选择性催化还原法(SCR)烟气脱硝原理及工艺图谱介绍

合集下载

脱硝-SNCR-SCR-简介

脱硝-SNCR-SCR-简介

选择性催化还原选择性催化还原法(Selective Catalytic Reduction,SCR)的原理是在催化剂作用下,还原剂NH3在相对较低的温度下将NO和NO2还原成N2,而几乎不发生NH3的氧化反应,从而提高了N2的选择性,减少了NH3的消耗。

其中主要反应如下:4NH3+6NO=5N2+6H2O8NH3+6NO2=7N2+12H2O4NH3+3O2=2N2+6H2O4NH3+5O2=4NO+6H2O2NH3可逆生成N2+3H2SCR系统由氨供应系统、氨气/空气喷射系统、催化反应系统以及控制系统等组成,为避免烟气再加热消耗能量,一般将SCR反应器置于省煤器后、空气预热器之前,即高尘段布置。

氨气在加入空气预热器前的水平管道上加入,与烟气混合。

催化反应系统是SCR 工艺的核心,设有NH3的喷嘴和粉煤灰的吹扫装置,烟气顺着烟道进入装载了催化剂的SCR 反应器,在催化剂的表面发生NH3催化还原成N2。

催化剂是整个SCR系统关键,催化剂的设计和选择是由烟气条件、组分来确定的,影响其设计的三个相互作用的因素是NOx脱除率、NH3的逃逸率和催化剂体积。

目前普遍使用的是商用钒系催化剂,如V2O5/TiO2和V2O5-WO3/TiO2。

在形式上主要有板式、蜂窝式和波纹板式三种。

该工艺于20 世纪70年代末首先在日本开发成功,80 年代以后,欧洲和美国相继投入工业应用。

在NH3/NO x的摩尔比为1时,NO x的脱除率可达90%,NH3的逃逸量控制在5 mg/L以下。

由于技术的成熟和高的脱硝率,SCR法现已在世界范围内成为大型工业锅炉烟气脱硝的主流工艺。

截至2010年底,我国已投运的烟气脱硝机组容量超过2亿kW,约占煤电机组容量的28%,其中SCR机组占95% 。

柴油机所产生的微粒(PM)和氮氧化物(NOx)是排放中两种最主要的污染物。

从目前降低汽车尾气排放的技术途径来看,要达到欧Ⅳ排放标准,一般不再从发动机本身的结构方面采取措施,通常是采取排气后处理的方式来降低污染物的排放量,而尿素-SCR 选择性催化还原法是最具现实意义的方法,它能把发动机尾气中的NOx减少50%以上。

SCR脱硝技术

SCR脱硝技术

SCR脱硝技术及其脱硝催化剂生产工艺1、概述SCR(selective catalytic reduction)是烟气选择性催化还原法脱硝技术的简称,是指在催化剂的作用下,利用还原剂(如NH3)“有选择性”地与烟气中的NOx反应并生成无毒无污染的N2和H2O。

也就是说SCR工艺的实质就是燃煤锅炉排放烟气中的NOx污染物与喷入烟道的还原剂NH3,在催化剂的作用下发生氧化还原反应,生成无害的N2和H2O。

该工艺于20世纪70年代末首先在日本开发成功,80年代和90年代以后,欧洲和美国相继投入工业应用,现已在世界范围内成为大型工业锅炉烟气脱硝的主流工艺。

为避免烟气再加热消耗能量,一般将SCR反应器布置在锅炉省煤器出口与空气预热器之间,即高飞灰布置。

此时烟气温度(300℃-430℃)正好是催化剂的最佳活性温度窗口。

氨气在加入空气预热器前的水平管道上加入,与烟气混合,NOx在催化剂的作用下被还原为N2和H2O。

目前常规应用的SCR技术为中温催化剂(280℃-420℃),而现在正在研究开发的低温催化剂,可应用于200℃以下的烟气温度。

2、SCR反应过程SCR技术是在金属氧化物催化剂作用下,以NH3作为还原剂,将NOx还原成N2和H2O。

NH3不和烟气中的残余的O2反应,而如果采用H2、CO、CH4等还原剂,它们在还原NOx的同时会与O2作用,因此称这种方法为“选择性”。

主要反应方程式为:4NH3+4NO+O2─>4N2+6H2O (1)NO+NO2+2NH3─>2N2+3H2O (2)3、SCR系统设计条件•烟气流量•烟气温度•烟气成分和灰分成分•烟气入口NOx浓度•脱硝效率•空间速率•NH3/NOx摩尔比•SO2转化率•NH3逃逸率•反应器运行压降4 、SCR脱硝系统主要装置•氨存储和供应系统•氨/空气喷射系统•SCR反应器•SCR催化剂•SCR控制系统•吹灰和灰输送系统5、SCR催化反应还原剂用于SCR烟气脱硝的还原剂一般有3种:液氨、氨水、及尿素。

