(完整版)系统开环频率特性
二阶开环的频率特性

同济大学电子与信息工程学院实验中心实验报告实验课程名称:自动控制原理任课教师:王中杰实验项目名称:二阶开环系统的频率特性曲线二阶开环系统的频率特性曲线一.实验要求1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。
2.了解和掌握二阶开环系统中的对数幅频特性)(ωL 和相频特性)(ωϕ,实频特性)Re(ω和虚频特性)Im(ω的计算。
3.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。
4.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。
二.实验内容及步骤本实验用于观察和分析二阶开环系统的频率特性曲线。
由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。
计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+⨯=n c (3-2-3)相位裕度:424122arctan)(180ξξξωϕγ++-=+=c (3-2-4)γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望:30°≤γ≤70° (3-2-5)本实验以第3.2.2节〈二阶闭环系统频率特性曲线〉为例,得:ωc =14.186 γ=34.93° 本实验所构成的二阶系统符合式(3-2-5)要求。
被测系统模拟电路图的构成如图3-2-2所示。
(同二阶闭环系统频率特性测试构成) 本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz ),OUT2输出施加于被测系统的输入端r (t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。
自动控制理论_19开环对数频率特性曲线的绘制

穿越法判断包围圈数 设 N 为开环幅相频率特性曲线穿越(- 1 , j0 ) 点左侧负实轴的次数, N +表示正穿越的次数(从 上往下穿越), N -表示负穿越的次数(从下往上 穿越),则
R 2N 2( N N )
5.2 例 系统开环传递函数为 G ( s) H ( s) 2 ( s 2)(s 2s 5)
圈时,F(s)总的相角增量为
n i 1
F ( s) ( s zi ) ( s pi )
i 1
n
( s z1 ) ( s z2 ) ( s zn ) ( s p1 ) ( s p2 ) ( s pn )
s
s zi
B
A
F ( s)
F
F
z 1 p1 z 2
z i 1
j
s
s zi
zi
s
j
B
A
F ( s)
F
F
z 1 p1 z 2
z i 1
S 平面上的闭合曲线 Γs 内部仅有 1 个 F(s) 的零点, F (s) 的其 它零极点如图所示。当闭合曲线Γs上任一点S沿顺时针方向转动一
第五章
频率域方法
5.3
开环对数频率特性曲线的绘制
根据叠加原理,绘出各环节的对数幅频特性 分量,再将各分量的纵坐标相加,就得到整个系 统的开环对数幅频特性;将各环节的相频特性分 量相加,就成为系统的开环对数相频特性。
例
10(0.5s 1) G( s) s ( s 1)(0.05s 1)
1 180 ,即A() 1 (-1,j0)点表示成幅角形式是 ( ) 180 而A(ω)=1对应于对数幅频坐标图上L(ω)=0 的水平线; () 180则对应于对数相频坐标图上- 180°的水平线。因此可以进行坐标系转换。
自动控制原理_卢京潮_利用开环频率特性分析系统的性能

5.6 利用开环频率特性分析系统的性能在频域中对系统进行分析、设计时,通常是以频域指标作为依据的,但是不如时域指标来得直接、准确。
因此,须进一步探讨频域指标与时域指标之间的关系。
考虑到对数频率特性在控制工程中应用的广泛性,本节将以Bode 图为基点,首先讨论开环对数幅频特性)(ωL 的形状与性能指标的关系,然后根据频域指标与时域指标的关系估算出系统的时域响应性能。
实际系统的开环对数幅频特性)(ωL 一般都符合如图5-49所示的特征:左端(频率较低的部分)高;右端(频率较高的部分)低。
