人教版八年级数学上册 第十三章 轴对称 章末复习教案
2019年秋人教版八年级上册数学教案:13.2画轴对称图形

-在应用方面,可以设置实际问题,如设计轴对称的图案、计算轴对称图形的面积等,引导学生运用轴对称性质进行思考。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《轴对称图形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过折叠后两部分完全重合的图形?”比如,我们常见的心形、蝴蝶翅膀等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索轴对称图形的奥秘。
(2)学会判断一个图形是否为轴对称图形;
(3)学会画一个给定图形的轴对称图形;
(4)运用轴对称图形的知识解决实际问题。
二、核心素养目标
1.培养学生的几何直观与空间想象能力,使其能够通过观察、操作,感知轴对称图形的特征,形成对轴对称图形的直观认识。
-能够通过折叠、旋转等动手操作,体会轴对称图形的性质;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了轴对称图形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对轴对称图形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2019年秋人教版八年级上册数学教案:13.2画轴对称图形
一、教学内容
2019年秋人教版八年级上册数学教案:13.2画轴对称图形
1.章节内容:本章主要介绍轴对称图形的概念、性质及在实际中的应用。
-轴对称图形的定义与性质
轴对称(全章知识梳理与考点分类讲解)(人教版)(教师版) 2024-2025学年八年级数学上册基础

专题13.12轴对称(全章知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.【知识点二】作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.【知识点三】等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.第二部分【题型展示与方法点拨】【题型1】利用轴对称的性质求值【例1】(2024八年级上·江苏·专题练习)如图,点P 在四边形ABCD 的内部,且点P 与点M 关于AD 对称,PM 交AD 于点G ,点P 与点N 关于BC 对称,PN 交BC 于点H ,MN 分别交AD BC ,于点E F ,.(1)连接PE PF ,,若12cm MN =,求PEF !的周长;(2)若134C D ∠+∠=︒,求HPG ∠的度数.【答案】(1)12cm (2)134°【分析】本题主经考查了轴对称与多边形综合.熟练掌握轴对称性质,多边形内角和公式,是解决问题的关键.n 边形内角和公式()2180n -⋅︒.(1)根据轴对称性质得到,PE ME =,PF NF =,得到PEF !的周长等于线段MN 的长度,为12cm .(2)根据轴对称性质得到,PM AD ⊥,90PGA ∠=︒,PN BC ⊥,90PHB ∠=︒,根据四边形ABCD 内角和为360︒与134C D ∠+∠=︒,得到226A B ∠+∠=︒,根据五边形ABFPE 内角和为540︒,得到134HPG ∠=︒.解:(1)如图,∵点P 与点M 关于AD 对称,∴PE ME =,∵点P 与点N 关于BC 对称,∴PF NF =,∵12ME EF FN MN ++==,∴PEF !的周长为12cm .(2)解:∵点P 与点M 关于AD 对称,∴PM AD ⊥,即90PGA ∠=︒,∵点P 与点N 关于BC 对称,∴PN BC ⊥,即90PHB ∠=︒,∵360A B C D ∠+∠+∠+∠=︒,134C D ∠+∠=︒,∴226A B ∠+∠=︒,∵540A B PHB HPG PGA ∠+∠+∠+∠+∠=︒,∴134HPG ∠=︒.【变式1】(23-24七年级下·广东深圳·期末)如图,四边形ABCD 中,AB AD =,将ABC V 沿着AC 折叠,使点B 恰好落在CD 上的点B '处,若110BAD ∠=︒,则ACB =∠()A .55︒B .45︒C .40︒D .35︒【答案】D 【分析】本题主要考查了轴对称的性质,四边形内角和以及三角形外角性质的运用,解决问题的关键是作辅助线构造四边形AOB E ',解题时注意:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.连接AB ',BB ',过A 作AE CD ⊥于E ,依据BAC B AC '∠=∠,DAE B AE '∠=∠,即可得出12CAE BAD ∠=∠,再根据四边形内角和以及三角形外角性质,即可得到1902ACB ACB BAD '∠=∠=︒-∠.解:如图,连接BB ',过A 作AE CD ⊥于E ,点B 关于AC 的对称点B '恰好落在CD 上,AC ∴垂直平分BB ',AB AB '∴=,BAC B AC '∴∠=∠,AB AD = ,AD AB '∴=,又AE CD ⊥Q ,DAE B AE '∴∠=∠,1552CAE BAD ∴∠=∠=︒,又90AEC =︒∠ ,35ACB ACB '∴∠=∠=︒,故选:D .【变式2】(22-23八年级上·江苏镇江·阶段练习)如图,APT △与CPT △关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F ,当A ∠=︒时,FTC C ∠=∠.【答案】36【分析】本题考查轴对称的性质,三角形内角和定理,三角形的外角的性质等知识,证明2APF AFP A ∠∠∠==,利用三角形内角和定理构建方程求解即可.解:APT 与CPT △关于直线PT 对称,A C TA TC APT CPT ∠∠∠∠∴===,,,A APT ∠∠= ,A C APT CPT ∠∠∠∠∴===,FTC C ∠∠= ,22AFP C FTC C A ∠∠∠∠∠∴=+==,180A APF AFP ∠∠∠++=︒ ,5180A ∴∠=︒,36A ∴∠=︒,故答案为:36.【题型2】利用折叠的特征求值【例2】(23-24七年级下·河南新乡·期末)如图,在长方形纸片ABCD 中,点E 在边AD 上,点F 在边BC 上,四边形CDEF 沿EF 翻折得到四边形C D EF ''且点D ¢恰好落在边AB 上;将AED '△沿ED '折叠得到A ED ''△且点A '恰好落在边BC 上.(1)若77BFE ∠=︒,则BFC '∠=.(2)若50A D B '∠='︒,求A EF '∠的度数.【答案】(1)26︒(2)52.5A EF '∠=︒【分析】本题考查了折叠的性质,熟练用折叠的性质进行角度的转换是解题的关键.(1)根据折叠的性质可得EFC EFC '∠=∠,设BFC x '∠=,则可得77EFC x '∠=+︒,根据180EFB EFC ∠+∠=︒列方程,即可解答;(2)根据50A D B '∠='︒可求得EA F '∠,再求出AED '∠和D EA ''∠,利用折叠的性质即可得到D EF '∠,即可解答.解:(1) 四边形CDEF 沿EF 翻折得到四边形C D EF ''且点D ¢恰好落在边AB 上,EFC EFC '∴∠=∠,设BFC x '∠=,则可得77EFC EFC x '∠=∠=+︒,根据180EFB EFC ∠+∠=︒可得7777180x ︒++︒=︒,解得26x =︒,故答案为:26︒;(2)解:在A D B '' 中,∵50A D B '∠='︒,90B Ð=°,40D A B ''∴∠=︒,∵点A '恰好落在边BC 上,90D A E A ''∴∠=∠=︒.180904050EA F ∴∠=︒-︒-︒='︒,AD BC ∥ ,50AEA EA F ''∴∠=∠=︒,1252AED A ED AEA ∴︒''''∠=∠=∠=由折叠的性质,知()1180257752D EF DEF ∠=∠=⨯︒-︒=︒'.52.5A EF D EF A ED ∴∠=∠-'='∠''︒.【变式1】(23-24九年级上·山东枣庄·开学考试)如图,四边形ABCD 为一矩形纸带,点E F 、分别在边AB CD 、上,将纸带沿EF 折叠,点A D 、的对应点分别为A ''、D ,若235∠=︒,则1∠的度数为()A .62.5︒B .72.5︒C .55︒D .45︒【答案】B 【分析】本题考查了邻补角的性质,折叠的性质及平行线的性质,由235∠=︒可得145AEA '∠=︒,再利用折叠的性质求得AEF ∠的度数,然后利用平行线性质即可求得答案,掌握折叠的性质是解题的关键.解:∵235∠=︒,∴18035145AEA ∠=︒-︒='︒,由折叠性质可得,172.52AEF A EF AEA ∠='∠='∠=︒,∵AB CD ∥,∴272.5AEF ∠=∠=︒,故选:B .【变式2】(2024八年级上·江苏·专题练习)如图,在ABC V 和DCB △中,90,,A D AC BD ∠=∠=︒相交于点E ,AE DE =.将CDE 沿CE 折叠,点D 落在点D ¢处,若30BED ∠='︒,则BCD '∠的大小为.【答案】22.5︒【分析】本题主要考查了翻折变换(折叠问题),全等三角形的判定与性质等知识点,解决本题的关键是掌握翻折的性质.证明()ASA ABE DCE ≌,得,ABE DCE BE CE ∠=∠=,然后由翻折的性质和三角形内角和定理即可解决问题.解:在ABE 和DCE △中,90A D AE DE AEB DEC ∠==︒⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABE DCE ≌,∴,ABE DCE BE CE ∠=∠=,∴EBC ECB ∠=∠,由翻折可知:,D CE DCE D EC DEC ''∠=∠∠=∠,∵30BED ∠='︒,∴()118030752D EC DEC AEB ∠=∠=∠=︒-︒='︒,∴907515ABE ∠=︒-︒=︒,∴15ABE DCE D CE '∠=∠=∠=︒,∵,75BE CE AEB =∠=︒,∴37.5EBC ECB ∠=∠=︒,∴37.51522.5BCD EBC D CE ∠=∠-∠=︒-︒=''︒,故答案为:22.5︒.【题型3】线段垂直平分线的性质与判定求值【例3】(23-24八年级上·江苏宿迁·期中)如图,AD 是ABC 的角平分线,DE DF 、分别是ABD △和ACD 的高.(1)试说明AD 垂直平分EF ;(2)若8628ABC AB AC S === ,,,求DE的长.【答案】(1)详见解析(2)4【分析】此题考查了角平分线的性质、全等三角形的判定和性质、垂直平分线的判定等知识,证明()Rt Rt HL AED AFD ≌是解题的关键.(1)利用角平分线的性质证明DE DF =,证明()Rt Rt HL AED AFD ≌,则AE AF =,即可证明结论;(2)根据28ABC S =△列式计算即可.解:(1)证明:∵AD 是ABC ABC △△的角平分线,DE DF 、分别是ABD △和ACD 的高.∴DE DF =,在Rt AED △与Rt AFD △中,AD AD DE DF =⎧⎨=⎩,∴()Rt Rt HL AED AFD ≌,∴AE AF =,∵DE DF =,∴AD 垂直平分EF ;(2)解:∵DE DF =,∴()11128222ABD ACD S S AB ED AC DF DE AB AC +=⋅+⋅=+= ,∵14AB AC +=,∴4DE =.【变式1】(23-24八年级上·四川巴中·期末)如图,在ABC V 中,分别以点A 和点B 为圆心,大于12AB长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,连接AD .若7AC =,12BC =,则ADC △的周长为()A .12B .14C .19D .26【答案】C【分析】由作图可知,MN 是线段AB 的垂直平分线,根据垂直平分线的性质,可得DA DB =,通过等量代换即可求解,本题考查了垂直平分线的判定和性质,解题的关键是:从作图方法中识别出垂直平分线的作法.解:由题意可得,MN 是线段AB 的垂直平分线,DA DB ∴=,71219ABC C AC AD CD AC CD BD AC BC =++=++=+=+= ,故选:C .【变式2】(23-24九年级上·重庆·期末)如图在ABC V 中,D 为AB 中点,DE AB ⊥,180ACE BCE ∠+∠=︒,EF BC ⊥交BC 于F ,8AC =,12BC =,则BF 的长为.【答案】10【分析】本题考查了线段垂直平分线的性质定理,全等三角形的判定及性质,角平分线的性质定理等;连接AE ,过点E 作EG AC ⊥交AC 的延长线于点G ,由线段垂直平分线的性质得EA EB =,由角平分线的性质得EG EF =,由HL 得Rt Rt EFC EGC ≌ 由全等三角形的性质得CF CG =,同理可得BF AG =,即可求解;掌握相关的判定方法及性质,能根据题意作出恰当的辅助线,构建全等三角形是解题的关键.解:如图,连接AE ,过点E 作EG AC ⊥交AC 的延长线于点G ,D 为AB 中点,DE AB ⊥,EA EB ∴=,180ACE BCE ∠+∠=︒ ,180ACE ECG ∠+∠=︒,ECG BCE ∴∠=∠,EF BC ⊥ ,EG AC ⊥,EG EF ∴=,在Rt EFC △和Rt EGC 中,CE CE EF EG=⎧⎨=⎩,Rt Rt EFC EGC ∴≌ (HL ),CF CG ∴=,同理可得:Rt Rt BFE AGE ≌ ,BF AG ∴=,BC CF AC CG ∴-=+,128CF CF ∴-=+,解得:2CF =,12210BF ∴=-=,故答案:10.【题型4】利用等腰三角形的性质与判定求值或证明【例4】(2024八年级上·江苏·专题练习)如图,在ABC V 中,AC BC =,120ACB ∠=°,CD 是AB 边上的中线,BD 的垂直平分线EF 交BC 于点E ,交AB 于点F ,15CDG ∠=︒.(1)求证:AD AG =;(2)试判断CDE 的形状,并说明理由.