选择性催化还原法

选择性催化还原法

烟气流型的优劣决定着催化剂的应用效果,合理的烟气流型不仅能较高地利用催化剂,而且能减少烟气的沿程 阻力。在工程设计中必须重视烟气的流场,喷氨点应具有湍流条件以实现与烟气的最佳混合,形成明确的均项流动 区域。
催化剂的类型、结构和表面积催化剂是SCR系统中最关键的部分,其类型、结构和表面积对脱除NOx效果均有 很大影响。
工艺流程
典型SCR系统的组成(以液氮为还原剂)典型SCR主要工艺流程为:还原剂(液氨)用罐装卡车运输,以液体 状态储存于氨罐中;液态氨在注入SCR系统烟气之前经由蒸发器蒸发汽化;汽化的氨和稀释空气混合,通过喷氨 格栅喷入SCR反应器上游的烟气中;充分混合后的还原剂和烟气在SCR反应器中催化剂的作用下发生反应,去除 NOx。
空间速度是SCR的一个关键设计参数,它是烟气(标准状态下的湿烟气)在催化剂容积内的停留时间尺度,在某 种程度上决定反应物是否完全反应,同时也决定着反应器催化剂骨架的冲刷和烟气的沿程阻力。空间速度大,烟气 在反应器内的停留时间短,则反应有可能不完全,这样氨的逃逸量就大,同时烟气对催化剂骨架的冲刷也大。对于 固态排渣炉高灰段布置的SCR反应器,空间速度选择一般是(2500 ~ 3500) h。华夏电力公司篙屿电厂采用的SCR 反应器烟气速度为5.55 m/s (380℃时 )。
特点
SCR技术具有以下特点。 ①NOx脱除效率高 据有关文献记载及工程实例监测数据,SCR法一般的NOx脱除效率可维持在70%-90%,一般的NOx出口浓度可降 低至100mg/m左右,是一种高效的烟气脱硝技术。 ②二次污染小 SCR法的基本原理是用还原剂将NOx还原为无毒无污染的N2和H2O,整个工艺产生的二次污染物质很少。 ③技术较成熟,应用广泛 SCR烟气脱硝技术已在发达国家得到较多应用。如德国,火力发电厂的烟气脱硝装置中SCR法大约占95%。在 我国已建成或拟建的烟气脱硝工程中采用的也多是SCR法。 ④投资费用高,运行成本高 以我国第一家采用SCR脱硝系统的火电厂—福建漳州后石电厂为例,该电厂600MW机组采用日立公司的SCR烟 气脱硝技术,总投资约为1.5亿人民币。

SCR锅炉烟气脱硝

SCR锅炉烟气脱硝

附件二、锅炉烟气SCR脱硝一、SCR工艺原理利用选择性催化还原(SCR)技术将烟气中的氮氧化物脱除的方法是当前世界上脱氮工艺的主流。

选择性催化还原法是利用氨(NH3)对NO X的还原功能,使用氨气(NH3)作为还原剂,将一定浓度的氨气通过氨注入装置(AIG)喷入温度为280℃-420℃的烟气中,在催化剂作用下,氨气(NH3)将烟气中的NO和NO2还原成无公害的氮气(N2)和水(H2O),“选择性”的意思是指氨有选择的进行还原反应,在这里只选择NO X还原。

其化学反应式如下:4NO+4NH3+O2→4N2+6H2O2NO2+4NH3+O2→3N2+6H2O6NO2+8NH3→7N2+12H2O副反应主要有:2SO2+O2→2SO3催化剂是整个SCR系统的核心和关键,催化剂的设计和选择是由烟气条件、组分来确定的,影响其设计的三个相互作用的因素是NO X 脱除率、NH3的逃逸率和催化剂体积。

