所示,B ?的大 小为B =kt (k 为正常数)。设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。 解:任意时刻通过通过回路面积的磁通量为 202 1 60cos t kl t Bl S d B m υυ==?=Φρρ 导线回路中感应电动势为 t kl t m υε-=Φ- =d d 方向沿abcda 方向。 3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。求: (1)穿过正方形线框的磁通量; (2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。 解:(1)通过正方形线框的磁通量为 ??=?=Φa S Badx S d B 0ρρ?+=a dx x ak 0)1()2 1 1(2a k a += (2)当t k k 0=时,通过正方形线框的磁通量为 )2 1 1(02a t k a + =Φ 正方形线框中感应电动势的大小为 dt d Φ= ε)2 1 1(02a k a += 正方形线框线框中电流大小为 )2 11(02a R k a R I +==ε ,方向:顺时针方向

大学物理C-06静电场答案

练 习 六 静电场 一、填空题 1.点电荷q 1、q 2、q 3 和q 4 在真空中的分布如图所示.图中 为闭合曲面,则通过该闭合曲面的电场强度通量 s E dS ? =____120()q q ε+________, 式中的E 是点电荷___q 1、q 2q 3、q 4____在闭合曲面上任一点产生的场强的矢量和. 2.在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为_______ 2 03Q a πε______ 3.一半径为R 的均匀带电圆环,电荷线密度为λ. 设无穷远处为电势零点,则圆环中心O 点的电势U =_______ 2λ ε________. 4.一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =_______ 04Q R πε_______. 5.在点电荷q 的电场中,把一个-1.0×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J ,则该点电荷q =_____ -2×10-7 C ___________.(真空介电常量0=8.85×10-12 C2·N -1·m -2 ) 6.一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能We =_____ 04Qq r πε____________. 7. 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所作的_______ 06q R πε______________。 二、选择题 1. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由 闭合曲面内的P 点移到T 点,且( D ) (A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;

相关文档
最新文档