【答案】(1)见解析;(2)等边三角形,见解析【分析】本题考查了等腰三角形的性质与判定,线段垂直平分线的性质,等边三角形的判定,掌握等腰三角形的性质与判定是解题的关键.(1)根据等腰三角形的性质得出CD AB ⊥,30A B ==︒∠∠,AD DB =,进而根据15CDG ∠=︒,得出AGD ADG ∠=∠,根据等角对等边即可得证;(2)根据EF 是BD 的垂直平分线,得出DE EB =,根据等边对等角得出30EDB B ∠=∠=︒,进而得出60DCE CDE ∠=∠=︒,可得CDE 是等边三角形.(1)证明:∵AC BC =,120ACB ∠=°,CD 是BC 边上的中线,∴CD AB ⊥,()1180302A B ACB ∠=∠=︒-∠=︒,AD BD =,∴90ADC CDB ∠=∠=︒,∵15CDG ∠=︒,∴9075ADG CDG ∠=︒-∠=︒,∵18075AGD A ADG ∠=︒-∠-∠=︒,∴AGD ADG ∠=∠,∴AD AG =;(2)结论:CDE 是等边三角形.∵EF 垂直平分线段BD ,∴DE EB =,∵30B ∠=︒,∴30EDB B ∠=∠=︒,∴9060CDE EDB ∠=︒-∠=︒,又∵AC BC =,120ACB ∠=°,CD 是BC 边上的中线,∴1602DCB ACB ∠=∠=︒,∴60DCE CDE ∠=∠=︒,∴CDE 是等边三角形.【变式1】(23-24八年级上·湖南株洲·期末)在ABC V 中,36A ∠=︒,72B ∠=︒,则ABC V 是()A .钝角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【答案】B 【分析】本题考查三角形的内角和,等腰三角形的判定,根据三角形的内角和求出72C B ∠=∠=︒即可判断.解:在ABC V 中,36A ∠=︒,72B ∠=︒,∴18072C A B B ∠=︒-∠-∠=︒=∠,∴ABC V 是等腰三角形,故选:B .【变式2】(23-24八年级上·重庆沙坪坝·期末)如图,在ABC ∆中,AB AC =,AD BD =,DE AB ⊥于点E ,若4BC =,BDC 的周长为10,则AE 的长为.【答案】3【分析】本题考查等腰三角形的性质,熟练掌握等腰三角形三线合一是解题的关键.根据已知可得6BD CD +=,从而可得6AB AC ==,然后利用等腰三角形三线合一性质计算解答.解:4BC = ,且BDC 的周长为10,1046BD CD ∴+=-=,AD BD = ,6AD DC ∴+=,6AC ∴=,AB AC = ,6AB ∴=,AD DB = ,DE AB ⊥,132AE AB ∴==.故答案为:3.【题型5】利用等边三角形的性质与判定求值或证明【例5】(2024八年级上·江苏·专题练习)如图,已知Rt ABC △中,90ACB ∠=︒,CD AB ⊥于D ,BAC ∠的平分线分别交BC ,CD 于E 、F .(1)试说明CEF △是等腰三角形.(2)若点E 恰好在线段AB 的垂直平分线上,试说明线段AC 与线段AB 之间的数量关系.【答案】(1)见解析(2)12AC AB =【分析】(1)首先根据条件90ACB ∠=︒,CD AB ⊥,可证出90B BAC ∠+∠=︒,90CAD ACD ∠+∠=︒,再根据同角的补角相等可得到ACD B ∠=∠,再利用三角形的外角性质可得到CFE CEF ∠=∠,最后利用等角对等边即可得出答案;(2)由线段垂直平分线的性质得到AE BE =,根据等腰三角形的性质得到EAB B ∠=∠,由AE 是BAC ∠的平分线,得到CAE EAB ∠=∠,根据直角三角形的性质即可得到结论.解:(1)∵90ACB ∠=︒,∴90B BAC ∠+∠=︒,∵CD AB ⊥,∴90CAD ACD ∠+∠=︒,∴ACD B ∠=∠,∵AE 是BAC ∠的平分线,∴CAE EAB ∠=∠,∵EAB B CEA CAE ACD CFE ∠+∠=∠∠+∠=∠,,∴CFE CEF ∠=∠,∴CF CE =,∴CEF △是等腰三角形;(2)∵点E 恰好在线段AB 的垂直平分线上,∴AE BE =,∴EAB B ∠=∠,∵AE 是BAC ∠的平分线,∴CAE EAB ∠=∠,∴2CAB B ∠=∠,∵90ACB ∠=︒,∴90CAB B ∠+∠=︒,∴30B ∠=︒,∴12AC AB =.【点拨】此题主要考查了直角三角形综合,熟练掌握直角三角形性质,角平分线性质,三角形外角性质,等腰三角形的判定和性质,线段垂直平分线的性质,是解题的关键.【变式1】(23-24八年级上·福建福州·期末)如果,,a b c 为三角形的三边长,且满足()()()0a b b c c a ---=,那么该三角形的形状为()A .等腰三角形B .等边三角形C .不等边三角形D .无法确定【答案】D【分析】本题考查了等腰三角形和等边三角形的判定,掌握等腰三角形和等边三角形的判定方法是解题关键.根据()()()0a b b c c a ---=得到a b =或a c =或b c =或a b c ==,从而可以判定该三角形的形状.解:∵()()()0a b b c c a ---=,∴0a b -=或0b c -=或0c a -=或0a b b c c a -=-=-=,解得a b =或a c =或b c =或a b c ==,∴该三角形的形状为等腰三角形或等边三角形,故选:D .【变式2】(23-24九年级上·河北邯郸·期末)如图1,ABC V 和ADE V 是等边三角形,连接BD ,CE 交于点F .(1)BD CE 的值为;(2)BFC ∠的度数为︒.【答案】160【分析】本题考查了全等三角形的判定及性质,等边三角形的性质.(1)根据等边三角形的性质得出AB AC =,AD AE =,BAC DAE ∠=∠,再由DAE BAE BAC BAE ∠+∠=∠+∠,得出CAE BAD ∠=∠,利用SAS 可证得CAE BAD ≌△△,从而可得出结论;(2)由()SAS CAE BAD △≌△,可得ABD ACE ∠=∠,再根据AOC BOF ∠=∠,结合三角形内角和即可求解.解:(1)∵ABC V 和ADE V 是等边三角形,∴AB AC =,AD AE =,BAC DAE ∠=∠,∵DAE BAE BAC BAE ∠+∠=∠+∠,∴CAE BAD ∠=∠,∴()SAS CAE BAD △≌△,∴BD CE =,则1BD CE=,故答案为:1;(2)由()SAS CAE BAD △≌△,可得ABD ACE ∠=∠,∵AOC BOF ∠=∠,AOC ACE BAC BOF ABD BFC ∠+∠+∠=∠+∠+∠,∴60CFB BAC ∠=∠=︒,∴60BFC ∠=︒,故答案为:60.【题型6】利用30度所对的直角边等于斜边一半求值或证明【例6】(2024八年级上·江苏·专题练习)在Rt ABC △中,90ACB ∠=︒,M 是边AB 的中点,CH AB ⊥于点H ,CD 平分ACB ∠.(1)求证:CD 平分MCH ∠;(2)过点M 作AB 的垂线交CD 的延长线于点E ,求证:CM EM =;(3)AEM △是什么三角形?证明你的猜想.【答案】(1)见解析(2)见解析(3)AEM △是等腰直角三角形,证明见解析【分析】(1)根据直角三角形斜边上的中线等于斜边的一半得到AM CM BM ==,由等腰三角形的性质得到CAB ACM ∠=∠,由余角的性质得到CAB BCH ∠=∠,等量代换得到BCH ACM ∠=∠,根据角平分线的性质得到ACD BCD ∠=∠,即可得到结论;(2)根据EM AB ⊥,CH AB ⊥,得到EM AB ∥,由平行线的性质得到HCD MED ∠=∠,由于HCD MCD ∠=∠,于是得到MCD MED ∠=∠,即可得到结论;(3)根据CM EM =,AM CM BM ==,于是得到EM AM BM ==,由EM AB ⊥,推出AEM △是等腰直角三角形.(1)证明:Rt ABC △中,90ACB ∠=︒,M 是AB 边的中点,AM CM BM ∴==,CAB ACM ∴∠=∠,90CAB ABC ∴∠=-∠,CH AB ⊥ ,90BCH ABC ∴∠=-∠,CAB BCH ∴∠=∠,BCH ACM ∴∠=∠,CD 平分ACB ∠,ACD BCD ∴∠=∠,ACD ACM BCD BCH ∴∠-∠=∠-∠,即MCD HCD ∠=∠,CD ∴平分MCH ∠;(2)证明:EM AB ⊥ ,CH AB ⊥,∴EM CH ∥,HCD MED ∴∠=∠,HCD MCD ∠=∠ ,MCD MED ∴∠=∠,CM EM ∴=;(3)解:AEM △是等腰直角三角形,CM EM = ,AM CM BM ==,EM AM BM ∴==,EM AB ⊥ ,AEM ∴△是等腰直角三角形.【点拨】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰直角三角形的判定和性质,角平分线的定义,等腰三角形的性质,熟练掌握各定理是解题的关键.【变式1】(23-24九年级上·安徽合肥·期末)如图,ABC V 中,9030ACB A ∠=︒∠=︒,,CD AB ⊥于点D ,若1BD =,则AD 的长度为()A .5B .4C .3D .2【答案】C 【分析】本题主要考查直角三角形的性质,熟练运用“在直角三角形中,30︒角所对的直角边等于斜边的一半”是解题的关键.由含30︒角的直角三角形的性质可分别求得BC 和AB 的长,进而求得AD 的长.解:∵在ABC V 中,9030ACB A ∠=︒∠=︒,,∴=60B ∠︒,∵CD AB ⊥,∴30BCD ∠=︒,∴在Rt BCD △中,22BC BD ==,∴在Rt ABC △中,24AB BC ==,∴413AD AB BD =-=-=.故选:C .【变式2】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90C ∠=︒,AD 是CAB △的平分线,DE 垂直平分AB ,若3CD =,则BD =.【答案】6【分析】本题主要考查线段垂直平分线的性质、30︒所对的直角边是斜边的一半,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.由角平分线和线段垂直平分线的性质可求得30B CAD DAB∠=∠=∠=︒,在Rt ACD△中,根据直角三角形的性质可求得AD,则可得出BD的长.解:DE垂直平分AB,DA DB∴=,B DAB∴∠=∠,AD平分CAB∠,CAD DAB∴∠=∠,90C∠=︒,390CAD∴∠=︒,30CAD∴∠=︒,26AD CD∴==,6BD AD∴==.故答案为:6.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2024·四川巴中·中考真题)如图,在ABCV中,D是AC的中点,CE AB⊥,BD与CE交于点O,且BE CD=.下列说法错误的是()A.BD的垂直平分线一定与AB相交于点EB.3BDC ABD∠=∠C.当E为AB中点时,ABCV是等边三角形D.当E为AB中点时,34BOCAECSS=△△【答案】D【分析】连接DE ,根据CE AB ⊥,点D 是AC 的中点得12DE AD CD AC ===,则BE DE =,进而得点D 在线段BD 的垂直平分线上,由此可对选项A进行判断;设ABD α∠=,根据BE DE =得EDB ABD α∠=∠=,的2AED EDB ABD α∠=∠+∠=,再根据DE AD =得2A AED α∠=∠=,则3BDC A ABD α∠=∠+∠=,由此可对选项B进行判断;当E 为AB 中点时,则12BE AB =,CE 是线段AB 的垂直平分线,由此得AC BC =,然后根据12BE AB =,12CD AC =,BE CD =得AB AC =,由此可对选项C进行判断;连接AO 并延长交BC 于F ,根据ABC V 是等边三角形得30OBC OAC ∠=∠=︒,则OA OB =,进而得2OB OF =,3AF OF =,由此得12OBC S BC OF ∆=⋅,1322ABC S BC AF BC OF ∆=⋅=⋅,由此可对选项D进行判断,综上所述即可得出答案.解:连接DE ,如图1所示:CE AB ⊥ ,点D 是AC 的中点,DE ∴为Rt AEC △斜边上的中线,12DE AD CD AC ∴===,BE CD = ,BE DE ∴=,∴点D 在线段BD 的垂直平分线上,即线段BD 的垂直平分线一定与AB 相交于点E ,故选项A 正确,不符合题意;设ABD α∠=,BE DE = ,EDB ABD α∴∠=∠=,2AED EDB ABD α∴∠=∠+∠=,DE AD = ,2A AED α∴∠=∠=,3BDC A ABD α∴∠=∠+∠=,即3BDC ABD ∠=∠,故选B 正确,不符合题意;当E 为AB 中点时,则12BE AB =,CE AB ⊥ ,CE ∴是线段AB 的垂直平分线,AC BC ∴=,12BE AB = ,12CD AC =,BE CD =,AB AC ∴=,AC BC AB ∴==,ABC ∴ 是等边三角形,故选C 正确,不符合题意;连接AO ,并延长交BC 于F ,如图2所示:当E 为AB 中点时,点D 为AC 的中点,∴根据三角形三条中线交于一点得:点F 为BC 的中点,当E 为AB 中点时,ABC V 是等边三角形,60ABC BAC ∴∠=∠=︒,AF BC ⊥,AF 平分OAC ∠,BD 平分ABC ∠,30OBC OAC ∴∠=∠=︒,OA OB ∴=,在Rt OBF △中,2OB OF =,2OA OB OF ∴==,3AF OA OF OF ∴=+=,12OBC S BC OF ∆∴=⋅,1322ABC S BC AF BC OF ∆=⋅=⋅,∴13OBC ABC S S ∆∆=,故选项D 不正确,符合题意.故选:D .【点拨】此题主要考查了直角三角形斜边上的中线,线段垂直平分线的性质,等腰三角形的判定与性质,等边三角形的判定和性质,理解直角三角形斜边上的中线,线段垂直平分线的性质,熟练掌握等腰三角形的判定与性质,等边三角形的判定和性质是解决问题的关键.【例2】(2024·江苏宿迁·中考真题)如图,在ABC V 中,5030B C ︒∠∠=︒=,,A 是高,以点A 为圆心,A 长为半径画弧,交AC 于点E ,再分别以B 、E 为圆心,大于12BE 的长为半径画弧,两弧在BAC ∠的内部交于点F ,作射线AF ,则DAF ∠=.