数列证明方法总结
数列归纳法知识点总结

数列归纳法知识点总结一、介绍数列归纳法是数学中的一种常见证明方法,用于证明某个命题对于所有自然数或正整数都成立。
它的基本思想是通过归纳步骤,从已知条件推导出通项公式,从而得出结论。
二、数列定义数列是按照一定规律排列的一组数的集合。
通常用a₁,a₂,a₃,...表示,其中a₁,a₂,a₃,...为数列的项。
数列按照一定的规律取值,可以是等差数列、等比数列或其他类型的数列。
三、数列归纳法的步骤1. 归纳基础步骤:首先证明命题对于初始条件成立,通常是证明当n取某个特定值时命题成立。
2. 归纳假设步骤:假设当n=k时命题成立,即假设命题对于某个自然数k成立。
3. 归纳推理步骤:利用归纳假设推导出当n=k+1时命题也成立。
4. 归纳结论步骤:由归纳推理步骤得出结论,命题对于所有的自然数n成立。
四、数列归纳法的应用1. 证明数学等式或不等式:利用数列归纳法可以证明各类数学等式或不等式,例如等差数列的通项公式、等比数列的通项公式等。
2. 证明数学性质:数列归纳法也常用于证明数学性质,例如证明2的n次方大于n,证明斐波那契数列的性质等。
五、数列归纳法的例题例题1:证明等差数列的通项公式成立。
解:首先我们验证归纳基础步骤,当n=1时,等差数列的通项公式显然成立。
假设当n=k时,等差数列的通项公式成立,即aₖ=a₁+(k-1)d,其中a₁为首项,d为公差。
那么我们来看当n=k+1时,aₖ₊₁=a₁+(k+1-1)d=a₁+kd。
根据等差数列的递推关系式,aₖ₊₁=aₖ+d。
由归纳假设可得,aₖ₊₁=a₁+(k-1)d+d=a₁+kd。
所以,当n=k+1时,等差数列的通项公式也成立。
因此,根据数列归纳法,等差数列的通项公式对于所有的自然数n 成立。
例题2:证明斐波那契数列的性质。
解:首先我们验证归纳基础步骤,当n=1时,斐波那契数列的性质显然成立。
假设当n=k时,斐波那契数列的性质成立,即Fₖ=Fₖ₋₁+Fₖ₋₂。
那么我们来看当n=k+1时,Fₖ₊₁=Fₖ+Fₖ₋₁。
证明等比数列的方法及例题

利用等比数列求和公式证明数学题
等比数列是一种数学序列,其中每个后继项都是前一项的某个常数倍。
例如,2,4,8,16,32 是一个公比为 2 的等比数列。
等比数列的求和公式是一个有用的工具,可以用来计算这个序列的和。
公式如下:
S = a * (1 - r^n) / (1 - r)
其中,S 是等比数列的前 n 项和,a 是首项,r 是公比,n 是项数。
我们可以利用等比数列求和公式来证明一些数学问题。
例如,我们可以用它来证明以下问题:
如果一个等比数列的首项为 a,公比为 r,那么它的前 n 项和为 S,其中 S = a * (1 - r^n) / (1 - r)。
我们可以通过例题来演示如何利用等比数列求和公式来证明这个定理。
假设我们要证明以下等比数列的求和公式:
2,4,8,16,32
这是一个公比为 2 的等比数列。
我们可以使用等比数列求和公式来计算它的前 5 项和:
S = a * (1 - r^n) / (1 - r)
其中,a 是首项,r 是公比,n 是项数。
首项 a = 2,公比 r = 2,项数 n = 5。
将这些值代入公式中,我们得到:
S = 2 * (1 - 2^5) / (1 - 2) = 2 * (1 - 32) / (-1) = 62
因此,这个等比数列的前 5 项和为 62。
这证明了等比数列求和公式的正确性。
总结起来,等比数列求和公式是一个有用的工具,可以用来计算等比数列的前 n 项和。
求解数列不等式证明问题的方法

解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。
高三数学数列不等式证明——裂项相消与放缩法总结

高三数学数列不等式证明——裂项相消与放缩法总结一、裂项相消法通项特征:通项一般是分式,分母为偶数个因式相乘,且满足a是常数,a-=原分子分母大的因式分母小的因式2.解题思路类型①⎪⎭⎫⎝⎛+-=+knnkknn111)(1类型②()nknknkn-+=++11类型③⎪⎭⎫⎝⎛+--=-121121211412nnn类型④()()⎪⎭⎫⎝⎛++--=--121121114412nnnn nn类型⑤kkkk nnnnn+-+=++++112121)2)(2(2类型⑥kakakakaaannnnn+-+=++⎪⎭⎫⎝⎛-++1111))((11二、错位相减法错位相消法三种思维求法:以下三种思维,但还是建议练熟第一种。
如果第一种都掌握不了的学生,基本上也记不住第二和第三种方法。
1.思维结构结构图示如下2.公式型记忆:1(),n S=n+)q,,11n nn nC a n b q A B ca b AB C Bq q-=⋅++-==---则其前项和(其中A=3.可可裂项为如下11(),q1),[(1))](),((())k=pq-pp tb=pqnnn n nn n n na knb qa p n t q pn t q C C C pn t qtq t++=+≠=++-+=-=+⎧⎨+-⎩(则其中可通过方程组计算出、值:11=a()n=a[( )( )( )...( )]n=1 n=2 n=3 n=n-++++=⇑⇑⇑⇑原式分母小的因式分母大的因式前项和化简放缩模型——平方型与指数型证明下列不等式:1、、2、)(21......31211222*∈<++++Nnn3、)(471......31211222*∈<++++Nnn4、)(351......31211222*∈<++++Nnn)(21)12()12(1......751531311*∈<+⨯-++⨯+⨯+⨯NnnnnnS + + +...