将)(ωL 人为地分为三个频段:低频段、中频段和高频段。
低频段主要指第一个转折点以前的频段;中频段是指穿越频率(或截止频率)c ω附近的频段;高频段指频率远大于c ω的频段。
这三个频段包含了闭环系统性能不同方面的信息,需要分别进行讨论。
需要指出,开环对数频率特性三频段的划分是相对的,各频段之间没有严格的界限。
一般控制系统的频段范围在Hz 100~01.0之间。
这里所述的“高频段”与无线电学科里的“超高频”、“甚高频”不是一个概念。
5.6.1 )(ωL 低频渐近线与系统稳态误差的关系系统开环传递函数中含积分环节的数目(系统型别)确定了开环对数幅频特性低频渐近线的斜率,而低频渐近线的高度则取决于开环增益的大小。
因此,)(ωL 低频段渐近线集中反映了系统跟踪控制信号的稳态精度信息。
根据)(ωL 低图5-49 对数频率特性三频段的划分频段可以确定系统型别υ和开环增益K ,利用第3章中介绍的静态误差系数法可以确定系统在给定输入下的稳态误差。
5.6.2 )(ωL 中频段特性与系统动态性能的关系开环对数幅频特性的中频段是指穿越(或截止)频率c ω附近的频段。
设开环部分纯粹由积分环节构成,图5-50(a )所示的对数幅频特性对应一个积分环节,斜率为dec dB /20-,相角 90)(-=ωϕ,因而相角裕度 90=γ;图5-50(b )的对数幅频特性对应两个积分环节,斜率为dec dB /40-,相角 180)(-=ωϕ,因而相角裕度 0=γ。
第五章_频域特性

,半径为
1 2
。
16
A()—— 幅频特性;G(j)的模,它等于稳态 的输出分 量与输入分量幅值之比. ()—— 相频特性;G(j)的幅角,它等于稳态输出分 量与输入分量的相位差。 G ( j ) U()—— 实频特性; j V V()—— 虚频特性; V ( ) 都是的函数,之间的 A ( ) 关系用矢量图来表示。
10
R
极坐标图
c 1 G ( j ) r R C j 2
r (t )
i (t )
C
c (t )
1 1 j T e
j a rc ta n T
e
j
1 1 j T
1 /( 2 T )
1/ 1 T
G ( j ) 9 0
由于幅角是常数,且幅值随ω增大而减小。因此,积分 环节是一条与虚轴负段相重合的直线。
14
典型环节的极坐标图
4. 惯性环节
G ( j ) 1 1 j T 1 1 ω T
2 2
1 1 T
2 2
j
T
1 T
2 2
G jω
取三个特殊点
(RC=T)
5
即为无源RC网络的频率特性。
频率特性的性质
1、与传递函数一样,频率特性也是一种数学模型。 它描述了系统的内在特性,与外界因素无关。当系统 结构参数给定,则频率特性也完全确定。 2、频率特性是一种稳态响应。 系统稳定的前提下求得的,不稳定系统则无法直接观 察到稳态响应。从理论上讲,系统动态过程的稳态分量总 可以分离出来,而且其规律并不依赖于系统的稳定性。因 此,我们仍可以用频率特性来分析系统的稳定性、动态性 能、稳态性能等。 3、系统的稳态输出量与输入量具有相同的频率。 当频率改变,则输出、输入量的幅值之比A()和相 位移()随之改变。这是系统中的储能元件引起的。
系统的频率特性分析(第二讲)

-45°
-90° 111
20T 10T 5T
112 2T T T
5 10 20 TTT
一阶惯性环节伯德图
一阶微分环节的Bode图与惯性环节的Bode图关于 横轴对称。
二阶微分环节的频率特性
③ 二阶微分环节: G(s) 2s2 2 s 1
幅频和相频特性为:
A
(1 22 )2 (2 )2 ,() arctan 2 1 22
常数T变化时,对数幅频特性和对数相频特性的形状都不变,
仅仅是根据转折频率1/T的大小整条曲线向左或向右平移即可。
而当增益改变时,相频特性不变,幅频特性上下平移。
G(s) 5 s 1
当增益 改变时, 相频特 性不变, 幅频特 性上下 平移。
Matlab 绘制的惯性环节的Bode图
4
振荡环节(要重视)G(s)
0.7 0.8 1.0
5
10
T
T
-30°
-60°
0.1
-90° 0.2
0.3
-120° 0.5
-150° 0.7
1.0
-180°
1
1
10T 5T
1
1
2
2T
T
T