【答案】10︒/10度【分析】本题主要考查角平分线的作法及三角形内角和定理,根据题意得出AF 平分BAC ∠,然后利用三角形内角和定理求解即可.解:因为5030B C ∠=︒∠=︒,,所以1805030100BAC ∠=︒-︒-︒=︒,根据题意得:AF 平分BAC ∠,所以1502BAF BAC ∠==︒,因为AD 为高,所以90BDA ∠=︒,所以180509040BAD ∠=︒-︒-︒=︒,所以504010DAF BAF BAD ∠=∠-∠=︒-︒=︒,故答案为:10︒.2、拓展延伸【例】(22-23八年级上·吉林长春·阶段练习)在等腰ABC V 中,CA CB =,30B ∠=︒,将一块足够大的直角三角尺PMN (90M ∠=︒、30MPN ∠=︒)按如图所示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB α∠=,斜边PN 交AC 于点D .(1)当P 运动到AB 中点时,α=__________度;(2)当45α=︒时,请写出图中所有的等腰三角形(ABC V 除外)__________.(3)在点P 的滑动过程中,当PCD △的形状是以PC 为底的等腰三角形时,请在指定位置画出此时形成的图形,并指出此时图中的所有直角三角形(PMN 除外).不用说明理由.【答案】(1)60;(2)ACP △和PCD △;(3)此时图中的所有直角三角形是PBC △和APD △.【分析】本题属于三角形综合题,考查了全等三角形的判定与性质,等腰三角形的判定,外角性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.(1)根据等腰三角形的性质得到CP AB ⊥,求得90BPC ∠=︒,根据三角形的内角和定理即可得到结论;(2)根据三角形的内角和定理得到120BCA ∠=︒,求得1204575ACP ∠=︒-︒=︒,根据等腰三角形的判定定理得到ACP △是等腰三角形,求得PDC PCD ∠=∠,根据等腰三角形的判定定理得到PCD △是等腰三角形(3)当PD CD =时,PCD △以PC 为底的等腰三角形,根据等腰三角形的性质得到30PCD CPD ∠=∠=︒,即12030α-=°°,推出PBC △是直角三角形,根据三角形的内角和定理得到60CPB ∠=︒,求得603090BPD ∠=︒+︒=︒,于是得到APD △是直角三角形.解:(1)AC BC = ,点P 为AB 中点,CP AB ∴⊥,90BPC ∴∠=︒,30B ∠=︒ ,903060α∴=︒-︒=︒,故答案为:60;(2)CA CB = ,30B ∠=︒,30A B ∴∠=∠=︒,120BCA ∴∠=︒,45BCP α∠==︒ ,1204575ACP ∴∠=︒-︒=︒,75APC BCP B ∠=∠+∠=︒ ,ACP APC ∴∠=∠,ACP ∴△是等腰三角形,30CPD ∠=︒ ,45APD ∴∠=︒,75CDP A APD ∴∠=∠+∠=︒,PDC PCD ∴∠=∠,PCD ∴ 是等腰三角形,故答案为:ACP △和PCD △;(3)如图,120ACB ∠=︒ ,120PCD α∴∠=︒-,当PD CD =时,PCD △以PC 为底的等腰三角形,30PCD CPD ∴∠=∠=︒,即12030α-=°°,90α∴=︒;PBC ∴△是直角三角形,60CPB ∴∠=︒,6030BPD ∴∠=︒+︒,90APD ∴∠=︒,APD ∴ 是直角三角形,综上所述,此时图中的所有直角三角形是PBC △和APD △.。
初中数学教材解读人教八年级上册第十三章 轴对称轴对称

§13.1 轴对称§13.1.1 轴对称(一)广元市利州中学于明清一、教学内容本节是人教版八年级上的内容,在前面认识了三角形和全等三角形的基础上,再让学生认识轴对称现象,为后面的等腰三角形的学习做充分准备。
二、教学目标1、知识与技能:通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形、轴对称及其对称轴,并能作出轴对称图形和成轴对称的图形的对称轴;说出轴对称图形与两个图形关于某条直线对称的区别与联系;2、过程与方法:通过折叠、剪裁轴对称图形和在丰富的现实情境中,经历观察生活中的轴对称现象,探索轴对称现象共同特征等活动,进一步发展空间观念。
3、情感态度价值观:欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应泛运用和它的丰富文化价值。
三、教学重点、难点教学重点:轴对称图形的概念.教学难点:能够识别轴对称图形并找出它的对称轴.四、教学过程Ⅰ.创设情境,引入新课我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习第十三章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.(一)导:1、动手做剪纸a.准备一张长方形纸b.对折纸c.在纸上画出一个图形d.沿线条剪下e.把纸展开让学生观察剪的图形,和周围同学比一比,议一议,剪得的图形有什么共同特点。
从而引出课题。
2、看一看:投影和演示各类图案(如课本上所绘的图象或由学生课前收集的各类图案)分析各类图案的特点,让学生经历观察和分析,初步认识轴对称图形.(二)学:看一看,想一想,细心观察下列图片和图形问:这些图形有什么共同特征?请你想一想:将上图中的每一个图形沿某条直线折叠,直线两旁的部分能完全重合吗?学生:它们沿着某条直线折叠后,直线两旁的部分能完全重合。
2019-2020人教版八年级数学上册第十三章轴对称复习课件85张

数学
八年级 上册
新课标(RJ)
第十三章 轴对称
章末复习
第十三章 轴对称
章末复习
知识框架 归纳整合 素养提升 中考链接
章末复习
知识框架
轴对称
等腰三角形
用坐标表 示轴对称
轴对称
章末复习
有关概念 轴 对 线段的垂 称 直平分线
有关性质
轴对称
轴对称图形 定义:经过线段中点并且垂直于这条线段的直线 性质:线段垂直平分线上的点与这 条线段两个端点的距离相等 判定:与一条线段两个端点距离相等 的点, 在这条线段的垂直平分线上 对应线段相等,对应角相等
相关题 5-3 如图13-Z-14, 已知:△ABC是等腰直角三角形, ∠A=90°, BD平分∠ABC交AC于点D, CE⊥BD, 交BD的延长 线于点E.求证:BD=2CE.
章末复习
证明:如图,延长 BA 和 CE 交于点 M. ∵CE⊥BD, ∴∠BEC=∠BEM=90°. ∵BD 平分∠ABC,∴∠MBE=∠CBE.
章末复习
专题四 等边三角形与全等三角形的综合应用
【要点指导】等边三角形的性质与判定和全等三角形等知识综合, 为证明线段相等、角相等、线段的倍分问题提供了很好的思路和 理论依据, 此类题难度不大, 但是步骤烦琐, 属于中档题.
章末复习
例4 如图13-Z-7, △DAC, △EBC均是等边三角形, 点A, C, B在同一条 直线上, 且AE, BD分别与DC, EC交于点M, N, 连接MN. 求证:(1)AE=DB; (2)△CMN为等边三角形.
解 如图13-Z-3所示.
章末复习
相关题2 [绥化中考] 如图13-Z-4,在8×8的正方形网格中,每个 小正方形的边长都是1. 已知△ABC的三个顶点都在格点上, 画 出△ABC关于直线l对称的△A1B1C1.
新人教版初中数学八年级上册《第十三章轴对称:13.1轴对称》公开课教学设计_1

13.1.1 轴对称(一)教学设计教学目标知识与技能:通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形、轴对称及其对称轴,并能作出轴对称图形和成轴对称的图形的对称轴;结合图形说出轴对称图形与两个图形关于某条直线对称的的性质;过程与方法:在丰富的现实情境中,经历观察生活中的轴对称现象,探索轴对称现象共同特征等活动,进一步发展空间观念。
情感态度价值观:欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应泛运用和它的丰富文化价值。
教学重点轴对称图形及轴对称的概念.教学难点能够识别轴对称图形及轴对称并找出它的对称轴.以及性质的理解教学过程Ⅰ.创设情境,引入新课我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习第十四章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.Ⅱ.导入新课出示投影视频和投影图片,观察它们都有些什么共同特征.这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.指导学生预习课本58-59页完成表格内容。
接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。
接下来完成下列各图,你能找出它们的对称轴吗?是A像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.Ⅲ.随堂练习(一)课本P60练习 1和练习2这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.(师)总结:轴对称的两个图形和轴对称图形,都要沿某一条直线折叠后重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,•如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.(师)出示问题三(学生探究,小组交流,汇报展示)(问题三) 如图,△ABC 和△A ′B ′C ′关于直线MN 对称,点A ′、B ′、C ′分别是点A 、•B 、C 的对称点,线段AA ′、BB ′、CC ′与直线MN 有什么关系?图中A 、A ′是对称点,AA ′与MN 垂直,BB ′和CC ′也与MN 垂直. AA ′、BB ′和CC ′与MN 除了垂直以外还有什么关系吗?△ABC 与△A ′B ′C ′关于直线MN 对称,点A ′、B ′、C ′分别是点A 、B 、C 的对称点,设AA ′交对称轴MN 于点P ,将△ABC 和△A ′B ′C ′沿MN 对折后,点A 与A ′重合,于是有AP=A ′P ,∠MPA=∠MPA ′=90°.所以AA ′、BB ′和CC ′与MN 除了垂直以外,MN 还经过线段AA ′、BB ′和CC ′的中点.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.我们可以看出轴对称图形与两个图形关于直线对称一样,•对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.归纳图形轴对称的性质:如果两个图形关于某条直线对称,•那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.(师)对比给出问题四问题 问题(四) 下图是一个轴对称图形,你能发现什么结论?能说明理由吗?结论:直线l 垂直线段AA ′,BB ′,直线l 平分线段AA ′,BB ′(或直 线l 是线段AA ′,BB ′的垂直平分线).Ⅴ.作业(一)课本习题61页. 1、2、3、4、5、6、题.AB lA B。
2019秋人教版八年级数学上册教案:第13章4课题:画轴对称图形

1.教学重点
-理解并掌握轴对称图形的定义、性质及在实际图形中的应用;
-学会寻找图形的对称轴,并运用对称轴画轴对称图形;
-了解轴对称图形在实际生活中的应用,培养学生的数学应用意识。
举例:通过讲解和示例,使学生明确轴对称图形的定义,如矩形、正方形、圆等,并掌握其性质,如对角线互相平分、对应角相等、对应边相等等。强调在实际图形中,如何快速找到对称轴,如通过观察图形的特征,寻找中心点或中心线。
二、核心素养目标
1.让学生掌握轴对称图形的基本概念,培养空间观念和几何直观;
2.培养学生观察、分析、解决问题的能力,提高逻辑思维和推理能力;
3.培养学生动手操作和创新能力,学会运用轴对称知识解决实际问题;
4.增强学生团队协作意识,提高沟通与交流能力,培养合作精神;
5.激发学生学习兴趣,培养数学美感,提高审美素养。
2019秋人教版八年级数学上册教案:第13章4课题:画轴对称图形
一、教学内容ห้องสมุดไป่ตู้
2019秋人教版八年级数学上册第13章《轴对称》第4节:课题——画轴对称图形。本节内容主要包括:
1.轴对称图形的定义及性质;
2.如何在实际图形中找到对称轴;
3.利用对称轴画轴对称图形的方法与步骤;
4.轴对称图形在实际生活中的应用。
3.重点难点解析:在讲授过程中,我会特别强调轴对称的定义和如何在实际图形中找到对称轴这两个重点。对于难点部分,如复杂图形的对称轴寻找,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与轴对称图形相关的实际问题,如如何设计一个轴对称的图案。
c.设计具有挑战性的问题和任务,让学生在解决实际问题的过程中,运用轴对称知识,提高学生的应用能力;
人教版八年级上册数学精品教学课件 第13章 轴对称 第1课时 画轴对称图形
(1) 认真观察,左脚印和右脚印
有什么关系?
P
P'
成轴对称.
(2) 对称轴是折痕所在的直线,
即直线 l,它与图中的线段 PP′
是什么关系?
l
直线 l 垂直平分线段 PP′.
知识要点
由一个平面图形可以得到与它关于一条直线 l 对称 的图形,这个图形与原图形的形状、大小完全相同(位 置、朝向可能不同);新图形上的每一点都是原图形上 的某一点关于直线 l 的对称点;连接任意一对对应点的 线段被对称轴垂直平分.
八年级数学上(RJ) 教学课件
第十三章 轴对称
13.2 画轴对称图形
第 1 课时 画轴对称图形
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1. 能够按要求画简单平面图形经过一次对称后的图形; (难点) 2. 掌握作轴对称图形的方法;(重点) 3. 通过画轴对称图形,增强学习几何的趣味感.
导入新课
情境引入
A.20°
B.30°
C.40°
D.50°
方法归纳:折叠是一种轴对称变换,折叠前后的图形 形状和大小不变,对应边和对应角相等.
二 作轴对称图形
互动探究
问题1:如何画一个点的轴对称图形?