+n=1 n=2 n=3 n=nqS + + +...+q-=⇑⇑⇑⇑=①②①的基础上左右同时乘,即在①式中指数加1①②代入通项公式,等差数列当等比数列的系数在n-+k( )=+k( )=-S=--n得(1q)S①中的第一项指数函数相加②的最后一项①中的第一项等比求和公式②的最后一项化简两边同时除以(1q)即得平方型:分母是两项积可放缩到裂项相消模型指数型:可放缩为等比模型5、)(45)12(1......51311222*∈<-++++N n n6、),2(32121......121121121432*∈≥<-++-+-+-N n n n7、)(23231......231231231332211*∈<-++-+-+-N n nn8、)(342 (3232221211)432*+∈<-++-+-+-N n n n n一、单选题1.已知数列{}n a 的首项是11a =,前n 项和为n S ,且()1231n n S S n n N *+=++∈,设()2log 3n n c a =+,若存在常数k ,使不等式()()116n nc k n N n c *-≥∈+恒成立,则k 的取值范围为( ) A .1,9⎡⎫+∞⎪⎢⎣⎭B .1,16⎡⎫+∞⎪⎢⎣⎭C .1,25⎡⎫+∞⎪⎢⎣⎭D .1,36⎡⎫+∞⎪⎢⎣⎭2.已知数列{}n a 的首项是11a =,前n 项和为n S ,且1231n n S S n +=++(*N n ∈),设()2log 3n n c a =+,若存在常数k ,使不等式()116n n c k n c -≥+(*N n ∈)恒成立,则k 的最小值为( )A .19B .116C .125D .136二、填空题3.已知数列{}n a 中,112a =,()1n n n n a a a +-=,*n ∈N ,数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S .若对于任意的*n ∈N ,不等式n S t <恒成立,则实数t 的取值范围是________.4.已知首项为1的数列{}n a 的前n 项和为n S ,且()12n n nS n S +=+,数列2112n n n n a a a +++⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若()110n n T λ++-⋅>,且λ∈Z ,则λ=___________.三、解答题5.已知数列{}n a 中11a =,)2n a n =≥.(1)求{}n a 的通项公式;(2)若21n n c a -=,数列1n c ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:21211n n n a T a +--<≤.6.已知数列{}n a 满足1222n n a a a a =-,*n N ∈.(1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记12n n T a a a =,*n N ∈,22212n n S T T T =++.证明:当*n N ∈时,11243n n S a +>-.7.已知函数()()3log 1(0)1x f x x x +=>+的图像上有一点列()()*,n n n P x y n N ∈,点n P 在x 轴上的射影是(),0n n Q x ,且(1322n n x x n -=+≥,且)*1,2n N x ∈=.(1)求证:{}1n x +是等比数列,并求数列{}n x 的通项公式;(2)对任意的正整数n ,当[]1,1m ∈-吋,不等式239181n y t mt <-+恒成立,求实数t 的取值范围;(3)设四边形11n n n n P Q Q P ++的面积是n T ,求证:1211132nT T nT +++<.8.已知正项数列{}n a 的首项11a =,前n 项和nS 满足)2n a n ≥. (1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对任意的*N n ∈,不等式24n T a a <-恒成立,求实数a 的取值范围.9.已知数列{}n a 满足11a =,且11n n a a n +-=+,n S 是1n a ⎧⎫⎨⎬⎩⎭的前n 项和.(1)求n S ;(2)若n T 为数列2n S n ⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和,求证:232n nT n >>+.10.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且214n n n S S a ++=+. (1)求n a ;(2)求证:121112111n a a a +++<+++.11.已知数列{}n a 的前n 项和为n S ,13a =,24a =,()112322n n n S S S n +-+=-≥. (1)证明:数列{}2n a -是等比数列,并求数列{}n a 的通项公式;(2)记112n n n n b a a -+=,数列{}n b 的前n 项和为n T ,证明:11123n T≤<.12.证明:135212462n n -⨯⨯⨯⋯⨯13.已知数列{}n a 是等差数列,23a =,数列{}n b 是等比数列,18b =,公比3q >,且3q a =,2213b a a =.