fir带通滤波器
基于matlab窗函数的FIR带通滤波器设计

X l a b e l ( ’ f r e q u e n c y i n p i u n i t s ’ ) ; Y l a b d( 。 Ma g n i t u d e R e s p o n s e i n d b ’ ) ; s e t ( g c a , ’ X T i c k Mo d e ' , ' ma n u a l ' , ' X t i c k ’ , [ 0 , 0 . 2 , 0 . 3 5 , 0 . 6 5 , 0 . 8 , 1 1 ) s e t ( g c a , ’ Y T i e k Mo d e ’ , ’ ma J 1 u a l ’ , ’ Y t i c k ’ , [ - 6 0 , o ] ) 2 结 果 分 析
程序运算结果 : M =7 5 , R p= O . 0 0 2 8 , A s =7 5 , 运算结果 图如图 1 所 示。由图可知 , 7 5阶 布 莱 克 曼 窗 的最 小 阻带 衰 减 为 7 5 d b ( > 6 0 d b ) , 通带最大衰减 O . O 0 2 8 d b ( < < l d b ) , 符合设计题 目的技 术指标
口
:
:
限长 F I R( i f n i t e i m p u l s e r e s p o n s e ) 滤波 器 和 无 限 长 l i B( i n f i n i t e i m — p u l s e r e s p o n s e ) 滤波器 。F I R数字 滤波器幅频特性精 度 比 I I R低 , 且 滤波器所 需阶次 比较 高 , 但是 它拥有很好 的线性相位 特性 , 即不 同 昱 . 印 频率分量的信号经过 F I R滤波器后 其时间差 不变 。 MA T L A B是美 国 Ma t h Wo r k s 公司推 出 的一 套用 于工程计算 的可 视化高 性能语 言 与 软 件环境 , 是 数字信号处理技术 实现的重要手段 。本 文采用 M A T _ L A B窗 函数法实现 F I R数字滤波器的设计 。 至 1程序设计及运行结果 I 根 据研究任务 , 需设计 带通数字滤 波器 的性 能指标如 下 : 低通 阻带边界频 率 : w s l = 0 . 2 * p i , 高端阻带边界频率 : w s 2 = 0 . 8 p i ; 阻带最小 口 衰减: A s = 6 0 d b 。低端通带边 界频率 : w p l = 0 . 3 5 " p i , 高端 通带边界 频 率: w p 2 = 0 . 6 5 " p i ; 通带最大衰减 :R p = l a b 。 根 据窗 函数最小 阻带衰减 的特性 表[ 2 1 , 可采用布莱 克曼 窗提供 大于6 0 d B的衰减 。设 计程序如下 : p l o t ( w / p i , d b ) ; d ; %数字滤波器的参数
MATLAB窗函数法实现FIR的高通,带通和低通滤波器的程序

MATLAB窗函数法实现FIR的高通,带通和低通滤波器的程序MATLAB 学院:地球物理与石油资源学院班级:姓名:学号:班内编号:指导教师:完成日期:测井11001大牛啊啊啊陈义群2013年6月3日课程设计报告一、题目FIR滤波器的窗函数设计法及性能比较 1. FIR滤波器简介数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应滤波器和有限冲激响应滤波器。
与IIR滤波器相比,FIR滤波器的主要特点为: a. 线性相位;b.非递归运算。
2. FIR 滤波器的设计FIR滤波器的设计方法主要有三种:a.窗函数设计法;b.频率抽样发;c.最小平法抽样法;这里我主要讨论在MATLAB环境下通过调用信号分析与处理工具箱的几类窗函数来设计滤波器并分析与比较其性能。
窗函数法设计FIR滤波器的一般步骤如下: a. 根据实际问题确定要设计的滤波器类型; b. 根据给定的技术指标,确定期望滤波器的理想频率特性;c. 求期望滤波器的单位脉冲响应;d. 求数字滤波器的单位脉冲响应; e. 应用。
常用的窗函数有(1)Hanningwindoww(n)?[?((2)Hammingw indoww(n)?[?((3)Balckmanwindoww(n)?[ ?((4)KaiserwindowI0{?1?[2n/(N?1)]2}w(n )?RN(n)I0(?)式中I0(x)是零阶Bessel函数,可定义为()2?n4?n)?()]RN(n)N?1N?1()2?n)]RN(n)N ?1() ?nN?1)]RN(n)() (x/2)m2I0(x)?1??m!m?1? 当x?0时与矩形窗一致;当x?时与海明窗结果相同;当x?时与布莱克曼窗结果相同。
3.窗函数的选择标准 1. 较低的旁瓣幅度,尤其是第一旁瓣; 2. 旁瓣幅度要下降得快,以利于增加阻带衰减;3. 主瓣宽度要窄,这样滤波器过渡带较窄。
matlabfir滤波器设计