如图,画出点 A 关于直线 l 的对称点 A′.
作法:
A·
(1) 过点 A 作 l 的垂线,垂足为点 O;
O
(2) 在垂线上截取 OA′=OA.
B A′ 就是点 A 关于直线 l 的对称点.
(2) 同理,分别画出点 B,C 关于 A
直线 l 的对称点 B′,C′.
O
A′
数学八年级上册《第十三章轴对称13.2画轴对称图形作轴对称图形》教案15
13.2画轴对称图形第一课时一、教课目的(一)学习目标1.经过实质操作,认识什么叫做轴对称变换 .2.掌握作一个图形对于一条直线的轴对称图形的方法 .3.经历实质操作,发展学生的空间思想,并领会轴对称变换在实质生活中的应用 .(二)学习要点如何做已知图形对于一条直线的轴对称图形.(三)学习难点利用轴对称变换作图并理解轴对称变换的实质作用.一个图形与另一个图形沿着某条直线折叠后能完整重合,那么就说这两个图形对于这条直线成轴对称,折痕所在的直线就是它们的对称轴,而且连结随意一对对称点的线段被对称轴垂直均分;已知图形和对称轴作对称图形,先作已知图形中每个特别点对于对称轴的对称点,再连结对称点得其对称图形.2.预习自测(1)如图,图中的两个脚迹沿着直线l对折后可以完整重合,那么这两个脚迹对于直线l __________,直线l叫做它们的_________,点P和点是一对_________,线段P 被直线l_____________.【知识点】轴对称的图形的有关性质【解题过程】成轴对称的两个图形形状、大小完整同样;新图形上的每一点都是原图形上的某一点对于直线l的对称点;连结随意一对对应点的线段被对称轴垂直均分.【思路点拨】利用轴对称图形的有关性质推行剖析.【答案】成轴对称,对称轴,对称点,垂直均分(2)如图,△ABC与△对于直线l对称那么AO__直线l,AO__ .【知识点】轴对称图形的对应点之间的线段被对称轴垂直均分【解题过程】△ABC与△对于直线l对称,那么A 被直线l垂直均分,因此AO=【思路点拨】轴对称的两个图形的全部对应点之间的线段被对称轴垂直均分.【答案】⊥,=(3)把以以下图形补成对于直线l对称的图形ACBl【知识点】轴对称图形的画法【解题过程】分别作出△ABC三个极点的对称点,并按序连结这些对称点.【思路点拨】作点的对称点的方法是:作垂直,顺延伸,取相等.ACBlEF【答案】D(4)要在燃气管道l上修筑一个泵站,分别向A、B两镇供气,泵站修筑在管道的什么地点可以使输气管线最短.BAl【知识点】利用轴对称解决最短路径问题【解题过程】作点A的对称点C,并连结BC,与直线l交于点P即为所求.【思路点拨】两条线段之和为“最短”问题,一般采纳对称法推行转变.B AP【答案】C(二)讲堂设计1.知识回首l(1)轴对称:一个图形沿着某条直线对折能和此外一个图形重合.(2)轴对称的两个图形的每一对对应点之间的线段被对称轴垂直均分.(3)线段的垂直均分线的性质:垂直均分线上的点到线段两个端点的距离相等.2.问题研究研究一感知轴对称变换.●活动①着手操作,整合旧知师:在一张半透明的纸的左边画上一个三角形,把这张纸对折后描图,翻开这张纸,就能获得相对应的此外一个三角形.请问(1)这两个三角形有什么关系.(2)这条折痕和这两个三角形有什么关系.(3)图中的点A和点D之间的连线和折痕有什么关系.A ODB EC Fl教师总结:△ABC与△DEF对于直线l对称,直线l叫做对称轴,而且线段AD、BE、CF被直线l垂直均分.【设计企图】着手操作,感知轴对称变换●活动②研究并概括轴对称的性质师问:画出的轴对称图形的大小、形状与原图形有如何的关系?画出的轴对称图形的点与原图形上的点有什么关系?对应点所连线段与对称轴有什么关系?学生回答:由一个平面图形可以获得与它对于一条直线l对称的图形,这个图形与原图形的形状、大小完整同样;新图形上的每一点都是原图形上的某一点对于直线l的对称点;连结随意一对对应点的线段被对称轴垂直均分.师问:假如有一个图形和一条直线,如何作出这个图形对于这条直线对称的图形呢?教师总结:对于某些图形,只需画出图形中的一些特别点(如线段端点)的对称点,连结这些对称点,就可以获得原图形的轴对称图形.【设计企图】概括轴对称图形的性质,提炼画轴对称图形方法.研究二画轴对称图形的方法.★●活动①勇敢猜想,研究新知识师问:已知一个点和一条直线,如何画出这个点对于这条直线的对称点?Ml学生回答:由于对称点的连线被对称轴垂直均分,因此先过点M作直线l的垂线,垂足为O,在垂线上截取ON=OM,N就是点M对于直线l的对称点.MlON教师总结新知:作点的对称点的方法:过原点作对称轴的垂线,并延伸,在延伸线上截取一段与原点和垂足之间的距离相等的线段,截取线段的非垂足端点即为对称点.简要总结为:作垂线、顺延伸、取相等.师问:我们如何考证M、N是一对对称点?学生回答:沿着直线l折叠,察看点M、N可否重合.【设计企图】掌握对称点的作法,为作对称图形做准备.●活动②集思广益,研究新知.师问:已知△ABC和直线l,画出与△ABC对于直线l对称的图形.ACBl学生回答:△ABC可以由三个极点的地点确立,只需能分别画出这三个极点的对称点,再连结这些对称点,就可以获得要画得对称图形.ACBO lDFE教师总结方法:画法(1)过点A画直线l的垂线,垂足为O,在垂线上截取OE=OA,点E就是点A 对于直线l的对称点;(2)同理,分别画出点B,C对于直线l的对称点D,F;(3)连结DE,EF,FD,则△DEF即为所求.【设计企图】掌握作对称图形的一般方法.●活动③反省过程,总结方法.思虑:几何图形的对称图形的做法?学生回答:找要点点的对称点,而后推行连结,获得新图形.教师概括:几何图形都可以看作由点构成,对于某些图形,只需画出图形中的一些特别点的对称点,连结这些对称点,就可以获得原图形的轴对称图形.【设计企图】经过师生合作,进一步概括新知.●活动④发散思想,从头理解.师问:已知一个几何图形在对称轴双侧,如何作出它的轴对称图形呢?学生回答:找要点点,作出要点点的对称点,连结这些对称点即可.教师展现图形:作出△ABC对于直线AD的轴对称图形.ACDB学生试试独立解决:AE CDBF教师展现结果:研究三娴熟掌握轴对称图形的画法,并会使用轴对称图形的有关性质解决实质问题.★▲●活动①作轴对称图形(部分点在对称轴上)例1把以以下图形补成对于直线l对称的图形.EGFl【知识点】轴对称图形的画法【解题过程】过点E作直线l的垂线,垂足为O,并截取OH=OE,点H即为点E的对称点,同理作出点F的对称点I,连结HG、GI、HI,△HGI即为所求.【思路点拨】找准必需的要点点,已知一点在对称轴上,只需分别画出此外两点的对称点即可,对称点的做法:作垂直,顺延伸,取相等.EO HGF I【答案】l练习:已知BC⊥AC,把以以下图像补成对于直线l对称的图形.ABCl【知识点】轴对称图形的画法【解题过程】依据题意,只需延伸BC,并在延伸线上截取CD=CB,连结AD、DC,△ACD即为所求.【思路点拨】作点的对称点的方法:作垂直,顺延伸,取相等.ADBCl【答案】【设计企图】试试练习,掌握轴对称图形的画法.●活动2作轴对称图形(图形与对称轴无交点) 例2画出∠ABC 对于直线l 的对称图形. A B C l【知识点】轴对称图形的画法.【解题过程】在∠ABC 中,取点A 、C ,分别作出点A 、B 、C 的对称点D 、E 、F ,连结点EF ,ED ,由于角的两边是射线,因此只需将EF 、ED 延伸即可,所得的∠DEF 即为所求.【思路点拨】要确立一个角的地点,只需确立它的极点与两条边,因此在两条边上分别取一点,而后把它们以及极点的对称点作出来,再连结这些对称点,最后把角的两边延伸 .ABC【答案】EFD练习:如图,作出菱形ABCD 对于直线l 的对称图形.ADB Cl 【知识点】轴对称图形的画法. 【解题过程】分别作出点 A 、B 、C 、D 对于直线l 的对称点E 、F 、G 、I ,连结EF ,FG ,GI , IE ,菱形EFGI 即为所求. 【思路点拨】作出菱形四个极点的对称点,并按序连结起来. A E D I B F CGl【答案】【设计企图】让学生娴熟轴对称图形的画法 .●活动3利用轴对称解决“最短”问题例3如图,请在直线l上找一点P,使得点P分别到点A、到点B的距离之和最短.BAl【知识点】对称点之间的连线被对称轴垂直均分,垂直均分线上的点到线段两头点的距离相等,两点之间线段最短.【解题过程】作点A对于直线l的对称点C,连结BC与直线l交于点P,则点P即为所求.【思路点拨】假设已找到的点P,使得PA+PB为最短,依据两点之间线段最短,可想方法将PA与PB转变到一条直线上,故作点 A的对称点C,PA就转变为PC,只需连结BC,BC与直线l的交点即为点P.【答案】BAlPC练习:如下图,要在河畔成立一个水站向A,B两个乡村供水,请问水站建在河畔的哪个地方更经济优惠?BAl【知识点】对称点之间的连线被对称轴垂直均分,垂直均分线上的点到线段两头点的距离相等,两点之间线段最短.【解题过程】依据题意要经济优惠,那么需要PA+PB最短,转变为最短路径问题.作点A对于直线l的对称点C,连结BC与直线l交于点P,则点P即为所求,两条线段之和为“最短”问题一般采纳对称法.【思路点拨】两条线段不在一条直线上,利用轴对称将其转变到一条直线上,再依据两点之间线段最短求得点P.BAlPC【答案】【设计企图】依据轴对称图形画法的学习,让学生掌握解决最短路径问题的方法.讲堂总结知识梳理(1)已知图形和对称轴作轴对称图形:作已知图形中的每个要点点对于对称轴的对称点,再连结对称点获得对称图形.(2)两条线段之和为“最短”问题,一般采纳对称法.重难点概括(1)会作轴对称图形.(2)利用对称法解决最短路径问题.(三)课后作业基础型自主打破1.把以以下图形补成对于直线l对称的图形.【知识点】轴对称图形的画法.【解题过程】找到原图形的要点点,并作出他们对于直线l的对称点,并连结这些对称点.【思路点拨】画对称点的方法:作垂直,顺延伸,取相等.【答案】2.把以以下图形补成对于直线l对称的图形.ADBCl【知识点】轴对称图形的画法【解题过程】只需作出点B对于直线l的对称点E,分别连结AE、CE即为所求.【思路点拨】找准某些要点点即可.AB DEC【答案】l3.把以以下图形补成对于直线l对称的图形.AOBl【知识点】轴对称图形的画法【解题过程】分别作出点A、点B的对称点,再按序连结 CO、OD、DC即为所求.【思路点拨】点O在对称轴上,只需作出A、B两点的对称点.C AOD B【答案】l4.把以以下图形补成对于直线l对称的图形.l【知识点】轴对称图形的画法【解题过程】把不在对称轴上的要点点对于直线l的对称点作出来,再推行按序连结.【思路点拨】找准图形的要点点,再作对称点.l【答案】5.小莹和小博士下棋,小莹执白子,小博士执黑子.如图,棋盘中心黑子的地点用(-1,0)表示,右下角黑子的地点用(0,-1)表示.小莹将第4枚白子放入棋盘后,全部棋子构成一个轴对称图形.他放的地点是()A.(-2,1)B.(-1,1)C.(1,-2)D.(-1,-2)【知识点】坐标与图形变化-对称;坐标确立地点.【解题过程】棋盘中心黑子的地点用(-1,0)表示,则这点所在的横线是x轴,右下角黑子的地点用(0,-1),则这点所在的纵线是y轴,则当放的地点是(-1,1)时构成轴对称图形.应选B.【思路点拨】此题考察了轴对称图形和坐标地点确实定.【答案】B6.如图,△ABC对于直线l的对称图形是△DEF,以下判断错误的选项是()ACBlEFDA.AB=DEB.BC∥EFC.直线l⊥BED.∠ABC=∠DEF【知识点】轴对称图形的有关性质【解题过程】成轴对称的图形是全等形,故AB=DE,∠ABC=∠DEF,对称点之间的线段被对称轴垂直均分即直线l⊥BE,而BC∥EF没有依照,故B选项错误.【思路点拨】联合轴对称图形的有关性质逐个查验,进而找到合理答案.【答案】B水平型师生共研7.已知△ABC和直线m,n,先作△对于直线m的对称图形△DEF,再作△DEF对于直线n的对称图形△GHI.ABCm n【知识点】轴对称图形的画法【解题过程】挨次作出△ABC对于直线m的对称图形,而后再作出对于直线n的对称图形.【思路点拨】确立三角形地点的因素是极点,故作极点的对称点是要点.A D GB EHCF I【答案】m n8.已知△ABC和直线m,n,先作△对于直线 m的对称图形△DEF,再作△DEF对于直线n的对称图形△GHI.ABCm n【知识点】轴对称图形的画法【解题过程】挨次作出△ABC对于直线m的对称图形,而后再作出对于直线n的对称图形.【思路点拨】确立三角形地点的因素是极点,故作极点的对称点是要点.【答案】ADEH GBFC Im n【设计企图】娴熟轴对称图形的画法.研究型多维打破9.直线l左边有两点P、Q,试在直线上确立一点O,使得OP+OQ最短.PQl【知识点】轴对称变换的使用【解题过程】作点P对于直线l的对称点A,连结AQ交直线l与点O即为所求.【思路点拨】利用轴对称解决最短路径问题.AOQ【答案】l10.如图,△ABC与△DEF对于某条直线对称,请画出对称轴.A DEBC F【知识点】随意一对对应点之间的连线被对称轴垂直均分【解题过程】连结AD,作线段AD的精选文档垂直均分线.【思路点拨】依据对称图形确立对称轴的地点,注意垂直均分线的画法.DOEBFl【答案】【设计企图】让学生掌握轴对称的使用,加深对知识的稳固.自助餐1.察看以下图中各组图形,此中不是轴对称的是()A. B. C. D.【知识点】轴对称图形的判断【解题过程】由图形可以看出:C选项中的伞把不对称,应选C.【思路点拨】娴熟使用轴对称图形的观点.【答案】C2.把以以下图形补成对于直线 l的对称图形.l【知识点】轴对称图形的画法【解题过程】找要点点,作它的对称点,而后按序连结图形即为所求.【思路点拨】此题只需找准一个要点点即可.【答案】l3.以下图是汉字“中”的一半,请补全该汉字.l【知识点】轴对称图形的画法【解题过程】依据题意,只需将延伸上下两条线段,并截取相等线段,找到对称点,而后推行连结即可.【思路点拨】利用“中”字是轴对称图形推行图形的增补.l【答案】4.画出圆对于直线l的对称图形.oAl【知识点】轴对称图形的画法【解题过程】要确立一个圆,只需找准它的圆心和半径,这里要画它的轴对称图形,只需作出圆心O和半径的另一个端点A的对称点,在用圆规推行画圆,画出的圆即为所求.【思路点拨】确立圆的两个因素:圆心和半径.l【答案】5.已知∠AOB,试确立它的对称轴.AOB【知识点】作轴对称图形的对称轴【解题过程】分别在OA,OB上截取线段OM=ON,连结MN,作线段MN的垂直均分线即为所求.【思路点拨】角是轴对称图形,它的对称轴即角均分线所在的直线.MAlON【答案】B6.如图,A、B为重庆市内两个较大的商圈,现需要在主要交通干道l上修筑一个轻轨站P,问如何修筑,才能使得人们出行逛街更便利.BAlP【知识点】利用轴对称解决最短路径问题【解题过程】作点A对于直线l的对称点A’,再连结A’B,交直线l于点P,点P即为所求.【思路点拨】利用轴对称解决两条线段之和“最短”问题.BAlPA'【答案】。