脱硝反应是在反应器内进行的,反应器布置在省煤器和空气预热器之间。

反应器内装有催化剂层,进口烟道内装有氨注入装置和导流板,为防止催化剂被烟尘堵塞,每层催化剂上方布置了吹灰器。

二、脱硝性能要求及工艺参数1、性能要求采用SCR脱硝技术时,脱硝工程应达到下列性能指标:NO X排放浓度控制到200mg/Nm3以下,总体脱硝效率约80%;氨逃逸浓度不大于3uL/L;SO2/SO3转化率小于1.0%;2、工艺参数脱硝工艺的设计参数见表液氨缓冲槽SCR工艺流程图3、高灰型SCR脱硝系统采用高灰型SCR工艺时,250~390℃的烟气自锅炉省煤器出口水平烟道引入,进入SCR脱硝装置入口上升烟道,经氨喷射系统喷入烟道的NH3与烟气混合后,在催化剂作用下,将NO X还原成N2和H2O,脱硝后的干净烟气离开SCR装置,进入空气预热器,回到锅炉尾部烟道。

高灰型SCR脱硝系统包括烟道接口、烟道、挡板、膨胀节、氨气制备与供应、氨喷射器、导流与整流、反应器壳体、催化剂、吹灰器、稀释风机、在线分析仪表及控制系统等部件,归纳起来可分为催化剂系统、反应器系统、氨供应与喷射系统及电气热控系统等几个部分。