左图是不同阻尼系数情况下 的对数幅频特性和对数相频 特性图。上图是不同阻尼系 数情况下的对数幅频特性实 5 10 际曲线与渐近线之间的误差 T T 曲线。
1
0.086 0.34 1.29 2.76 4.30 6.20 4.30 2.76 1.29 0.34 0.086
K 10,T 1, 0.3
G(
j )
s2
10 0.6s
1
o
1 T
40dB/ Dec
第四章系统的频率特性分析

第四章 频率特性分析4.1 什么是频率特性?解 对于线性定常系统,若输入为谐波函数,则其稳态输出一定是同频率的谐波函数,将输出的幅值与输入的幅值之比定义为系统的幅频特性;将输出的相位于输入的相位之差定义为系统的相频特性。
将系统的幅频特性和相频特性统称为系统的频率特性。
4.2 什么叫机械系统的动柔度,动刚度和静刚度?解 若机械系统的输入为力,输出为位移(变形),则机械系统的频率特性就是机械系统的动柔度;机械系统的频率特性的倒数就是机械系统的动刚度;当0=w 时,系统频率特性的倒数为系统的静刚度。
4.3已知机械系统在输入力作用下变形的传递函数为 12+s (mm/kg),求系统的动刚度,动柔度和静刚度。
解 根据动刚度和动柔度的定义有 动柔度()()()12+====jw jw s s G jw G jw λ mm/kg 动刚度 )(jw K =)(1jw G =21+jw kg/mm 静刚度 ()()5.0021010==+====K w jw w jw G w jw kg/mm4.4若系统输入为不同频率w 的正弦函数Asinwt,其稳态输出相应为Bsin(wt+ϕ).求该系统的频率特性。
解:由频率特性的定义有 G (jw )=AB e jw。
4.5已知系统的单位阶跃响应为)(。
t x =1-1.8te 4-+0.8te9-,试求系统的幅辐频特性与相频特性。
解:先求系统的传递函数,由已知条件有)(。
t x =1-1.8te 4-+0.8te9-(t 0≥))(S X i =s 1)(。
S X =s 1-1.841+s +0.891+s )(S G =)()(。
S X S X =()()9436++s s )(jw G =jw s s G =)(=()()jw jw ++9436)(w A =)(jw G =22811636ww +•+)(w ϕ=0-arctan 4w -arctan 9w =-arctan 4w -arctan 9w4.6 由质量、弹簧、阻尼器组成的机械系统如图所示。
(完整版)自控原理与系统试卷(含答案)
《自动控制原理与系统》期末试卷A一、填空题(每空2分,共30分)1.根据自动控制技术发展的不同阶段,自动控制理论分为 和。
2.对控制系统的基本要求包括 、 、 。
3.系统开环频率特性的几何表示方法: 和 。
4.线性系统稳定的充要条件是 。
5.控制系统的时间响应从时间的顺序上可以划分为 和 两个过程。
6.常见的五种典型环节的传递函数 、 、 、 和 。
二、简答题(每题4分,共8分)1.建立系统微分方程的步骤?2.对数频率稳定判据的内容?三、判断题(每题1分,共10分)1.( )系统稳定性不仅取决于系统特征根,而且还取决于系统零点。
2.( )计算系统的稳态误差以系统稳定为前提条件。
3.( )系统的给定值(参考输入)随时间任意变化的控制系统称为随动控制系统。
4.( )线性系统特性是满足齐次性、可加性。
5.( )传递函数不仅与系统本身的结构参数有关,而且还与输入的具体形式有关。
6.( )对于同一系统(或元件),频率特性与传递函数之间存在着确切的对应关系。
7.( )传递函数只适用于线性定常系统——由于拉氏变换是一种线性变换。
8.( )若开环传递函数中所有的极点和零点都位于S 平面的左半平面,则这样的系统称为最小相位系统。
9.( )“回路传递函数”指反馈回路的前向通路和反馈通路的传递函数乘积,不包含表示反馈极性的正负号。
10.( )系统数学模型是描述系统输入、输出及系统内部变量之间关系的数学表达式。
四、计算题(每题12分,共36分)1.试求取如图所示无源电路的传递函数)(s U /)(s U i 。
2.设单位负反馈系统的开环传递函数为)1(1)(s s s G ,试求系统反应单位阶跃函数的过渡过程的上升时间r t ,峰值时间p t ,超调量% 和调节时间s t 。
3.设某系统的特征方程式为0122234s s s s ,试确定系统的稳定性。