八年级上册数学(人教):第十三章轴对称导学案
第十三章轴对称13.1轴对称13.1.1轴对称1.理解轴对称图形和两个图形关于某条直线对称的概念,了解轴对称及轴对称图形的的性质.2.能识别简单的轴对称图形及其对称轴.重点:轴对称与轴对称图形的概念.难点:轴对称与轴对称图形的性质.一、自学指导自学1:自学课本P58-59页“思考1及思考2”,了解轴对称图形、轴对称的概念,以及它们之间的区别和联系,完成下列填空.(5分钟)总结归纳:(1)如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.(2)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.自学2:自学课本P59页“思考3”,了解轴对称及轴对称图形的的性质.(5分钟)如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点.(1)设AA′交对称轴于点P,将△ABC或△A′B′C′沿MN折叠后,点A与点A′重合,则有△ABC≌△A′B′C′,PA=PA′,∠MPA=∠MPA′=90度.(2)MN与线段AA′的关系为MN垂直平分线段AA′.总结归纳:(1)经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)成轴对称的两个图形是全等形.(3)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.(4)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图所示的图案中,是轴对称图形的有A,B,C,D.2.下列图形中,不是轴对称图形的是(D)A.角B.等边三角形C.线段D.直角梯形3.下图中哪两个图形放在一起成轴对称B与F,C与D.4.轴对称与轴对称图形有什么区别与联系?答:区别为轴对称是指两个图形沿对称轴折叠后重合,而轴对称图形是指一个图形的两部分沿对称轴折叠后能完全重合;联系是都有对称轴、对称点和两部分完全重合的特性.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1下列图形是轴对称图形吗?如果是,指出轴对称图形的对称轴.①等边三角形;②正方形;③圆;④平行四边形.解:①等边三角形的对称轴为三条中线所在的直线;②正方形的对称轴为两条对角线所在的直线和两组对边中点所在的直线;③圆的对称轴为过圆心的直线.点拨精讲:对称轴是一条直线.探究2如图,△ABC和△ADE关于直线l对称,若AB=2 cm,∠C=80°,则AE =2_cm,∠D=80°.点拨精讲:根据成轴对称的两个图形全等,再根据全等的性质得到对应线段相等,对应角相等.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.指出下列哪组图形是轴对称,并指出对称轴.①任意两个半径相等的圆;②正方形的一条对角线把一个正方形分成的两个三角形;③长方形的一条对角线把长方形分成的两个三角形.解:①两圆心所在的直线和连接两圆心的线段的垂直平分线;②正方形两条对角线所在的直线;③不是轴对称关系.点拨精讲:是不是轴对称看是否能沿某条直线折叠后重合.2.下列两个图形是轴对称关系的有A,B,C.3.如图,在网格中,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在旁边的网格中设计出一个轴对称图案.(不得与原图案相同,黑、白方块的个数要相同)(3分钟)1.可用折叠法判断是否为轴对称图形.2.多角度、多方法思考对称轴的条数.3.对称轴是一条直线,一条垂直于对应点连线的直线.4.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.1.2线段的垂直平分线的性质(1)1.理解线段垂直平分线的性质和判定,并会运用此性质解决问题.2.会用尺规作图过直线外一点作已知直线的垂线.重、难点:线段垂直平分线的性质和判定定理的理解与运用.一、自学指导自学1:自学课本P61页“探究”,理解线段垂直平分线的性质与判定定理,完成下列填空.(5分钟)1.如图,l⊥AB,垂足为C,AC=BC,则△PAC≌△PBC,PA=PB.2.如图,PA=PB,若PC⊥AB,垂足为C,则AC=BC;若AC=BC,则PC⊥AB.总结归纳:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(3)线段的垂直平分线是到线段两个端点的距离相等的点的集合.自学2:自学课本P62页“例1”,掌握经过已知直线外一点作这条直线的垂线的方法.(5分钟)如图,A,B,C三点表示三个村庄,为了解决村民子女就近入学的问题,计划新建一所小学,要使学校到三个村庄距离相等,请你在图中确定学校的位置.解:①连接AB,AC,BC;②分别作AC,BC的垂直平分线交于点P,则点P就是所要确定的学校的位置.点拨精讲:此题主要运用了作线段垂直平分线解决问题的方法.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P62页练习题1,2.2.下列条件中,不能判定直线MN是线段AB的垂直平分线的是(C)A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分AB小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 如图,AB =AC =8 cm ,AB 的垂直平分线交AC 于D ,若△ADB 的周长为18,求DC 的长.解:∵DM 是AB 的垂直平分线,∴AD =BD ,设CD 的长为x ,则AD =AC -CD =8-x ,∵C △ADB =AB +AD +BD =8+(8-x)+(8-x)=18,∴x =3,即CD 的长为3 cm .点拨精讲:由线段垂直平分线的性质得AD =BD 进而求解.探究2 如图,△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DC ⊥AC 于C ,求证:直线AD 是CE 的垂直平分线.证明:∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC ,∴DE =CD ,∴点D 在CE 的垂直平分线上.在Rt △AED 与Rt △ACD 中,∵AD =AD ,DE =DC ,∴Rt △AED ≌Rt △ACD(HL ),∴AE =AC ,∴点A 在CE 的垂直平分线上,∴直线AD 是CE 的垂直平分线.点拨精讲:证线段垂直平分线的方法1即定义,证垂直平分线的方法2即线段垂直平分线的判定方法.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,在△ABC 中,EF 是AC 的垂直平分线,AF =12,BF =3,则BC =15.2.如图,直线AD 是线段BC 的垂直平分线.求证:∠ABD =∠ACD.证明:∵直线AD 是线段BC 的垂直平分线,∴AB =AC ,DB =DC.在△ABD 与△ACD 中⎩⎨⎧AB =AC ,DB =DC ,AD =AD ,∴△ABD ≌△ACD(SSS ),∴∠ABD =∠ACD.3.在锐角△ABC 内一点P 满足PA =PB =PC ,则点P 是△ABC(D )A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边垂直平分线的交点(3分钟)线段的垂直平分线的性质和判定有时是交叉使用,线段垂直平分线的性质是证明线段相等的常用定理.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.1.2线段的垂直平分线的性质(2)会画轴对称图形或成轴对称的两个图形的对称轴.重、难点:会画轴对称图形或成轴对称的两个图形的对称轴.一、自学指导自学1:自学课本P62-63页“思考及例2”,掌握轴对称图形或成轴对称的两个图形的对称轴的作法,完成下列填空.(7分钟)如图,△ABC和△DEF关于某条直线成轴对称,你能作出这条直线吗?点拨精讲:作线段垂直平分线是根据线段垂直平分线的判定,而作对称轴是根据轴对称的性质作对称轴.总结归纳:(1)如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.(2)对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.课本P64页练习题1,2,3.2.下列图形是不是轴对称图形?如果是轴对称图形的,画出对称轴的条数.解:(略)3.角、线段、直线、圆、扇形、正方形、等边三角形、直角三角形、等腰梯形和长方形中是轴对称图形的有哪些?分别有几条对称轴?解:轴对称图形有:角、线段、直线、圆、扇形、正方形、等边三角形、等腰梯形和长方形;角、扇形、等腰梯形只有1条对称轴,直线、圆有无数条对称轴,正方形有4条对称轴,等边三角形有3条对称轴,长方形、线段有2条对称轴.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)探究1正三角形有3条对称轴,正方形有4条对称轴,正五边形有5条对称轴,正六边形有6条对称轴,正七边形有7条对称轴(分别画出图形的对称轴)……正n边形有n条对称轴.探究2如图是从镜中看到的一串数字,这串数字应为810076.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.课本P64-65页复习巩固题1,2,3,7,8.2.下列轴对称图形中,只有两条对称轴的图形是(A)3.如图,把一圆形纸片对折后,然后沿虚线剪开,得到两部分,其中一部分展开后的平面图形是(B)4.画出下列图形的对称轴.(3分钟)1.作对称轴的步骤:先找出任意一对对应点,再作出对应点所连线段的垂直平分线.2.对称轴是一条直线;一个图形可能没有对称轴,也可能有很多条,不要多画,也不要漏画.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.2画轴对称图形(1)了解轴对称变换的意义,能够按要求作出简单平面图形经过一次轴对称变换后的图形.重、难点:借助轴对称的意义,画出一个图形关于某一条直线对称的图形.一、自学指导自学:自学课本P67-68页“归纳、思考与例1”,会作已知图形关于某条直线对称的图形,能利用轴对称的一些性质设计图案,完成下列填空.(5分钟)如图,观察下面作线段AB关于直线l对称图形的过程并填空:总结归纳:几何图形都可以看作由点组成,对于一些由直线、线段或射线组成的图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P68页练习题1,2.2.如图,以虚线为对称轴,画出图形的另一半,并说明完成后图形可能代表什么含义.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1如图,已知△ABC,直线MN,求作△A′B′C′,使△A′B′C′与△ABC关于直线MN对称.解:如图,①过点A作AD⊥MN于D,延长AD至点A′,使A′D=AD,得点A关于直线MN的对称点A′;②同样作出点B,C关于直线MN的对称点B′,C′;③连接A′B′,B′C′,A′C′,则△A′B′C′就是所求作的三角形.点拨精讲:首先作出点A,B,C关于直线MN的对称点A′,B′,C′,使直线MN 为线段AA′,BB′,CC′的垂直平分线,然后连接A′B′,B′C′,A′C′,得△A′B′C′.探究2如图在2×2的正方形格点图中,有一个以格点为顶点的△ABC,请你找出格点图中所有与△ABC成轴对称也以格点为顶点的三角形,这样的三角形共有2个.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.如图,把一个正方形纸片按以下方向对折后,沿虚线剪下,再展开,则所得的图形是(D)2.下列说法正确的是(C)A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC与△ADE成轴对称,则△ABC≌△ADED.点A,点B在直线l两旁,且AB与直线l交于点O,若AO=BO,则点A与点B 关于直线l对称3.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD的度数等于60°.4.如图,是画出的风筝的一半,请将另一半补充完整.(3分钟)连接任意一对对应点的线段被对称轴垂直平分是作轴对称图形的重要依据,作轴对称图形的方法:①找——在原图形上找特殊点(如线段的端点);②作——作各个特殊点关于对称轴的对称点;③连——依次连接各对称点.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.2画轴对称图形(2)探索x轴、y轴对称的每对对称点的规律,利用规律作出关于x轴、y轴对称的图形.重、难点:用坐标轴表示轴对称.一、自学指导自学:自学课本P69-70页“思考、例2及归纳”,掌握x轴、y轴对称的每对对称点的规律,完成下列填空.(7分钟)1.如图,在坐标系中作出B,C两点关于x轴对称的点;总结归纳:点(x,y)关于x轴的对称点是(x,-y);关于x轴对称的点的坐标的特点是:横坐标相等,纵坐标互为相反数.2.如图,在坐标系中作出B,C两点关于y轴对称的点.总结归纳:点(x,y)关于y轴的对称点是(-x,y);关于y轴对称的点的坐标的特点是:纵坐标相等,横坐标互为相反数.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.课本P70-71页练习题1,2,3.2.点P(-5,6)关于x轴对称点为Q,则点Q的坐标为(-5,-6);点P(-5,6)关于y轴对称点为M,则点M的坐标为(5,6).3.点A(2,-3)向上平移6个单位后的点关于x轴对称的点的坐标是(2,-3).4.点P(3,4)关于y轴对称的点的坐标是P′(a,b),则a-b=-7.5.若点M(a,-5)与点N(-2,b)关于x轴对称,则a=-2,b=5;若这两点关于y 轴对称,则a=2,b=-5.