matlabfir滤波器设计MATLAB是一个高级编程语言和交互式环境,被广泛应用于各种科学和工程问题的数值分析、数据可视化和编程开发等领域。
FIR滤波器是数字信号处理中经常使用的一种滤波器,它是基于有限长冲激响应的滤波器。
在MATLAB平台上,我们可以使用fir1函数来设计FIR滤波器。
一、FIR滤波器设计基础1.1 什么是FIR滤波器FIR滤波器是有限长冲激响应滤波器,由于其具有线性相位特性和可控阶数等优点,在数字信号处理中得到了广泛的应用。
一般来说,FIR滤波器的频率响应特性由滤波器的系数函数确定。
FIR滤波器的设计一般采用窗函数法、最小二乘法、频率抽取法等方法。
窗函数法是最常见的一种方法,大部分情况下选择的是矩形窗、汉宁窗、布莱克曼窗等。
1.3 fir1函数介绍fir1函数是MATLAB中用于FIR滤波器设计的函数,用法为:h = fir1(N, Wn, type)N为滤波器的阶数,Wn是用于指定滤波器截止频率的参数,type指定滤波器类型,可以是低通、高通、带通、带阻等。
二、使用fir1函数设计FIR滤波器2.1 设计要求采样率为300Hz;滤波器阶数为50;截止频率为50Hz。
2.2 实现步骤(1)计算规范化截止频率规范化截止频率是指在数字滤波器设计中使用的无单位量,通常范围为0到1。
在本例中,我们需要将50Hz的截止频率转化为规范化截止频率。
Wn = 2*50/300 = 1/3根据计算出的规范化截止频率和滤波器阶数,我们可以使用fir1函数来进行滤波器设计。
此处滤波器的阶数为50,规范化截止频率为1/3,类型为低通。
(3)绘制滤波器的幅频响应图为了验证设计的低通FIR滤波器是否符合要求,我们需要绘制其幅频响应图。
freqz(h,1,1024,300)经过上述步骤后,我们就得到了一张低通FIR滤波器的幅频响应图,如下图所示:图1.低通FIR滤波器的幅频响应图三、总结通过上述例子,我们可以看出在MATLAB中与fir1函数可以非常方便的进行FIR滤波器的设计。
利用频率采样法设计fir滤波器

FIR滤波器在图像识别领域也有广泛应用,如用于图像增强、边缘检 测、特征提取等。
医疗领域
FIR滤波器可用于医学影像处理,如X光、CT、MRI等影像的增强和降 噪处理,以提高医学影像的质量和诊断准确性。
THANKS。
器的冲激响应。
最优化方法
利用最优化算法,如最小均 方误差(LMS)算法、递归 最小二乘(RLS)算法等,对 滤波器的系数进行优化,以 得到最佳的滤波效果。
FIR滤波器应用领域探讨
信号处理
FIR滤波器在信号处理领域应用广泛,如音频处理、图像处理、通信 系统等。
控制系统
FIR滤波器可用于控制系统的设计和分析,如用于控制系统稳定性和 性能的改善。
确定采样点
在频域内选择一系列的采样点,这些点应该能够覆盖整个频带, 并且应该均匀分布。
计算幅度
根据理想滤波器的频率响应,计算每个采样点处的幅度。
设计滤波器
根据采样点的位置和幅度,设计出相应的滤波器。
频率采样法优缺点分析
优点
简单易行:频率采样法是一种简单易行的方法,只需要确定采样点的位置和幅度,就可以设计出相应的 滤波器。
线性相位响应的优点
由于相位响应是线性的,因此FIR滤波器可以避免相位失真,从而在信号处理过 程中保持信号的完整性。此外,线性相位响应还使得FIR滤波器具有更好的频率 选择性,能够更好地滤除特定频率范围内的噪声。
线性相位响应与滤波器性能关系
线性相位响应与滤波器性能的关系
线性相位响应是FIR滤波器性能的重要指标之一。在音频处理中,如果相位失真过大,会导致声音失真;在图像 处理中,如果相位失真过大,会导致图像失真。因此,在设计FIR滤波器时,需要确保其具有较好的线性相位响 应。
有限长单位脉冲响应(FIR)滤波器的设计方法-第三节

目录
• FIR滤波器的基本概念 • FIR滤波器的设计方法 • FIR滤波器的实现 • FIR滤波器的性能评估 • FIR滤波器的应用实例
01 FIR滤波器的基本概念
定义与特性
定义
FIR滤波器,即有限长单位脉冲响 应滤波器,是指系统在单位阶跃 信号作用下,输出为有限长脉冲 响应序列的数字滤波器。
群延迟
群延迟是滤波器对信号中 不同频率成分的延迟时间, 反映了滤波器对信号的时 延效应。
重要性
群延迟特性对于实时信号 处理和通信系统中的同步 非常重要。
设计准则
为了减小群延迟,FIR滤波 器应具有较小的阶数和较 宽的过渡带。
频率响应特性
频率响应
FIR滤波器的频率响应决定了其 对不同频率成分的增益和相位响
频率采样法
01
频率采样法是一种基于频率域的FIR滤波器设计方法,其基本思想是在频域内对 给定的理想滤波器的频率响应进行采样,然后通过逆变换得到滤波器的系数。
02
频率采样法的主要步骤包括确定采样点、计算滤波器系数和验证滤波器性能。
03
频率采样法的优点是能够准确地设计具有特定频率响应的滤波器,适用于高通 和带通滤波器的设计。
特性
其特点是系统函数在有限时间内 为零,即系统的阶跃响应不随时 间无限延续。
FIR滤波器的优势
01
02
03
稳定性
由于FIR滤波器的系统函 数在有限时间内为零,因 此其系统是稳定的。