(1)求{}n a ,{}n b 的通项公式; (2)设24log n n n b c a =,n *∈N ,求证:1212nc c c ++⋅⋅⋅+<.14.已知各项为正的数列{}n a 满足:113a =,()*134N n n n a a n a +=∈+. (1)设0a >,若数列1log 1a n a ⎧⎫⎛⎫⎪⎪+⎨⎬ ⎪⎪⎪⎝⎭⎩⎭是公差为2的等差数列,求a 的值;(2)设数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明4543n S n ≤<+.参考答案:1、 通项公式为: ()()⎪⎭⎫⎝⎛+--=+-=1211212112121n n n n a n2、通项公式为: ()⎪⎭⎫ ⎝⎛--=-<=≥n n n n n a n n 111111,22 3、通项公式为: ⎪⎭⎫ ⎝⎛+--=-<=≥111121111,222n n n n a n n 4、通项公式为: ⎪⎭⎫ ⎝⎛+--=-<==≥1211212144441,2222n n n n n a n n 5、通项公式为: ()⎪⎭⎫⎝⎛--=-<+-=-=≥n n n n n n n a n n 111414411441121,2222 6、通项公式为:()11111123121211221221121,2---++⋅=≤≤=-=-<-=≥n n n n n n n a a a n 7、通项公式为:11313231231--=⋅-<-=n n n n n n a 8、通项公式为:nn n n n nn n n n a n 2222,21<-+=-=≥+ 1.C 【详解】由1231n n S S n +=++,则当2n ≥时,得123(1)1n n S S n -=+-+, 两式相减得123n n a a +=+,变形可得:132(3)n n a a ++=+,又134a +=,122123116a a S S +==+⨯+=,所以25a =,2132(3)a a +=+, ∴数列{}3n a +是以4为首项、2为公比的等比数列,故113422n n n a -++=⨯=,所以2log (3)1n n c a n =+=+,所以2111116(16)(16)(1)17168172517n n c n n n c n n n n n n -===≤=++++++++, 当且仅当4n =时等号成立,故125k ≥.故选:C. 2.C 【详解】当2n ≥ 时,由1231n n S S n +=++可得-123-2n n S S n =+,两式相减得:123n n a a +=+ ,即132(3)n n a a ++=+,而134a +=,2121224,5a a S S a +==+=, 故2132(3)a a +=+ ,所以{3}n a + 是以134a +=为首项,2q为公比的等比数列,则11342,23n n n n a a -++=⨯=- ,故()122log 3log 21n n n c a n +=+==+,所以()111616(16)(1)17n n c n n c n n n n -==+++++,而16N ,8n n n*∈+≥ ,当且仅当4n = 时取等号, 故()11116162517n n c n c n n-=≤+++,当且仅当4n = 时取等号, 所以若存在常数k ,使不等式()116n n c k n c -≥+(*N n ∈)恒成立,则k 的最小值为125,故选:C 3.[)4,+∞【详解】由()1n n n n a a a +-=得11n n a n a n++=,则有 312412321234112321n n n n a a a a a n n a a a a a n n ----⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯--,化简得1n a n a =,即2n n a =, 所以1114114()1(1)122n n n n a a n n n n +===-+⋅++⨯, 所以111114(1)4(11)4223341111111n S n n n n n ---=-+-+-+++=-++<, 所以不等式n S t <恒成立,则有4t ≥.故答案为:[)4,+∞ 4.0【详解】由()12n n nS n S +=+,得()1()2n n n n S a n S ++=+, 即12n n na S +=,当1n =时,2122a S ==,21021a a -=;可知当2n ≥时,12n n na S +=,()112n n n a S --=, 两式相减整理,得101n na a n n,所以n a n ⎧⎫⎨⎬⎩⎭是以1为首项,0为公差的等差数列,所以1na n=,n a n =,所以()()21111211221221n n n n n n n a n a a n n n n ++++++==-⋅⋅+⋅⋅+,所以()12231111111()()()21222223221n n n T n n +=-+-+⋅⋅⋅+-⨯⨯⨯⨯⋅⋅+()111221n n +=-⋅+, ()110n n T λ++-⋅>等价于()()11111212n n n λ++-⋅>-⋅+;当n 是正奇数时,()111212n n λ+>-⋅+,因为()12111132122228n n +-≤-⨯=-⋅+,所以38λ>-; 当n 是正偶数时,()111221n n λ+<-⋅+,因为()1311111122122324n n +-≥-=⋅+⨯,所以1124λ<; 综上所述,λ的取值范围为311824λ-<<,则整数λ的值为0.