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1已知点A(-3,2),且点A与点B,点B与点C,点C与点D分别关于x轴、y轴对称.(1)写出B,C,D的坐标;(2)问四边形ABCD是什么四边形?(3)试求四边形ABCD的面积.解:(1)点B(-3,-2),点C(3,-2),点D(3,2);(2)四边形ABCD是长方形;(3)S长方形ABCD=BC·AB=4×6=24.探究2如图,已知△ABC的三个顶点的坐标分别是(-1,5),(-5,3),(-3,-1),作出△ABC关于x轴、y轴的对称图形.解:如图,△A 1B 1C 1,△A 2B 2C 2即为所求作的图形.点拨精讲:可先写出各对称点的坐标,再描点画图.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.由(-1,3)→(-1,-3)经过了关于x 轴做轴对称变换;由(-5,-6)→(-5,-2)经过了关于直线y =-4做轴对称变换.2.已知点P(x +1,2x -1)关于x 轴对称的点在第一象限,试化简|x +2|-|1-x|.解:由题意可得⎩⎨⎧x +1>0,2x -1<0,解之得-1<x <12,∴x +2>0,1-x >0,∴|x +2|-|1-x|=x +2-(1-x)=x +2-1+x =2x +1.3.如图,点A(4,-1),B(2,-4),C(5,-5).(1)作出△ABC 关于直线y =1为对称轴的对称图形△A 1B 1C 1;(2)写出A ,C 关于直线x =-2的对称点A 2,C 2的坐标,及四边形ACC 2A 2的面积. 解:(略)(3分钟)解题时紧紧抓住点关于x 轴、y 轴和图形关于x 轴、y 轴对称的规律,弄清规律后就可以轻松解题了.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.3 等腰三角形13.3.1 等腰三角形(1)1.了解等腰三角形的概念,掌握等腰三角形的性质.2.运用等腰三角形的概念及性质解决相关问题.重、难点:等腰三角形的性质及其应用.一、自学指导自学:自学课本P75-76页“探究、思考与例1”,掌握等腰三角形的性质并学会运用,完成下列填空.(7分钟)1.如图,在△ABC中,AB=AC,标出各部分名称:2.如图,把一张长方形纸片按图中的虚线对折,剪下阴影部分,再把它展开,得到△ABC,则AB=AC.点拨精讲:根据轴对称的性质可得以上结论.总结归纳:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.(3)等腰三角形是轴对称图形,对称轴是底边上的中线(顶角平分线、底边上的高)所在的直线.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.课本P77练习题1,2,3.2.如图,在△ABC中,AB=AC,点D在BC上.(1)∵AD⊥BC,∴∠1=∠2,BD=CD.(2)∵AD是中线,∴AD⊥BC,∠BAD=∠CAD;(3)∵AD是角平分线,∴AD⊥BD,BD=CD.3.等腰三角形有两条边长为4 cm和9 cm,则该三角形的周长是22 cm.点拨精讲:此题要用到分类思想,但根据三角形三边关系排除一种情况.4.等腰三角形的一个外角是80°,则其底角是40°.5.等腰三角形一腰上的高与另一腰的夹角为30°,则其顶角为60°或120°.点拨精讲:此题分为高在三角形的内部和外部两种情况.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1已知△ABC是等腰三角形,且∠A+∠B=130°,求∠A的度数.解:①当∠A为顶角时,∵∠A+∠B+∠C=180°,∠A+∠B=130°,∴∠C=50°,∴∠A=80°;②当∠C为顶角时,则∠A=∠B,∵∠A+∠B=130°∴∠A=65°.点拨精讲:解题时应认真审题,分析已知条件,分清是顶角还是底角.探究2如图,AB=AC,BD⊥AC于点D.求证:∠BAD=2∠DBC.证明:过点A作AE⊥BC于点E,∵AB=AC,∴∠BAD=2∠2,∵BD⊥AC于点D,∴∠BDC=90°,∴∠2+∠C=∠C+∠DBC=90°,∴∠DBC=∠2,∴∠BAD=2∠DBC.点拨精讲:利用等腰三角形三线合一的性质求证.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm,则它的底边长为4_cm.2.如图,在△ABC中,D为BC的中点,AB=AC,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:DE=DF.证明:∵AB=AC,D为BC的中点,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE =DF.(3分钟)在等腰三角形中,常常需要作底边上的高,运用等腰三角形“三线合一”的性质,对于解决所有的问题能起到事半功倍的效果.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.3.1等腰三角形(2)1.探索等腰三角形的判定方法.2.掌握等腰三角形性质与判定的综合应用.重点:等腰三角形判定的应用.难点:等腰三角形性质与判定的综合应用.一、自学指导自学:自学课本P77-78页“思考与例2”,掌握等腰三角形判定方法,并能综合运用等腰三角形的有关知识解决问题,完成下列填空.(8分钟)如图,在△ABC中,∠B=∠C,求证:AB=AC.方法一:过点A作AB的垂直平分线AD,垂足为D.方法二:作△ABC的角平分线AD.数学老师说:方法二是正确的,方法一的作法需要订正.(1)请你简要说明方法一辅助线作法错在哪里;(2)根据方法二的辅助线作法,完成证明过程.总结归纳:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P79页练习题1,2,3,4.2.在△ABC中,∠A=80°,∠B=50°,那么△ABC的形状是等腰三角形.3.如图①,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD=3_cm.4.如图②,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=55°.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1如图,OB=OC,∠ABO=∠ACO,求证:AB=AC.证明:连接BC,∵OB=OC,∴∠OBC=∠OCB,∵∠ABO=∠ACO,∴∠ABO+∠OBC =∠ACO+∠OCB,∴∠ABC=∠ACB,∴AB=AC.点拨精讲:通过连接BC,使AB,AC在同一个三角形中,通过证明它们所对的角相等,而证得这两条线段相等.探究2 如图,在△ABC 中,AC =BC ,∠ACB =90°,O 为AB 的中点,现将一个三角板EGF 的直角顶点G 放在点O 处,把三角板EGF 绕点O 旋转,EG 交边AC 于点K ,FG 交边BC 于点H.(1)请判断△OHK 的形状;(2)求证:BH +AK =AC.解:(1)连接OC ,∵在△ABC 中,AC =BC ,∠ACB =90°,O 为AB 的中点,∴∠A =∠B =∠ACO =∠BCO =45°,∠AOC =∠BOC =90°,∴AO =CO =BO ,又∠KOH =90°,∴∠KOH -∠COH =∠BOC -∠COH ,即∠COK =∠BOH ,在△COK 和△BOH 中⎩⎨⎧∠KCO =∠B =45°,OC =OB ,∠COK =∠BOH ,∵△COK ≌△BOH(ASA ),∴OK =OH ,∵∠KOH =90°,∴△OHK 是等腰直角三角形.(2)证明:∵△COK ≌△BOH ,∴CK =BH ,∵CK +AK =AC ,∴BH +AK =AC.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,∠A =∠B ,CE ∥DA ,CE 交AB 于点E.求证:△CEB 是等腰三角形.证明:∵CE ∥DA ,∴∠CEB =∠A ,∵∠A =∠B ,∴∠CEB =∠B ,∴CE =CB ,即△CEB 是等腰三角形.2.如图,△ABC 中,BA =BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 且交BC 于E.求证:△DBE 是等腰三角形.证明:∵DF ⊥AC ,∴∠A +∠D =90°,∠FEC +∠C =90°,∵BA =BC ,∴∠A =∠C ,∴∠D =∠FEC ,∵∠FEC =∠BED ,∴∠D =∠BED ,∴BE =BD ,即△DBE 是等腰三角形.(3分钟)对于判断三角形是否是等腰三角形这一类问题,常常是抓一个三角形有两个角相等,转化到对应的边相等.要善于根据已知条件进行联想,对于复杂的几何图形,可以采用已知条件和结论“两头凑”的方法.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.3.2等边三角形(1)1.理解并掌握等边三角形的定义.2.探索等边三角形的性质和判定方法.重点:等边三角形的性质与判定.难点:等边三角形的性质与判定的综合应用.一、自学指导自学:自学课本P79-80页“思考与例4”,理解等边三角形与等腰三角形的关系,掌握等边三角形的性质与判定方法,完成下列填空.(7分钟)总结归纳:(1)三条边都相等的三角形叫做等边三角形.(2)性质:等边三角形的三个内角都相等,并且每一个角都等于60°;等边三角形具有等腰三角形的性质,且有三条对称轴;(3)判定:三个角都相等的三角形为等边三角形;有一个角是60°的等腰三角形是等边三角形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.课本P80页练习题1,2.2.在三角形ABC中,AB=AC=2,∠A=60°,则BC=2;3.设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中能表示它们之间关系的是(A)小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1如图,△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.解:(1)证明:∵△ABC为等边三角形,∴∠BAE=∠DCA=60°,AB=AC,在△ABE 与△CAD中,∵AB=AC,∠BAE=∠DCA,AE=CD,∴△ABE≌△CAD.(2)∵△ABE≌△CAD,∴∠ABE=∠DAC,∵∠BAF+∠DAC=∠BAC=60°,∠BFD =∠ABE+∠BAF,∴∠BFD=∠BAF+∠DAC=60°.探究2 如图,△DAC 和△EBC 均是等边三角形,AE ,BD 分别与CD ,CE 交于点M ,N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AM =DN ,其中正确结论的个数是(A )A .3个B .2个C .1个D .0个学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.下列命题中,正确的有(B )①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边中线的等腰三角形是等边三角形;④三个外角都相等的三角形是等边三角形.A .4个B .3个C .2个D .1个2.如图,△ABC 是等边三角形,点D ,E ,F 分别是AB ,BC ,CA 上的点,若AD =BE =CF ,△DEF 是等边三角形吗?为什么?解:结论:△DEF 是等边三角形.证明:∵△ABC 是等边三角形,∴∠A =∠B =∠C ,AB =BC =AC ,∵AD =BE =CF ,∴AB -AD =BC -BE =AC -CF ,∴BD =CE =AF ,在△ADF 与△BED 中⎩⎨⎧AD =BE ,∠A =∠B ,AF =BD ,∴△ADF ≌△BED ,∴DF =DE ,同理可证得△ADF ≌△CFE ,∴DF =EF ,∴DF =DE =EF ,即△DEF 是等边三角形.(3分钟)等边三角形是特殊的等腰三角形,除具有等腰三角形的性质外,还有特殊的三条边相等,三个角都等于60°,“三线合一”的应用就更灵活.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)13.3.2 等边三角形(2)掌握含有30°角的直角三角形的性质.重、难点:含有30°角的直角三角形的性质.一、自学指导自学:自学课本P80-81页“探究及例5”,掌握含有30°角的直角三角形的性质,完成下列填空.(5分钟)总结归纳:在直角三角形中,如果一个锐角等于30°,那么,它所对的直角边等于斜边的一半.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P81页练习题1.2.在Rt △ABC 中,若∠BCA =90°,∠A =30°,AB =4,则BC =2.3.如图,∠C =90°,∠ABC =60°,BD 平分∠ABC ,若AD =4 cm ,则CD =2_cm .4.若等腰三角形一腰上的高等于腰长的一半,则这个三角形的底角等于75°或15°.5.如图,AD 为等边△ABC 的高,DE 是△ADC 的高,已知△ABC 的边长为6,求AE 的长.解:∵AD 为等边△ABC 的高,∴CD =12CB =3,∵DE ⊥AC ,∠C =60°,∴∠CDE =30°,∴CE =12CD =12×3=32.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 如图,在△ABC 中,BA =BC ,∠B =120°,AB 的垂直平分线交AC 于D ,求证:AD =12CD. 证明:连接BD ,∵BA =BC ,∠B =120°,∴∠A =∠C =30°,∵DE 是AB 的垂直平分线,∴DA =DB ,∴∠ABD =∠A =30°,∵∠CBD =∠ABC -∠ABD =120°-30°=90°,又∵∠C =30°,∴DB =12CD ,∴AD =12CD.探究2 如图,在等边△ABC 中,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于点Q ,求证:BP =2PQ.证明:∵△ABC 是等边三角形,∴∠BAE =∠C =60°,AB =AC ,∵在△ABE 与△CAD 中⎩⎨⎧AB =CA ,∠BAE =∠C ,AE =CD ,∴△ABE ≌△CAD ,∴∠ABE =∠CAD ,∵∠BPQ =∠BAP +∠ABE =∠BAP +∠CAD =∠BAC =60°,∵BQ ⊥AD ,∴∠PBQ =30°,∴BP =2PQ.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)如图,一棵大树在一次强台风中离地面5米处折断倒下,倒下部分与地面成30°夹角,这样的大树在折断前的高度为(B )A .10米B .15米C .25米D .30米(3分钟)在直角三角形中,由角的度数可以得到边之间的数量关系,同样根据边的数量关系也可以得到角的特殊度数.在运用的过程中,要注意前提条件是在直角三角形中.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)。