若不稳定,试确定在s 右半平面内的闭环极点数。
五、画图题(共16分).某系统的开环传递函数为)20)(1()2(100)( s s s s s G ,试绘制系统的开环对数频率特性曲线。
自动控制原理—第五章(6)
3
2 2
4 4 1
arctan
2
2 2 4 4 1
ts c
6
tan
上式表示二阶系统tsc与γ之间的关系,绘成曲线如图5—71所示。 由以上分析可知,对二阶系统,tsc与γ成反比;当γ给定后,ts与c成反比;当要求 系统具有相当的灵敏度时,c应该较大。从物理意义上解释,c越大,说明系统能 够响应的输入信号的频率越高,也就是跟踪输入信号的速度越快,系统的惯性较小, 即快速性好。由于在控制系统的实际运行中,输入的控制信号一般为低频信号,而干 扰信号(如调速系统中电网电压的波动等)一般为高频信号,c越大,说明系统对高 频干扰信号的抑制能力就越差。因此,c的取值要同时根据系统的快速性与抗高频干 扰信号的要求确定。
2.中频段的穿越频率c的选择,决定于系统瞬态响应速 度与抗干扰能力的要求,c较大可保证足够的快速性。
5.6.3开环对数幅频特性L()高频段与系统抗干扰性能的
关系
一、高频段与系统动态性能的关系
从图中可以看出,三个系统的低频段与中频段完全相同,仅高频段的衰减速度有所差别。 由于系统1在高频段的衰减速度最快,说明系统对高频信号有较强的抑制能力,对于输 入信号中的高频分量不能很好地复现,因此,其单位阶跃响应在起始阶段的上升速度相 对较慢。系统开环频率特性的高频段主要影响单位阶跃过程的起始阶段。
由以上对二阶系统与高阶系统的分析可知,如果两个同阶的系统,其γ相同, 那么它们的超调量大致是相同的,而幅值穿越频率c越大的系统,调节时 间ts越短。
根据以上分析可知,一个设计合理的系统,要以动态 性能的要求来确定中频段的形状。为保证系统具有较
好的动态性能,L()中频段应该满足以下要求:
频率特性分析(2)
L() dB
2 101 L(2 ) 20 lg T2 20 lg10T1
40
20(lg 10 lg T1)
20
20 20 lg T1 20 L(1)
0 0.01
0.1
20
1
10
100
40 20dB / dec
L(2) L(1) 20(dB / dec)
() 900 450
0.1
450
1
10
100
900
微分环节的Bode图
4.惯性环节
频率特性为 G( j) 1 jT 1
对数幅频特性
20lg G( j) 20lg T 22 1 10lg(T 22 1)
对数相频特性 () arctgT
令T
1 T
称为转折频率或交接频率或转角频率
1 T
,
20lg
G(
j)
20lg
1T 2 2 0(dB)
L() (dB)
20
01
10T
40
()
00
900
1800
0.05
0.3
0.5
1
10 1
T
T
1.0
0.3
40dB / dec
0.05
0.5
n
1 T
7.二阶微分环节
频率特性为 G( j) (1 2 2 ) j2
对数幅频特性
20lg G( j) 20lg (1 2 2 )2 4 2 2 2
0.1
450
900
1800
Байду номын сангаас
40dB / dec
1
10
100
1
10
河南理工大学自动控制原理第5章 第4讲 系统的闭环频率特性及性能指标和利用开环频率特性分析系统的性能2012
主要内容系统闭环频率特性通过频率特性曲线分析稳态性能指标频域动态性能指标频率域特性指标与时域瞬态指标的关系2)()(1)()()(1s H s G s H s G s H +⋅=4环幅频特性。
闭环幅频特性曲线闭环对数幅频曲线二、由闭环频率特性分析系统的时域响应频率特性分析法比时域性能分析简便,且有成熟的图解法可供使用,但频率特性分析是一种概略性的间接方法,在要求系统性能指标直接而具体时,还需从时域响应面进行讨论。
在已知闭环系统稳定的条件下,可根据系统的闭环幅频特性曲线,对系统的动态过程进行定性分析与定量估算。