故答案为:0. 5.(1)n a =证明见解析【解析】(1)将)2n a n =≥两边同时平方,整理得()22112n n a a n --=≥, 所以数列{}2n a 是首项为211a =,公差为1的等差数列,所以()2111n a n n =+-⨯=.由题知0n a >,所以n a(2)因为n a =21n n c a -==1n c =. 先证21n n T a -≤:当1n =时,11a =,11T =,满足21n n T a -≤; 当2n ≥时,1n c ==所以)(21112n n T n a -<++++-==.故21n n T a -≤得证.再证211n n T a+>-:因为1nc ==>=所以)(211211n n T n a +>++++==-.故不等式21211nn n a Ta +--<≤成立.【点睛】关键的点睛:本题考查等差数列的证明,以及放缩法证明不等式,本题的第二问的难点是对通项公式的放缩,放缩后,再进行裂项相消法求和,1n c==<=1n c ==>= 6.(1)证明见解析;()*12n n a n N n +=∈+(2)证明见解析 【解析】(1)当1n =时,1122a a =-,123a =,当2n ≥时,1222n n a a a a =-;121122n n a a a a --=- 相除得11(2)1n n n a a n a --=≥-,整理为:1111(2)111n n n n a n a a a -==-≥---,即1111(2)11n n n a a --=≥--, 11n a ⎧⎫∴⎨⎬-⎩⎭为等差数列,公差1d =,首项为1131a =-;所以()13121n n n a =+-=+-,整理为:()*12n n a n N n +=∈+,经检验,符合要求. (2)由(1)得:()*12n n a n N n +=∈+.1222n n T a a a n ==+, 2244114(2)(2)(3)23n T n n n n n ⎛⎫∴=>=- ⎪+++++⎝⎭,22212111112441342333n n S T T T n n n ⎛⎫⎛⎫∴=++>-++-=-- ⎪ ⎪+++⎝⎭⎝⎭,112224333n n n S a n ++∴>-=-+, 所以,当*n N ∈时,11243n n S a +>-.7.(1)证明见解析,31nn x =-(2)()(),22,∞∞--⋃+(3)证明见解析【解析】(1)因为2n ≥,且*1,32n n n N x x -∈=+,所以()1131n n x x -+=+,即1131n n x x -+=+(常数); 因为113x +=,所以{}1n x +是首项为3,公比为3的等比数列,所以11333n n n x -+=⨯=,即31n n x =-;数列{}n x 的通项公式为31n n x =-.(2)由题可知()()3*log 10,1n n nn x y xn N x +=>∈+,由(1)可得3log 3033n n n n n y ==>,所以1113n ny n y n ++=<,即1n n y y +<,数列{}n y 为单调递减数列.所以n y 最大值为113y =;因为当[]1,1m ∈-吋,不等式239181n y t mt <-+恒成立,所以29180t mt ->恒成立.所以2291809180t t t t ⎧->⎨+>⎩,解得2t <-或2t >.所以t 的取值范围为()(),22,∞∞--⋃+.(3)四边形11n n n n P Q Q P ++的面积是()()114123n n n n n y y x x n T +++-+==.因为()()331134111n n n n n n ⎛⎫<=- ⎪+++⎝⎭,所以1211111111111313122233411n T T nT n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++<-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 因为*n ∈N,所以13313311n n ⎛⎫-=-< ⎪++⎝⎭;所以121113.2nT T nT +++<8.(1)21n a n =-;(2)1a ≤-或2a ≥.【解析】(1)当2n ≥时,n a=∴1nn S S --=1=1=, 所以数列是首项为1,公差为1n ,又由n a 121n n n =+-=-(2n ≥),当1n =时,11a =也适合,所以21n a n =-. (2)∴()()()111111221212121n n a a n n n n +==--+-+,∴11111111111233521212212n T n n n ⎛⎫⎛⎫=-+-++-=-< ⎪ ⎪-++⎝⎭⎝⎭, 又∴对任意的*N n ∈,不等式24n T a a <-恒成立,,∴22a a ≤-,解得1a ≤-或2a ≥.即所求实数a 的范围是1a ≤-或2a ≥. 9.(1)21n nS n =+(2)证明见解析 【解析】(1)∴11n n a a n +-=+,∴212a a -=,323a a -=,…1n n a a n --= 由上述1n -个等式相加得12n a a n -=++,∴()1122n n n a a n +=+++=, ∴11121n a n n ⎛⎫=- ⎪+⎝⎭,11111122121223111n n S n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭.(2)令()()22221441112n n S b n n n n n ⎛⎫⎛⎫⎛⎫===>⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭, ∴11111111244233412222n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫>-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 又因为()22221411441111n n S b n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫===<=- ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭,且11b =∴11111111414143323341211n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫<+-+-++-=+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,综上,232nn T n >>+,得证. 10.(1)()12n n a n -*=∈N (2)证明见解析【解析】(1)解:由214n n n S S a ++=+得24n n a a +=. 所以,当()21n k k *=-∈N 时,21214k k a a +-=,所以数列{}21k a -是首项为11a =,公比为4的等比数列, 故11211414k k k a a ---=⨯=⨯,即()211222122k k k a ----==. 当()2n k k *=∈N 时,则2224k k a a +=,所以,数列{}2k a 是首项为22a =,公比为4的等比数列,所以,1121224242k k k k a a ---=⨯=⨯=.所以()12n n a n -*=∈N .(2)证明:由(1)知11111212n n n a --⎛⎫=< ⎪+⎝⎭,所以0121121111111111221111122221122nn n a a a -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭+++<++++=<= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭--.故原不等式成立.11.(1)证明见解析,122n n a -=+(2)证明见解析【解析】(1)解:当2n ≥时,由11232n n n S S S +-+=-可变形为()1122n n n n S S S S +--=--, 即122n n a a +=-,即()1222n n a a +-=-,所以()12222n n a n a +-=≥-,又因为13a =,24a =,可得1221,22a a -=-=,所以21222a a -=-,所以数列{}2n a -是以1为首项,2为公比的等比数列,所以122n n a --=,所以数列{}n a 的通项公式为122n n a -=+.(2)解:由122n n a -=+,可得()()11111221122222222n n n n nn n n n b a a ----+===-++++, 所以123n n T b b b b =+++⋅⋅⋅+1111111111134466102222322n n n-=-+-+-+⋅⋅⋅+-=-+++,因为1022n >+,所以1113223n -<+,即13n T <,又因为()11322n f n =-+,n *∈N 单调递增, 所以()()111212212n T b ≥==++,所以11123n T ≤<. 12.证明见解析 【详解】证明:212221n n n n -<+,∴135212452246235721n nn n -⨯⨯⨯⋯⨯<⨯⨯⨯⋯⨯+.213521135212421()()()24622462352121n n n n n n n --∴⨯⨯⨯⋯⨯<⨯⨯⨯⋯⨯⨯⨯⨯⋯⨯=++.∴135212462n n -⨯⨯⨯⋯⨯()f x x x -,x ∈当4π,∴cos cos 4x π>∴()10f x x '->()f x x x ∴-在上递增,()(0)0f x f ∴>=x x >,=∴综上:135212462n n -⨯⨯⨯⋯⨯< 13.(1)1n a n =+ ,212n n b +=(2)证明见解析【解析】(1)由题意,数列{}n a 是等差数列,23a =,数列{}n b 是等比数列,18b =,公比3q >, 设{}n a 的公差为d ,由()()23833q d q d d =+⎧⎪⎨=-⋅+⎪⎩可得()()()28333d d d +=-+,∴3d =-或1d =±,33q d =+>,∴1d =,∴4q =可得:()()223211n a a n d n n =+-=+-⨯=+, 11211842n n n n b b q --+==⨯=.