无递归运算
FIR滤波器的计算只涉及 加法、乘法和延时运算, 不涉及递归运算,因此计 算相对简单。
线性相位
FIR滤波器具有严格的线 性相位特性,能够保证信 号在处理过程中不发生失 真或变形。
FIR滤波器设计要点

FIR滤波器设计要点FIR (Finite Impulse Response) 滤波器是一种数字滤波器,其设计要点包括滤波器类型选择、滤波器系数设计、频率响应规格、窗函数和滤波器长度选择等。
以下是对这些要点的详细介绍。
1.滤波器类型选择:在设计FIR滤波器之前,需要确定滤波器的类型。
常见的FIR滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
不同类型的滤波器适用于不同的应用场景,因此在选择滤波器类型时需要考虑系统的需求。
2.滤波器系数设计:FIR滤波器的核心是滤波器系数。
滤波器系数决定了滤波器的频率响应和滤波特性。
常用的设计方法包括窗函数法、最小均方误差法和频率抽样法等。
窗函数法是最常用的设计方法,其基本思想是通过选择合适的窗函数来得到滤波器系数。
3.频率响应规格:在设计FIR滤波器时,需要明确所需的频率响应规格,包括通带增益、阻带衰减、过渡带宽等。
这些规格直接影响了滤波器的性能,因此需要根据具体应用场景来确定。
4.窗函数选择:窗函数在FIR滤波器设计中起到了重要的作用。
常用的窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
不同的窗函数具有不同的特性,选择合适的窗函数可以得到优良的滤波器性能。
5.滤波器长度选择:滤波器长度决定了滤波器的频率分辨率和时间分辨率。
滤波器长度越长,频率响应越尖锐,但计算复杂度也越高。
因此,在设计FIR滤波器时需要权衡计算复杂度和性能要求,选择合适的滤波器长度。
6.优化设计:7.实现方式:总之,设计FIR滤波器要点包括滤波器类型选择、滤波器系数设计、频率响应规格、窗函数和滤波器长度选择等。
设计者需要根据具体的应用场景和性能要求来进行合理的设计和优化,以满足系统的需求。
FIR高通滤波器
摘 要
本文分析了国内外数字滤波技术的应用现状与发展趋势, 并介绍了数字滤波 器的概念、基本结构和分类。依据给定的性能指标,采用窗函数法设计 FIR 数字 高通滤波器, 然后通过 wavread 语音信号函数读取.wav 格式的语音信号, 并利用 所设计的滤波器对音频信号进行滤波处理。 最后对滤波前后的音频信号进行分析。 关键词 窗函数法 FIR 高通滤波器 wavread 滤波
图 2-5 FIR 滤波器相位特性图
5
基于窗函数法的 FIR 数字高通滤波器
优点 : (1)很容易获得严格的线性相位,避免被处理的信号产生相位失真,这一 特点在宽频带信号处理、阵列信号处理、数据传输等系统中非常重要; (2)可得到多带幅频特性; (3)极点全部在原点(永远稳定),无稳定性问题; (4)任何一个非因果的有限长序列,总可以通过一定的延时,转变为因果 序列,所以因果性总是满足; (5)无反馈运算,运算误差小。
3.3 窗函数法的基本原理
如果所希望的滤波器的理想的频率响应函数为 H d e j ,则其对应的单位脉 冲响应为
hd n 1 2
H e e d
j j d
(3-4)
于 hd n 往往是无限长序列,而且是非因果的,所以用窗函数 n 将 hd n 截断, 并进行加权处理,得到:
6
基于窗函数法的 FIR 数字高通滤波器
第 3 章 FIR 滤波器的设计
3.1 窗函数法
设计FIR数字滤波器的最简单的方法是窗函数法,通常也称之为傅立叶级数 法。FIR数字滤波器的设计首先给出要求的理想滤波器的频率响应 Hd (e jw ) ,设计 一个FIR数字滤波器频率响应 H (e jw ) ,去逼近理想的滤波响应 Hd (e jw ) 。然而, 窗函数法设计FIR数字滤波器是在时域进行的,因而必须由理想的频率响应
FIR的设计解读
FIR的设计解读FIR(Finite Impulse Response)滤波器是一种数字滤波器,其设计目的是在有限的时间范围内,对输入信号产生有限的输出响应。
本文将对FIR的设计进行解读。
首先,FIR滤波器的设计需要考虑以下几个因素:1.滤波器类型:FIR滤波器可以实现不同的滤波器类型,如低通、高通、带通和带阻滤波器等。
设计时需要明确所需的滤波器类型,以确定设计的基本结构和参数。
2.采样率:FIR滤波器的设计必须考虑信号的采样率,以确定滤波器的截止频率和频带宽度。
通常,滤波器的截止频率被定义为采样率的一半,以避免混叠现象的发生。
3.滤波器阶数:滤波器的阶数决定了其滤波特性的复杂程度和频率响应的陡峭程度。
较高的阶数可以提供更高的滤波器性能,但也会增加滤波器的计算复杂度。
4.窗函数:FIR滤波器的设计通常涉及到选择一种窗函数来加权滤波器的频率响应。
常见的窗函数有矩形窗、汉明窗、测窗等。
选择适当的窗函数可以平衡滤波器的时域性能和频域性能。
在FIR滤波器的设计中,最常用的方法是基于频域的设计方法。