scr sncr脱硝原理

scr sncr脱硝原理

scr sncr脱硝原理
SCR(选择性催化还原)和SNCR(非选择性催化还原)脱硝技术是两种广泛应用的烟气脱硝方法。

它们利用还原剂将
烟气中的氮氧化物还原成氮气和水,从而实现氮氧化物的达
标排放。

SCR脱硝技术是通过在催化剂的作用下,将烟气在200~400度的温度区间进行催化还原反应。

这种技术的优点是脱硝效率高,一般在90%以上,且反应温度相对较低,对设备
材料的要求较低。

然而,SCR脱硝技术的主要缺点是投资和
运行成本相对较高,需要定期更换催化剂。

SNCR脱硝技术则是通过在炉内高温区(800~1050度区间)喷入还原剂,如氨或尿素,在高温下实现还原反应。

SNCR技术的优点是投资和运行成本较低,且无需昂贵的催化剂。

然而,SNCR技术的脱硝效率相对较低,一般在30%~60%之间,而且对温度和还原剂的喷入量要求较高。

综合来看,两种脱硝技术各有优缺点,需根据实际工况和排
放要求进行选择。

在实际应用中,还可以采用SCR和SNCR
相结合的“SNCR-SCR”技术,以达到更好的脱硝效果。

scr脱硝原理及工艺

scr脱硝原理及工艺

scr脱硝原理及工艺
脱硝是指通过一系列化学反应将燃烧过程中生成的氮氧化物(包括二氧化氮和一氧化氮)还原为氮气的过程。

脱硝的原理主要包括选择性非催化还原(SNCR)、选择性催化还原(SCR)和非催化燃烧还原(SNV)等。

其中,SNCR脱硝是指将还原剂(如氨水、尿素等)直接喷入燃烧设备内,通过与氮氧化物发生反应,将其转化为氮气和水蒸气。

这种方法的优点是操作简单、投资成本较低,但是氨逸失和产生二次污染物的问题需要注意。

SCR脱硝是指在燃烧设备后段增加氨逸碱基(如铵氮)催化剂,通过催化反应将氮氧化物转化为氮气和水。

这种方法具有高效率、低能耗和高适应性的特点,但需要严格控制催化剂的温度,并且催化剂的选择和管理也是关键。

SNV脱硝是指通过调整燃烧设备的设计和操作参数,使燃烧过程中生成的氮氧化物在高温环境下分解为氮气和氧气。

这种方法适用于高温燃烧设备,如锅炉和炉窑,具有节能环保的优点,但也存在燃烧效率下降和氧化焓的问题。

在实际工艺中,常常采用多种脱硝方法的组合,以达到更好的脱硝效果。

同时,还需要对脱硝过程进行监测和控制,以确保脱硝效率和运行稳定。

SCR脱硝原理及工艺

SCR脱硝原理及工艺
1.对引风机影响 SCR阻力+烟道阻力+空气预热器增加阻力 =~1000Pa; NH3和稀释风的加入,引风机流量略有增加。 增加引风机的电机功率。
2.对烟道影响 省煤器出口至SCR入口范围,烟道压力与原设计相同,和
炉膛承受压力基本一致,对烟道强度计算没有影响; SCR出口至空气预热器入口范围,烟道压力与省煤器出口
●通过烟道自然混合;
●使用烟道结构件进行混 合,如导流板、静态混 合器等。
混合装置
Gas Flow
计算机CFD模拟 流场的建立
确保 NH3/NOX分布均匀 确保 烟气速度均匀 减小烟气温度偏差 获得最小的烟气压降 防止积灰
CFD设计示例
均通匀过的烟流道场自有利然于混:合; —使氨用与烟NO道X结充构分反件应进,行保证 混脱合硝,效如率导;流板、静 —态降混低合氨器的等逃逸。率,减少氨对
空气预热器结构
对空气预热器采取的措施
换热元件采用合适的板型; 空气预热器由高、中、低温段改为高、低温两端,中温段, 避免中、低段之间NH4HSO4沉积; 在空预器冷端采用镀搪瓷元件 采用多介质吹灰器,加强吹灰频率 严格控制氨的逃逸率 保证较低的SO2/SO3的转化率(<1%)
对引风机和烟道的影响
GB50160-1992
《石油化工储运系统罐区设计规范》
SH3007 -1999
《爆炸和火灾危险环境电力装置设计规范》 GB50058-1992
《石油化工企业可燃气体和有毒气体检测报警设计规范》
SH3063-1999
《 危险化学品重大危险源辨识》来自GB18218-2009
氨区的布置原则
布置的原则:
SCR系统工艺流程-液氨
催化剂的失活和中毒

选择性催化还原法脱销原理(SCR)

选择性催化还原法脱销原理(SCR)

选择性催化还原法脱销原理(SCR)选择性催化还原法脱销原理(SCR)对烟气脱硝的研究开始于上个世纪八十年代初,主角是美国、德国和日本的一些企业和研究机构。

烟气脱硝技术成熟于上个世纪八十年代后期到九十年代初,以后即形成商品,走向市场。

以日本为例,到1993年,日本已安装了715套烟气脱硝装置,仅电厂就安装了153套,而电厂的烟气处理量却占715套烟气总处理量的80.4%, 这表明电厂使用的脱硝装置,其烟气处理总能力要比其他行业大得多。

除电厂外,其他如石油、化工、冶金、造纸、垃圾焚烧等行业应用也很普遍。

对烟气进行脱硝处理的方法很多,一般可分干法脱硝和湿法脱硝两大类,而以干法更为普遍。

主要原因是干法脱硝的工艺流程简单、脱硝效率高(可达92%以上),无需供水和进行废水处理。

就干法脱硝而言,方法也很多,已有实际应用的就有十余种,其中应用最广的脱硝方法首推选择催化还原法。

据目前一些统计资料显示,在用的脱硝装置中,干法脱硝装置总台数占全体脱硝装置总台数的76.2%,而烟气处理量则占97.8%,也就是说大烟气量的脱硝处理大都采用干法,而在干法脱硝中采用选择性催化还原法的在台数上占73.8%,在烟气量上占94.7%,也就是说绝大多数大烟气量的脱硝处理都采用干法中的选择性催化还原法工艺,即SCR工艺,本电厂也采用了这一工艺。

SCR工艺本质上就是在一定温度条件下(280,400?),借助于催化剂的帮助,用氨(NH)来还原NO的过程,主要反应式为: 3x4 NH + 4NO + O=4N + 6HO 32224 NH + 2NO + O=3N + 6HO 32222上述第一个反应式是主要的,因为电厂烟气中的NO中NO占95%左右,xNO只占很少一部分。

上述反应只有在催化剂的帮助下才能发生。

2催化剂主要由金属氧化物构成基体,如VO、TiO等。

早期曾用Pt、Pd252等贵金属作为催化剂成份,但因其选择性低及能促使烟气中的SO转变成SO,23带来很大的副作用,从而被淘汰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档