(2)()()()()2124443log 2212221111n n n n c n n n n +++==<=++++ 且()()()3112n n n n +>++∴()()()()()21112112n c n n n n n n n <=-+++++∴()()()121111111122323341122n c c c n n n n ++⋅⋅⋅+<-+-+⋅⋅⋅+-<⨯⨯⨯⨯+++,故不等式得证. 14.(1)2(2)证明见解析 【解析】(1)因为()*134N n n n a a n a +=∈+,所以111141n n a a +⎛⎫+=+ ⎪⎝⎭等式两边同时取以a 为底的对数可得111log 1log 1log 4a a a n n a a +⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭,()*N n ∈又数列1log 1a n a ⎧⎫⎛⎫⎪⎪+⎨⎬ ⎪⎪⎪⎝⎭⎩⎭是公差为2的等差数列可知log 42a =,即2a =(2)由(1)可知数列11n a ⎧⎫+⎨⎬⎩⎭是公比为4的等比数列,可得11111414n n n a a -⎛⎫+=+= ⎪⎝⎭,可得数列{}n a 的通项公式为()*1N 14n n a n =∈- 记1n n n a b a +=可求得其通项公式为()1*4141N n n n b n +-=∈- 显然{}n b 为正项数列,因此()11*N 5n S S b n ≥==∈另一方面,构造数列{}n c 满足()*N 4n n c b n =-∈可得其通项公式为()*1N 34n n c n =∈- 注意到1113134414n n n n c ---⎛⎫=≤ ⎪⋅+-⎝⎭,记{}n c 的前n 项和为n T ,可得11441314n n T -≤<-, 而由于4n n c b =-,因此()*4N n n T S n n =-∈,从而443n S n <+,综上所述,4543n S n ≤<+.。
求数列通项公式的十种办法

求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。
下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。
通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。
例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。
2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。
例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。
3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。
例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。
4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。
例如斐波那契数列可以通过矩阵的特征值和特征向量求得。
5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。
例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。
6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。
例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。
7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。
例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。
8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。
首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。
数列证明题的解题方法

n n(n 1) n 1
n
n(n 1) n 1 2 2 2
用放缩法证明数列中的不等式问题,判断 证明的方向是至关重要的,决定到解题的 思路和方向,因此一定要熟记常见的放缩 法证明的结论的特点,本题的要证明的结 论是一个等差数列前n项和的形式,所以放 缩应该放所为等差数列,请同学们结合下 面要将的方法仔细比较分析加以区别。
I
1 首项为1,公比为- 的等比数列是否为B -数列?请说明理由; 2 设S n是数列{x n }的前n项和。给出下列两组判断: ③数列{S n }是B -数列。 ④数列{S n }不是B -数列。
A组:①数列{x n }是B -数列。 ②数列{x n }不是B -数列。 请以其中一组的一个论断条件,另一组中的一个论断为结论组成一个命题 判断所给命题的真假,并证明你的结论; ( Ⅲ )若数列{ an }是B 数列,证明:数列{ an 2 }也是B 数列。
祝大家新年快乐!
再见!
先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,
则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、 差比数列(这里所谓的差比数列,即指数列{an }满足条件an 1 an f n )求和 或者利用分组、裂项、倒序相加等方法来求和.