以下是一种常用的频域设计方法:1.确定滤波器的输入信号和输出信号的频率响应。
根据应用需求和滤波器类型,确定滤波器的理想频率响应。
例如,低通滤波器的理想频率响应是在截止频率处波动为0。
2.将理想频率响应转换为时域响应。
通过对理想频率响应进行反变换,可以得到滤波器的时域响应。
这里通常采用离散傅里叶反变换(IDFT)或离散余弦变换(DCT)等方法。
3.根据时域响应和采样率计算滤波器的脉冲响应。
脉冲响应是离散时间下滤波器的输入信号和输出信号之间的脉冲响应。
可以通过对时域响应进行反变换,得到滤波器的脉冲响应。
4.根据脉冲响应计算滤波器的系数。
滤波器的系数是由脉冲响应计算得到的,通过将脉冲响应与输入信号进行卷积,计算出滤波器的输出信号。
5.优化滤波器的系数。
通常,设计得到的滤波器的系数需要进行优化,以满足设计要求。
可以通过改变滤波器的窗函数、阶数、截止频率等参数,来优化滤波器的性能。
FIR滤波器的MATLAB设计与实现
FIR滤波器的MATLAB设计与实现FIR滤波器(Finite Impulse Response Filter)是一种数字滤波器,其特点是其响应仅由有限长度的序列决定。
在MATLAB中,我们可以使用信号处理工具箱中的函数来设计和实现FIR滤波器。
首先,需要明确FIR滤波器的设计目标,包括滤波器类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的增益等。
这些目标将决定滤波器的系数及其顺序。
在MATLAB中,我们可以使用`fir1`函数来设计FIR滤波器。
该函数的使用方式如下:```matlabh = fir1(N, Wn, type);```其中,`N`是滤波器长度,`Wn`是通带边缘频率(0到0.5之间),`type`是滤波器的类型('low'低通、'high'高通、'bandpass'带通、'stop'带阻)。
该函数会返回一个长度为`N+1`的滤波器系数向量`h`。
例如,如果要设计一个采样频率为10kHz的低通滤波器,通带截止频率为2kHz,阻带频率为3kHz,可以使用以下代码:```matlabfc = 2000; % 通带截止频率h = fir1(50, fc/(fs/2), 'low');```上述代码中,`50`表示滤波器的长度。
注意,滤波器的长度越大,滤波器的频率响应越陡峭,但计算成本也更高。
在设计完成后,可以使用`freqz`函数来分析滤波器的频率响应。
例如,可以绘制滤波器的幅度响应和相位响应曲线:```matlabfreqz(h);```除了使用`fir1`函数外,MATLAB还提供了其他函数来设计FIR滤波器,如`fir2`、`firpm`、`firls`等,具体使用方式可以参考MATLAB的文档。
在实际应用中,我们可以将FIR滤波器应用于音频处理、图像处理、信号降噪等方面。
例如,可以使用FIR滤波器对音频信号进行去噪处理,或者对图像进行锐化处理等。
FIR滤波器和IIR滤波器格型结构
FIR滤波器和IIR滤波器格型结构FIR滤波器和IIR滤波器是数字信号处理中常用的两种基本滤波器结构。
它们分别采用了不同的实现方式和特点,在不同的应用场景中都有其优势和限制。
下面将详细介绍FIR滤波器和IIR滤波器的结构、特点和应用。
FIR滤波器(Finite Impulse Response Filter)是一种具有有限冲激响应的数字滤波器,其结构简单,易于设计和实现。
FIR滤波器的基本结构包括若干个延时元件、加法器和乘法器,其输入信号经过一系列加权和累加运算后得到滤波后的输出信号。
FIR滤波器的特点是具有稳定性、线性相位和无稳态误差等优点,适用于需要精确控制频率响应和相位特性的应用。
FIR滤波器的频率响应是由其系数决定的,可以通过设计滤波器的系数来实现所需的滤波特性。
常用的FIR设计方法包括窗函数法、最小均方误差法和频率抽样法等。
窗函数法是最为常用的设计方法,通过选择不同的窗函数可以实现不同的频率响应特性,如低通、高通、带通和带阻等。
另一种常用的数字滤波器结构是IIR滤波器(Infinite Impulse Response Filter),其特点是具有无限长冲激响应和递归结构。
IIR滤波器的基本结构包括延时元件、加法器、乘法器和递归反馈路径,其输入信号经过一系列递归和前馈运算后得到滤波后的输出信号。
IIR滤波器的特点是具有高效性、窄带特性和实现简便等优点,适用于需要高通、低通和带通滤波的应用。
IIR滤波器的频率响应是由其结构和系数决定的,可以通过设计滤波器的结构和系数来实现所需的滤波特性。
常用的IIR设计方法包括脉冲响应不变法、双线性变换法和频率抽样法等。
脉冲响应不变法是最为常用的设计方法,通过将模拟滤波器的冲激响应转化为数字滤波器的系数可以实现频率响应的转换。
在实际应用中,根据具体的信号处理需求和性能要求可以选择合适的FIR滤波器或IIR滤波器结构。