51、通常的闭环频域有以下几个指标:V零频幅值:ω=0时闭环幅频特性的数值(反映系统静差(误差))V谐振频率ωr:闭环系统频率特性出现谐振峰值时的频率值V谐振峰值M r:系统闭环频率特性幅值的最大值,反映系统的平稳性,并非所有闭环频率特性的中频段有谐振峰值,若出现了谐振峰值,表明系统的阻尼比较小615M r、σ与ζ的关系曲线当相角裕量γ为30o ~60o 时,对应二阶系统的阻尼比ζ为0.3~0.6在ζ≤0.707时,二阶系统的相角裕量γ与阻尼比ζ之间的关系近似为:ζ=0.01γV谐振频率ωr表征系统瞬态响应的速度。
ωr值越大,响应时间越快。
对于弱阻尼系统(ζ较小),谐振频率ωr与阶跃响应的阻尼振荡频率ωd接近。
V截止频率(带宽频率)ωb当系统闭环幅频特性的幅值M(ω)降到零频率幅值的0.707(或零分贝值以下3dB)时,对应的频率ωb称为截止频率。
0~ωb的频率范围称为带宽它反映系统的快速性和低通滤波特性。
V剪切率ωc幅值=1时的频率ωc,称为剪切率,它既反映系统的相角裕度(相角裕度大,剪切率应较平缓),又表征系统从噪声中辨别信号的能力(剪切率平缓,带宽ωb大,对高频噪声的抑制不利)。
17应注意,剪切频率ωc处斜率平缓(如以-20dB/dec过0dB线)时,系统相角裕量大;而斜率陡峭时,说明具有负相角的环节集图5 剪切率中叠加于此,带来大的负相角,如图5所示,则易造成系统不稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-2 系统开环频率特性
若系统开环传递函数由典型环节串联而成,即
)()()()()(21s G s G s G s H s G n =
开环频率特性为 )()()()()(21ωωωωωj G j G j G j H j G n = 12()()()12()()()n j j j n G j e G j e G j e ϕωϕωϕωωωω=
∏=∑==n
i j
i n
i i e
j G 1)
(1
)(ωϕω
可见,系统开环幅频特性为
∏==n
j i j G j H j G 1
)()()(ωωω
开环相频特性为
∑==∠=n
i i j H j G 1
)()()()(ωϕωωωϕ
而系统开环对数幅频特性为
∑∏=====n
i i n i i j G j G j H j G L 1
1
)
(lg 20)(lg 20)()(lg 20)(ωωωωω
由此可见,系统开环对数幅频特性等于各串联环节的对数幅频特性之和;系统开环相频特性等于各环
节相频特性之和。
综上所述,应用对数频率特性,可使幅值乘、除的运算转化为幅值加、减的运算,且典型环节的对数幅
频又可用渐近线来近似,对数相频特性曲线又具有奇对称性质,再考虑到曲线的平移和互为镜象特点,这样,一个系统的开环对数频率特性曲线是比较容易绘制的。
【例5-1】已知系统开环传递函数为
)
1)(10(100
)(++=
s s s s G
试绘制该系统的开环对数频率特性曲线。
解 (1) 首先将系统开环传递函数写成典型环
节串联的形式,即
)
1)(11.0(100
)(++=
s s s s G
可见,系统开环传递函数由以下三种典型环节串
联而成:
放大环节:10)(1=s G 积分环节:s s G 1)(2=
惯性环节:)1(1)(3+=s s G 和)11.0(1)(4+=s s G
(2) 分别作出各典型环节的对数幅频、相频特性曲线,如图5—19所示.为了图形清晰,有时略去直线斜
率单位.
(3) 分别将各典型环节的对数幅频、相频特性曲线相加,即得系统开环对数幅频、相频特性曲线,如图5—19中实线所示.
由系统开环对数幅频特性曲线可以看出,系统开环对数频率特性渐近线由三段直线组成,其斜率分别为
20-、40-、60-dB/dec,直线与直线之间的交点频率按ω增加的顺序分别为两个惯性环节的交接频率1、
10.系统开环对数幅频特性曲线与零分贝线的交点频率称为系统的截止频率,并用c ω表示。
相频特性曲线由
︒-90开始,随ω增加逐渐趋近于︒-270。
根据上述特点,实际绘制开环对数幅频特
性曲线时,尤其在比较熟练的情况下,不必绘出各典型环节的对数幅频特性曲线,
而可以直接绘制系统开环对数幅频特性曲线。
另外,绘制系统开环幅相频率特性曲线是比较麻烦的,因为开环幅频特性是各串联典型环节幅频特性的乘积。
为了绘制开环幅相频率特性曲线,可以先作出开环对数频率特性曲线,然后再根据幅值、相角变化情况绘制开环幅相频率特性曲线。
[例5—1]的幅相频率特性曲线见图5—20。
图中箭头方向表示参
变量ω增加的方向.。