二.先放缩再求和 1.放缩后成等差数列,再求和
2.放缩后成等比数列,再求和
例3.(1)设a,n N*,a 2,证明:a 2 n ( a )n ( a 1) a n; 1 (2)等比数列an 中,a1 ,前n项的和为An,且A7,A9,A8成等差数列. 2 an 2 1 设bn ,数列bn 前n项的和为Bn,证明:Bn 1 an 3
数列极限的定义证明
数列极限的定义证明一、引言数列是由一系列有序的数按照一定规律排列而成的,数列极限是数列理论中的基本概念之一。
在数学分析中,数列极限的定义是数学推理的重要基础,也是许多数学定理的核心。
二、数列极限的定义数列极限的定义是指当数列的项趋向于某个值时,数列的极限就是这个值。
换句话说,对于数列{an},如果对于任意给定的正实数ε,存在正整数N,使得当n>N时,|an-a|<ε,那么数列的极限就是a。
三、数列极限的重要性1. 在微积分中,数列极限是导数和积分的基础。
在求导和积分的过程中,我们需要用到极限的性质和定义来推导出相应的公式和定理。
2. 在数学分析中,数列极限是许多重要定理的基础,如泰勒级数展开、函数极限和级数收敛等。
3. 数列极限的概念也被广泛应用于物理学、工程学和经济学等应用科学领域,用于描述各种现象和模型。
四、数列极限的例子1. 递推数列:考虑递推数列{an},其中an=an-1+2,且a0=1。
我们想要求出数列的极限。
根据递推关系,我们可以得到a1=3,a2=5,a3=7,以此类推。
显然,数列的项随着n的增大而无限增大,所以数列没有极限。
2. 有界数列:考虑数列{an},其中an=(-1)^n/n。
我们想要求出数列的极限。
当n为偶数时,an=1/n;当n为奇数时,an=-1/n。
显然,数列的项在n趋于无穷大时趋近于0,所以数列的极限是0。
3. 收敛数列:考虑数列{an},其中an=1/n。
我们想要求出数列的极限。
对于任意给定的正实数ε,我们可以找到一个正整数N=1/ε,使得当n>N时,|an-0|<ε。
因此,数列的极限是0。
五、数列极限的性质1. 数列极限的唯一性:如果一个数列的极限存在,那么它是唯一的。
2. 数列极限的保号性:如果数列的极限大于(小于)0,那么数列中的项大于(小于)0的项的索引之后的所有项。
3. 数列极限的有界性:如果数列的极限存在,那么数列是有界的,即存在正整数M,使得对于所有的n,|an|<M。
数学高三重要定理与证明方法总结
数学高三重要定理与证明方法总结高三阶段是数学学科中最为关键和关注的阶段之一,其中重要的定理和证明方法对学生的数学学习和应对高考非常重要。
本文将总结高三数学学科中的一些重要定理和证明方法,帮助同学们进行复习和备考。
一、数列与函数部分1. 等差数列的通项公式及求和公式等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为第n项。
等差数列求和公式为Sn=n(a1+an)/2,其中Sn为前n项和。
2. 等比数列的通项公式及求和公式等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比,n为第n项。
等比数列求和公式为Sn=a1(1-r^n)/(1-r),其中Sn为前n项和。
3. 函数的性质与图像函数的性质包括定义域、值域、奇偶性、单调性等。
根据函数式的不同形式,可以画出函数的图像,进一步帮助理解函数的性质。
例如:y=ax^2+bx+c的图像呈抛物线状,其开口方向取决于a的正负。
4. 三角函数的基本公式和性质三角函数的基本公式包括正弦定理、余弦定理和正切定理等。
利用这些公式可以求解各种三角形的边长和角度。
同时,需要了解三角函数的周期性、奇偶性等性质。
二、解析几何部分1. 二次函数的性质和图像二次函数的一般形式为y=ax^2+bx+c,其中a为二次项系数,b为一次项系数,c为常数项。
可以通过判别式来判断二次函数的图像类型(开口向上或向下),进而求解顶点坐标和轴线方程。
2. 圆的性质与方程圆的性质包括圆心、半径、圆上的切线等。
圆的标准方程为(x-h)^2+(y-k)^2=r^2,其中(h, k)为圆心坐标,r为半径长度。
根据圆的性质和方程,可以求解圆与直线或圆与圆的交点坐标。
3. 直线与平面的方程及其性质直线的一般方程为Ax+By+C=0,其中A、B、C为常数。
平面的一般方程为Ax+By+Cz+D=0,其中A、B、C、D为常数。
通过直线与平面的方程,可以求解它们的交点或判定它们的位置关系。
数学归纳法证明等差数列求和公式
文章标题:探究数学归纳法:等差数列求和公式的证明与应用1. 引言在数学领域中,数学归纳法是一种非常重要的证明方法,它常被用于证明各种数学命题。
其中,等差数列求和公式就是一个很好的例子。