FIR滤波器适用于需要精确频率响应和相位特性的应用,如通信系统、音频处理和图像处理等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉理工大学《专业课程设计3(数字信号处理)》课程设计说明书 目录 1 技术要求 ..................................................................................................................................... 1 2 基本原理 ..................................................................................................................................... 1 2.1 FIR带通滤波器简介 .......................................................................................................... 1 1.2 窗函数法原理 ................................................................................................................... 3 3 建立模型描述 ............................................................................................................................. 3 3.1 MATLAB常用函数 ............................................................................................................. 3 3.1.1 窗函数 ..................................................................................................................... 3 3.1.2 fir1函数 ................................................................................................................ 4 3.1.3 freqz函数 .............................................................................................................. 4 3.14 ceil函数 ................................................................................................................. 5 3.1.5 其他函数与命令 ..................................................................................................... 5 3.2 程序流程图 ....................................................................................................................... 5 4 源程序代码(含注释) ............................................................................................................. 7 4.1 矩形窗 ............................................................................................................................... 7 4.2 凯泽窗 ............................................................................................................................... 7 4.3 布拉克曼窗 ....................................................................................................................... 8 4.4 海明窗 ............................................................................................................................... 9 5 调试过程及结论 ....................................................................................................................... 10 5.1 程序运行结果 ................................................................................................................. 10 5.2 实验结果分析 ................................................................................................................. 12 6 心得体会 ................................................................................................................................... 13 7 思考题 ....................................................................................................................................... 13 8 参考文献 ................................................................................................................................... 14 武汉理工大学《专业课程设计3(数字信号处理)》课程设计说明书
1 FIR带通滤波器的设计
1 技术要求 用窗函数法设计FIR带通滤波器。要求低端阻带截止频率ω1s=0.2π,低端通带截止频率ω1p=0.35π, 高端通带截止频率ωμp=0.65π, 高端阻带截止频率ωμp=0.8π。绘出h(n)及其幅频响应特性曲线。
2 基本原理 2.1 FIR带通滤波器简介 带通滤波器是从滤波器的特性上划分的,带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。从实现的网络结构或者从单位脉冲响应长度分类,可以分为无限长单位脉冲响应(IIR)滤波器和有限长单位脉冲响应(FIR)滤波器。IIR数字滤波器设计方法是利用模拟滤波器成熟的理论及设计图表进行设计的,因而保留了一些经典模拟滤波器优良的幅度特性。但设计中只考虑了幅度特性,没考虑相位特性,所设计的滤波器一般是某种确定的非线性相位特性。为了得到线性相位特性,对IIR滤波器必须另外增加相位相校正网络,是滤波器设计变得复杂,成本也高,又难以得到严格的线性相位特性。FIR滤波器在保证幅度特性满足技术要求的同时,很容易做到有严格的线性相位特性。两者各有优点,择其而取之。后面的FIR滤波器的设计中,为获得有限长单位取样响应,需要用窗函数截断无限长单位取样响应序列。
一个理想的滤波器应该有一个完全平坦的通带,例如在通带内没有增益或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度dB来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,武汉理工大学《专业课程设计3(数字信号处理)》课程设计说明书 2 通带就变得不再平坦—开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。下图1为理想模拟带通滤波器幅频特性:
图1 理想模拟带通滤波器幅频特性 FIR滤波器的单位脉冲响应h(n)是有限长的(0≤n≤N-1),其z变换为1z的(N-1)阶多项式:
可得FIR滤波器的系统差分方程为:
因此,FIR滤波器又称为卷积滤波器。FIR滤波器的频率响应表达式为: 10)()(NnnjjenheH
信号通过FIR滤波器不失真条件是在通带内具有恒定的幅频特性和线性相位特性。理论上可以证明:当FIR滤波器的系数满足下列中心对称条件:
)1()(nNhnh 或者 )1()(nNhnh
时,滤波器设计在逼近平直幅频特性的同时,还能获得严格的线性相位特性。线性相位FIR滤波器的相位滞后和群延迟在整个频带上是相等且不变的。对于一个 N 阶的线性相位FIR滤波器,群延迟为常数,即滤波后的信号简单地延迟常数个时间步长。这一特性使通带频率内信号通过滤波器后仍保持原有波形形状而无相位失真。
10)()()()(NnnznhzXzYzH