初中数学人教八年级上册(2023年更新)第十三章 轴对称1课题学习 最短路径将军饮马问题
13.4 课题学习最短路径问题(2课时)-----将军饮马绵阳外国语实验学校王婵教学目标:1、利用轴对称解决简单的最短路径问题2、理解最值问题在具体题目中的运用教学重点:利用轴对称解决简单的最短路径问题教学难点: 寻找题目中的最短路径模型教学过程:一.复习引入【师】同学们,以前我们就学过最短路径的理论知识,现在我们先来回顾复习一下涉及到的知识【师】1.如图,连接A、B两点的所有线中,哪条最短?为什么?【生】②最短,因为两点之间,线段最短.【师】2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?【生】PC最短,因为垂线段最短.【师】3.在以前学习三角形中,有哪些有关线段大小的结论?【师】三边关系还可以这样理解,当三点共线时,BA’+CA’最短,BA+CA>BA’+CA’【师】如图,如何做点A关于直线l的对称点?二.新课讲解例1.(将军饮马问题)如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?(两点一线)BAl实际问题【师】这个题求的A到l再到B最短路径即哪些线段和最短?【生】AP+BP两条线段和最短问题1.【师】假如A、B是直线l异侧两个点,你能得到最短路径P所在位置吗?【生】连接AB,与l的交点即为P点【师】你运用的是什么知识点解决这个问题?【生】两点之间,线段最短问题2.【师】如果点A,B分别是直线l同侧的两个点,又应该如何解决所走路径最短的问题?【生】将B对称到B’,连接AB’,交l于P点问题3.【师】此时A、B’、P三点共线,AB’=AP+BP,你能否证明此时AP+BP为最短?证明除了P点以外任意的点C,AC+BC>AP+BP。
【师】提示:此时任取一个点C,AC+BC=AC+CB’【生】根据三角形两边之和大于第三边,则AC+CB’>AB’【师】即三点共线时,AB’最短【师】方法总结:练1.△ABC为等边三角形,高AH=10,P为AH上一动点,D为AB的中点,则PD+PB的最小值为.【师】请小组讨论,能不能得到答案?[通过交流讨论,让学生学会用用轴对称知识解决问题,对将军饮马问题进行理解,对课堂听课效率进行检测,提高听课效率]【师】这个题用到了什么模型?哪些数学知识?【生】将军饮马模型,轴对称,等边三角形三线合一【师】最短路径的证明用的是什么方法?【生】三角形三边关系,三点共线时取最小值【师】将军饮马问题用到的“最短”知识是什么?【生】两点之间,线段最短变式1.将军带着马从营房出发,先去草地吃草,再去河边喝水,最后回到营房,怎么走路径最短?(两线一点)【师】请同学们先分析出定点、动点、对称轴,做出你的画法【师】再请同学们小组交流谈论【师】请同学们先分析出定点、动点、对称轴,做出你的画法【师】再请同学们小组交流讨论练2.(教材p93)如图,牧马人从A 地出发,先到草地边某一处牧马,再到河边饮马,最后回到B 处,请画出最短路径【师】将军饮马问题中一点两线、两点一线、两点两线用到的“最短”知识是什么?【生】两点之间,线段最短例2.如图,在△ABC 中,∠ABC=30°,AB=6,∠ABC 的平分线交AC 于点D ,点P 、Q 分别是BD 、AB 上的动点,则AP+PQ的最小值为 .【师】这里有两个动点P 、Q ,角平分线即为角的对称轴,因此将直线BD 看成对称轴,Q 关于直线BD 对称后一定在直线BC 上,A 、P 、Q’三点形成AP+PQ’何时最短?【生】三点共线时AP+PQ’最短【师】此时P 、Q’均为动点,且A 、P 、Q’三点共线,A 为定点,Q’在直线BC 上运动,何时AQ’最短?【生】当AQ’⊥BC 时,AQ’最短Q’Q【师】这个题用到了什么模型?哪些数学知识?【生】轴对称,30°所对的直角边为斜边的一半【师】例2用到的“最短”知识是什么?【生】垂线段最短练3.BH为∠ABC的角平分线,点O为线段BH上的动点,点G为线段BC上的动点,BC=4,∠ABC=30°,则OC+OG的最小值是.三.课堂小结1.①动点P所在的直线l为对称轴,将其中一个定点B对称为B’,再连接新的定点B’和另一个定点A,AB’与对称轴l的交点即为所求动点P②两点一线、两线一点、两点两线所用的“最短”知识是“两点之间,线段最短”2.①A为定点,P、Q为动点,A、P、Q三点共线时AP+PQ’最短②角平分线,一定点两动点所用的“最短”知识是“垂线段最短”四.随堂检测1.四边形ABCO为正方形,边长为3,点A、C分别在x轴、y轴的正半轴上,点D在OA上,P为OB上一动点,QA.两点之间,线段最短B.轴对称的性质C.两点之间,线段最短及轴对称的性质D.以上都不正确2.P、Q为△ABC的边AB、AC上的两定点,在BC上求作一点M,使△PQM的周长最短五.板书设计13.4课题学习最短路径问题------将军饮马(两点之间,线段最短)(垂线段最短)两点一线两线一点两点两线六.作业布置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 轴对称 章末复习一、思维导图二、典型例题例1 把一张正方形纸片如图①、图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是( )【知识点】轴对称图形的知识【思路点拨】本题主要考查了学生的立体思维能力即操作能力,实际动手操作(折纸或者将图③按轴对称补全),可得到正确结论.故选C . 【解题过程】按图实际动手操作,可得到正确结论. 【答案】C例2 如图,在△ABC 中,AB =AC ,D 是AB 的中点,且DE ⊥AB ,△BCE 的周图3长为8cm ,且AC -BC=2cm ,求AB ,BC 的长.【知识点】线段垂直平分线的性质 【数学思想】方程思想【思路点拨】由题意知,DE 是线段AB 的垂直平分线,由其性质知BE =AE ,从而得AC +BC =8,又AC -BC =2,即得到关于AC 、BC 的方程组,则易解出. 【解题过程】∵DE ⊥AB ,D 为AB 中点,∴DE 垂直平分AB ,∴BE =AE , ∵BC +BE +EC =8,∴BC +AE +EC =8,即BC +AC =8,又∵AC -BC =2,∴8,2,BC AC AC BC +=⎧⎨-=⎩ 解得5,3.AC BC =⎧⎨=⎩∵AB =AC , ∴AB =5(cm ),BC =3(cm ). 【答案】AB =5(cm ),BC =3(cm ).例3 已知,点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB =OC . ⑴如图1,若点O 在BC 上,过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,求证:AB =AC ;⑵如图2,若点O 在△ABC 的内部,求证:AB =AC ; ⑶若点O 在△ABC 的外部,AB =AC 成立吗?请画图表示.图2图1【知识点】等腰(等边)三角形的性质与判定【思路点拨】证明两条线段相等或者两个角相等,都可联想到证明两个三角形全等或等腰三角形.⑴因为AB 、AC 在同一个三角形中,所以考虑证明等腰三角形,从而去找角等,即∠B =∠C ,通过HL 得到三角形全等解决;⑵可类比⑴问求证;⑶由题意知OE =OF ,OB =OC ,所以作图时应使∠A 的平分线所在直线与边BC 的垂直平分线重合;还要分别考虑点O 在△ABC 的内部和外部.【解题过程】⑴如图1,∵OE⊥AB,OF⊥AC,E、F分别是垂足,∴∠OEB= ∠OFC=90°,又由题意知OE=OF,OB=OC,∴Rt△OEB≌Rt△OFC(HL),∴∠B=∠C,∴AB=AC⑵如图3,过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,由题意知OE=OF,OB=OC,∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又由OB=OC 知∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC⑶不一定成立. (注:由题意OE=OF,OB=OC,只有当∠A的平分线所在直线与边BC的垂直平分线重合时:如图①②,有AB=AC成立;否则,AB≠AC,如图③④⑤⑥)图②图①图⑥图⑤图④三、章末检测题《轴对称》章末检测题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1. 下列图形一定是轴对称图形的是( )A.平行四边形B.正方形C..三角形D.梯形【知识点】轴对称图形定义【思路点拨】所学的平面几何图形中,常见的轴对称图形有:线段、角、等腰三角形、等边三角形、长方形、正方形、菱形、等腰梯形、圆等.【解题过程】选项A平行四边形不一定是轴对称图形;选项B正方形一定是轴对称图形,并且是四条对称轴;选项C三角形不一定是轴对称图形;选项D梯形不一定是轴对称图形.【答案】B2.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有()A.1个B.2个C.3个D.4个【知识点】用坐标表示轴对称【数学思想】数形结合【思路点拨】由平面直角坐标系中点坐标的对称规律或直接在平面直角坐标系标出点观察即可.【解题过程】由平面直角坐标系中点坐标的对称规律可得,点A关于x轴对称坐标的是(-2,-3); 点A关于y轴对称的坐标是(2,3); 点A关于原点对称的坐标是(2,-3);因为A、B有相同的纵坐标,所以AB∥x轴,A、B之间的距离为|x A-x B|=4.【答案】B3.若等腰三角形的顶角为40°,则它的底角为()A.40°B.50°C.60°D.70°【知识点】等腰三角形的性质【思路点拨】因为等腰三角形的中,顶角+2倍底角=180°,所以只要知道顶角或者底角一个值,可以求出其余两个值.【解题过程】∵等腰三角形的顶角为40°,∴它的底角=(180°-顶角)÷2=(180°-40°)÷2=70°【答案】D4.如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为( )A.68°B.32°C.22°D.16°【知识点】平行线的性质、等腰三角形的性质【思路点拨】在等腰三角形中“知一角可求其余两角”,可求出∠C得度数;再用“两直线平行,内错角相等”得出∠B=∠C.【解题过程】∵CD=CE,∴∠D=∠CED=74°,∴∠C=180°-74°×2=180°-148°=32°,又∵AB∥CD,∴∠B=∠C=32°【答案】B5.等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶角顶点的坐标,能确定的是()A.横坐标B. 横坐标及纵坐标C.纵坐标D. 横坐标或纵坐标【知识点】用坐标表示轴对称、等腰三角形的性质【数学思想】数形结合【思路点拨】因为等腰三角形是轴对称图形,对称轴为底边的垂直平分线,所以其顶角顶点在底边的垂直平分线上,此垂直平分线上所有点的横坐标都是2. 所以等腰三角形ABC的顶角顶点的横坐标为x=2,纵坐标取y≠0的任意值.【解题过程】由题意得等腰三角形ABC的顶角顶点的横坐标为坐标取y≠0的任意值.【答案】A6.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为()A. 30°B. 150°C. 30°或150°D.60°【知识点】等腰三角形的性质【数学思想】分类讨论【思路点拨】由“腰三角形一腰上的高与另一腰的夹角为60°”可想到此等腰三角形为锐角等腰三角形或者为钝角等腰三角形,画出图形即可求解.【解题过程】①当等腰三角形为锐角等腰三角形,如图1,由题可知在Rt△ADC 中,∠ADC=90°,∠ACD=60°,∴Rt△ADC中∠A=30°.②当等腰三角形为钝角等腰三角形,如图2,由题可知在Rt△AEC中,∠AEC=90°,∠ACE=60°,∴Rt△AEC中∠EAC=30°,∴∠BAC=180°-30°=150°.【答案】C7.等腰三角形底边长6cm ,一腰上的中线把它的周长分成两部分的差为2cm ,则腰长为( )A.4cmB. 8cmC. 4cm 或8cmD. 以上都不对【知识点】等腰三角形的性质、中线的性质 【数学思想】分类讨论,数形结合,方程思想【思路点拨】要考虑“腰比底长” 和“腰比底短”两种情况;由题意结合图形它的周长分成两部分的差为2cm ”实质为“腰-底=2”或者“底-腰=2”. 【解题过程】设腰长为xcm ,根据题意得:x -6=2或6-x =2,解得:x =8或x =4,∴腰长为:4cm 或8cm . 【答案】C8.下列说法中正确的是( ) A.关于某直线对称的两个三角形是全等的 B.全等三角形是关于某直线对称的C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.若点A 、B 关于直线MN 对称,则线段AB 垂直平分MN 【知识点】轴对称的知识【思路点拨】根据轴对称的性质可以判断【解题过程】因为关于某直线对称的两个图形既要满足特殊的位置关系还要满足大小关系,所以关于某直线对称的两个三角形是全等的,但两个全等的三角形不一定关于某直线对称,故A 对B 错;两个图形关于某直线对称,它们可以与对称轴有交点,所以这两个图形不一定分别位于这条直线的两侧,C 错;D 应为若点A 、B 关于直线MN 对称,则MN 垂直平分线段AB .【答案】A9.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=4,则CE的长为()A.10B.8C.5D.2.5【知识点】含30°角的直角三角形的性质【思路点拨】由垂直平分线易证△EBC为等腰三角形,再由“含30°角的直角三角形的性质”即可求.