本文将通过探究数学归纳法的思想和应用,来深入理解和证明等差数列求和公式的过程,以及该公式在实际问题中的应用。
2. 数学归纳法的基本思想数学归纳法是一种证明方法,它常被用于证明一些关于自然数的性质。
其基本思想是:首先证明当n=1时命题成立;然后假设当n=k时命题成立,利用这个假设来证明当n=k+1时命题也成立。
通过这种“从简到繁”的思想,我们可以证明所有自然数都满足这个性质。
3. 等差数列求和公式的证明我们现在来探究等差数列求和公式的证明过程。
先来回顾一下等差数列的定义:如果一个数列满足相邻两项的差都相等,那么我们称这个数列为等差数列。
设等差数列的首项为a,公差为d,共有n项。
根据数学归纳法的思想,我们可以证明等差数列的和的公式为Sn=n(a+an)/2。
3.1 n=1时的情况当n=1时,等差数列的和显然就是第一项a本身,即S1=a,公式成立。
3.2 假设当n=k时成立假设当n=k时,等差数列的和为Sk=k(a+ak)/2成立,即∑(i=1→k)ai=k(a+ak)/2成立。
3.3 推导出n=k+1时成立现在我们来证明当n=k+1时,等差数列的和也满足公式∑(i=1→k+1)ai=(k+1)(a+ak+1)/2。
由等差数列的性质可知,ak+1=ak+d,将这个式子代入公式∑(i=1→k)ai=k(a+ak)/2中,得到∑(i=1→k+1)ai=(k+1)(a+ak+1)/2,即n=k+1时成立。
4. 等差数列求和公式的应用等差数列求和公式在数学和物理问题中有广泛的应用。
在数学中,我们经常遇到类似于“前n项和”的问题,这时就可以直接利用等差数列求和公式来快速求解。
在物理中,等差数列的应用也非常广泛,例如在速度、加速度等方面的计算中都会用到等差数列的求和公式。
数列通项公式的九种求法
数列通项公式的九种求法各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
笔者总结出九种求解数列通项公式的方法,希望能对大家有帮助。
一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式解:设数列}a {n 公差为)0d (d >∵931a ,a ,a 成等比数列,∴9123a a a =, 即)d 8a (a )d 2a (1121+=+,得d a d 12=∵0d ≠,∴d a 1=……………………①∵255S a =∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d =∴n5353)1n (53a n =⨯-+= 点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
二、累加法求形如1()n n a a f n --=(f(n)为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令n=2,3,…n —1得到n —1个式子累加求得通项。
例2.已知数列{a n}中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a . 解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+ =1121n -+,3121n a n ∴=-+ 点评:累加法是反复利用递推关系得到n —1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n —1项的和,要注意求和的技巧.三、迭代法求形如1n n a qa d +=+(其中,q d 为常数) 的数列通项,可反复利用递推关系迭代求出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列证明方法总结
数列是高中数学十分重要的内容,数列和其它知识(如函数、不等式、解析几何)的联系非常密切。
就数列本身而言,无论从解题方法还是题型的规律,应当说都是有所遵循的,下面我们做一些简单的总结。
1.理解数列的概念,特别注意递推数列,熟练掌握等差数列、等比数列的性质、公式及公式的延伸,应用性质解题,往往可以回避求首项和公差或公比,使问题得到整体解决,能够减少运算量。
2.解决数列综合问题要注意函数思想、分类讨论思想和等价转化思想等,注重数列与函数、方程、不等式、解析几何、导数、平面向量、概率等方面的结合。
3.解决数列应用题时要注意增长率问题。
等差等比两数列,通项公式n项和。
两个有限求极限,四那么运算顺序换。
数列问题多变幻,方程化归整体算。
数列求和比较难,错位相消巧转换。
取长补短高斯法,裂项求和公式算。
归纳思想非常好,编个程序好思考。
一算二猜三联想,猜测证明不可少。
还有数学归纳法,证明步骤程序化。