【解题过程】由题意知,DE是线段BC的垂直平分线,由其性质知EB=EC,∴∠ECD=∠B=30°,∴在【答案】B10.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论不一定成立的是()A. △ABD≌△ACDB. AF垂直平分EGC. 直线BG,CE的交点在AF上D. △DEG是等边三角形【知识点】轴对称的知识【思路点拨】根据轴对称的性质可以判断【解题过程】由轴对称的性质可得选项A、B、C正确,△DEG是等腰三角形,不一定是等边三角形.【答案】D11.如图所示,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.60°B.40°C.80°D.100°【知识点】轴对称的知识、三角形内角和定理【思路点拨】利用轴对称的知识将两个已知的角度转化到一个三角形中.【解题过程】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠A′=∠A=60°,∠C′=∠C=40°,∠B′=180°-∠A′-∠C′=80°,∴∠B=∠B′=80°【答案】C12.已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形【知识点】轴对称的知识,等边三角形的判定【思路点拨】如图,根据轴对称的性质可求得∠P1OP2=2∠AOB=60°,OP1 = OP =O P2,所以△P1OP2为等边三角形.【解题过程】如图,∵点P关于OA、OB的对称点分别为P1、P2,连接P1P2交OA于点M,交OB于点N,∠AOB=∠2+∠3. 又根据轴对称的性质得∠1=∠2,∠3=∠4,OP1 = OP =O P2,∴∠P1OP2=∠1+∠2+∠3+∠4=2∠AOB=2×30°=60°. ∴△P1OP2为等边三角形2【答案】D二、填空题(每小题4分,共24分)13.已知点P(3,-1)关于y轴的对称点Q的坐标为(a+b,1-b),则a b的值为.【知识点】用坐标表示轴对称【数学思想】方程思想【思路点拨】关于y 轴对称的两点:横坐标互为相反数,纵坐标不变.【解题过程】由题意得 ∴∴a b =(-5)2=25.【答案】2514.如图所示,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B = .【知识点】轴对称的知识、三角形内角和定理(或四边形内角和360°) 【思路点拨】 将已知角度和未知角度转化到一个三角形中(或一个四边形中). 【解题过程】∵MF ∥AD ,∴∠BMF =∠A =100°,∵FN ∥DC ,∴∠BNF =∠C =70°, 由翻折可得,△BMN ≌△FMN ,∠BMN =21×100°=50°,∠BNM =21×70°=35°, ∴∠B =180°-50°-35°=95°(在四边形BNFM 中,∠BMF =100°,∠BNF =70°, ∠F =∠B )【答案】∠B =95°15.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,如果MB +CN =6,那么线段MN 的长为 .【知识点】等腰三角形的判定、角平分线的定义【思路点拨】∠ABC 和∠ACB 的由角平分线和MN ∥BC 可得出∠EBC=∠MEB ,∠NEC=∠ECB ,即△BME 和△CNE 为等腰三角形,MN=ME+EN=BM+CN . 【解题过程】∵∠ABC 、∠ACB 的平分线相交于点E ,∴∠MBE=∠EBC ,∠ECN=∠ECB . ∵MN ∥BC ,∴∠EBC=∠MEB ,∠NEC=∠ECB ,∴BM=ME ,EN=CN. 又∵MN=ME+EN ,∴MN=BM+CN .∵BM+CN=6 ∴MN=6,【答案】616.如图,在Rt△ABC中,D、E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE=.【知识点】等腰三角形的性质、三角形内角和定理【数学思想】方程思想【思路点拨】△CDE中∠CDE+∠CED+∠DCE=180°,而利用等腰三角形的“等边对等角”将其转化为∠ACB+2∠DCE=180°是本题解决的关键.【解题过程】∵BD=BC,∴∠BDC=∠BCD,∵AC=AE,∴∠ACE=∠AEC.又∵∠CDE+∠CED=∠BCD+∠ACE=∠ACB+∠DCE. ∴在△CDE中,∠CDE+ ∠CED+∠DCE=90°+2∠DCE=180°,∴∠DCE=45°.【答案】45°17.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为13,BC=6,则AB的长为.【知识点】线段垂直平分线的性质【数学思想】方程思想【思路点拨】由题意知,DE是线段AB的垂直平分线,由其性质知AE = BE,从而得AC+BC=13,又BC=6,即得到关于AC的方程,则易解出.【解题过程】∵DE⊥AB,D为AB中点,∴DE垂直平分AB,∴BE=AE,∵BC+BE+EC=13,∴BC+AE+EC=13,即BC+AC=13. 又∵BC=6,∴6+AC=13,∴AC=7【答案】718.如图,A(2,-1)为平面直角坐标系内一点,O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P 共有个.x【知识点】等腰三角形的知识【数学思想】数形结合、分类讨论【思路点拨】“以点P、O、A为顶点的三角形是等腰三角形”应考虑分为三类:①当∠O为顶角,OP=OA;②当∠A为顶角,AO=AP;③当∠P为顶角,PO=P A. 【解题过程】如图①当∠O为顶角,OA=OP时:以O为圆心,OA长为半径作圆,交x轴于点P1,P2;②当∠A为顶角,AO=AP时:以A为圆心,AO长为半径作圆,交x轴于点P3;③当∠P为顶角,PO=P A时:作线段OA的垂直平分线,交x轴于点P4.x【答案】4三、解答题(每小题7分,共14分)19. 如图,是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形(至少画出两种).【知识点】轴对称图形的定义【思路点拨】题目要求在图中补画一个小正方形,使补画后的图形为轴对称图形,所以关键是观察此图中已有的“轴对称部分”就要着重画图中余下那一个(或那两个)小正方形的轴对称图形.【解题过程】有多种画法,答案不唯一,根据轴对称图形的定义,有多种画法,题目要求在图中补画一个小正方形,使补画后的图形为轴对称图形.【答案】参考图如下图:20.已知:如图,△ABC中,AB=AC,AD⊥BC,垂足为D,E、F分别是AB、AC的延长线上的点,且BE=CF.求证:DE=DF.【知识点】等腰三角形的性质、全的三角形的判定【思路点拨】因为DE、DF在两个不同的三角形中,要证明“DE=DF”只需证明△ADE≌△ADF即可.【解题过程】∵AB=AC,AD⊥BC,∴∠DAE=∠DAF. 又∵BE=CF,∴AB+BE=AC+CF,∴AE=AF. ∵在△ADE和△ADF中,AE= AF,∠EAD=∠F AD,AD=AD,∴△ADE≌△ADF(SAS) ,∴DE=DF.四、解答题(每小题10分,共40分)21.如图,点D、E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE.【知识点】等腰三角形的性质【思路点拨】作底边上的高,是等腰三角形的常用辅助线.【解题过程】方法一:过点A作AF⊥BC,垂足为F∵ AB =AC ,AD =AE ,∴ DF =EF ,BF =CF ∴ BF -DF =CF -EF 即 BD =CE方法二:不添加辅助线,利用等腰三角形的性质和三角形的外角定理得到角等,再证明△ABD ≌△ACE (略).22.如图,在△ABC 中,AB =AC ,E 在AC 上,D 在BA 延长线上,且AD =AE ,连接DE . 求证:DE ⊥BC.【知识点】等腰三角形的性质【思路点拨】需求证“DE ⊥BC ”,但DE 与BC 不相交,所以易想到 延长DE 交BC 于F ,从而转化为求∠DFB =90°或∠DFC =90°.【解题过程】延长DE 交BC 于F ,∵AD =AE ,∴∠D =∠AED ,∴∠BAC =∠D +∠AED =2∠D . ∵AB =AC , ∴∠B =∠C ,∵∠B +∠C +∠BAC =180°, ∴2(∠B +∠D )=180°. ∴∠B +∠D =90°,∴∠DFB=90°, ∴DE ⊥BC .23.如图,△ABC 为等边三角形,P 为BC 上一点,△APQ 为等边三角形.(1)求证:AB ∥CQ ;(2)是否存在点P ,使得AQ ⊥CQ ?若存在,指出点P 的位置;若不存在,请说明理由.【知识点】等边三角形的性质、平行线的判定、全等三角形的判定【思路点拨】(1)△ACQ可以看做由△ABP绕点A旋转得到,从而易得到三角形全,继而得到角的相等,再证得线平行;(2) 特殊三角形中的“动点问题”,常常从特殊点、特殊位置去探索.【解题过程】(1)∵△ABC、△APQ均为等边三角形,∴AB=AC,AP=AQ,∠BAC=∠P AQ=60°,∴∠BAP=∠CAQ,∴△ABP≌△ACQ(SAS),∴∠B=∠ACQ =60°,∴∠ACQ=∠BAC,∴AB∥CQ.(2)存在,当点P为BC的中点时,AQ⊥CQ. 理由如下:∵点P为BC的中点,∴∠CAP=30°.又△APQ为等边三角形,∴∠CAQ=30°. 由(1)知∠ACQ=60°,∴∠AQC=90°,即AQ⊥CQ24.如图,在△ABC中,AB=AC,D是CB延长线上的一点,∠ADB=60°,E是AD上的一点,且DE=DB.求证:AE=BE+BC【知识点】等腰(等边)三角形的性质和判定、三角形全等的判定【思路点拨】证明“线段和差”的几何命题,常常采用“截长补短”的方法【解题过程】法一:如图1,延长DC到F,使CF=BD,连接AF.∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACF,∵BD=CF,∴△ABD≌△ACF,∴∠F=∠D=60°,AD=AF,∴△ADF是等边三角形,∴AD=DF,∵DE=DB,∴△DBE是等边三角形,∴DE=DB=BE,∴AE=BF,∵BF=BC+CF=BC+BE,∴AE=BE+BC.法二:如图2,延长EB 到P ,使BP =BC ,连接AP 、CP .∵∠ADB =60°,DE =DB ,∴△DBE 为等边三角形,∴∠PBC =∠EBD =60°,又BP =BC ,∴△BPC 为等边三角形,∴PB =PC ,又AB =AC ,AP =AP ,∴△ABP ≌△ACP ,∴∠BP A =∠CP A =21∠BPC =30°,∴∠EAP =∠DEB -∠BP A =60°-30°=30°, ∴∠BP A =∠EAP , ∴AE =PE =BE +BP =BE +BC .法三:如图3,作AH ⊥BC 于H ,则易得∠DAH =30°,则有AD =2DH ,AE +DE =2DB +2BH ,易知△DBE 是等边三角形,故DB =DE =BE ,而AB =AC ,故2BH =BC ,∴AE =DB +BC =BE +BC.图3图2图1五、解答题(每小题12分,共24分)25.如图所示,∠ABC =90°,AB =BC ,AE 平分∠BAC 交BC 于E ,CD ⊥AE 交AE 的延长线于D . 求证:CD =21AE .【知识点】等腰三角形的性质、角平分线的性质【思路点拨】由“AE 平分∠BAC 交BC 于E ,CD ⊥AE ”易联想到等腰三角形的“三线合一”,故延长AB 交CD 的延长线于F ,即可证明.【解题过程】方法一:如图,延长AB 交CD 的延长线于F .∵∠ABC =90°,∴∠ABE =∠CBF =90°,又∵CD ⊥AE ,∴∠BCF +∠F =90°,∠BAE +∠F =90°, ∴∠BCF =∠BAE ,又∵AB =BC ,∴△ABE ≌△CBF ,∴AE =CF ,又∵AE 平分∠BAC ,∴∠CAD =∠F AD ,又∵AD ⊥CF ,∴∠ACD+∠CAD =∠AFD +∠F AD =90°,∴∠ACD =∠AFD ,∴AC =AF ,∴CD =DF ,∴CD =21CF ,∴CD =21AE . 方法二:同方法一,先证明△ABE ≌△CBF ,得AE =CF . 又∵AE 平分∠BAC ,∴∠CAD =∠F AD ,又∵AD =AD ,∠ADC =∠ADF =90°,∴△ADC ≌△ADF ,∴CD =DF ,∴CD =21CF ,∴CD =21AE .26.如图,点O 是等边△ABC 内一点,∠AOB =110°,∠BOC =α . 将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .⑴求证:△COD 是等边三角形;⑵当α=150°时,试判断△AOD的形状,并说明理由; ⑶探究:当α为多少度时,△AOD 是等腰三角形?【知识点】等腰(等边)三角形的性质和判定、三角形内角和定理【数学思想】分类讨论、方程思想【思路点拨】 ⑴等边三角形的判定方法;⑵判断“三角形的形状”,主要类型有:等腰三角形、等边三角形、直角三角形、等腰直角三角形;⑶△AOD 是等腰三角形应分类考虑:①AO =AD ;②OA =OD ;③OD =AD .【解题过程】⑴证明:∵△BOC 绕点C 按顺时针方向旋转60°得△ADC ∴CO=CD ,∠OCD =60°, ∴△COD 是等边三角形⑵解:当α=150°,即∠BOC=150°时,△AOD是直角三角形. 理由如下:∵由题意得△BOC≌△ADC,∴∠ADC=∠BOC=150°又∵△COD是等边三角形,∴∠ODC=60°∴∠ADO=90°,即△AOD是直角三角形(3)解:∵∠AOB=110°,∠BOC=α,∴∠AOC=360°-110°-α=250°-α又∵△COD是等边三角形,∴∠ COD=∠ODC =60°,∴∠AOD=250°-α-60° =190°-α,∠ADO=α-60°①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=190°-α,∠ADO=α-60°,∴190°-α=α-60°,∴α=125°②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°-(∠AOD+∠ADO)=50°,∴α-60°=50°,∴α=110°.③要使OD=AD,需∠OAD=∠AOD,∴190°-α=50°,∴α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.。