2015年哈尔滨市第三中学第一次高考模拟考试理数

合集下载

最新黑龙江省哈尔滨市第三中学高三第一次模拟考试数学(理)试题

最新黑龙江省哈尔滨市第三中学高三第一次模拟考试数学(理)试题

C. l ∥ , m ∥ , ∥
D. l ∥ , m ∥ , ⊥
7.函数 y log a x 3 1( a 0 且 a 1)的图像恒过定点 A ,若点 A 在直线 mx ny 1 0 上, 其中 m 0, n 0 ,则 mn 的最大值为
A. 1 16
B. 1 8
C. 1 4
D. 1 2
8. 设 Sn 是数列 an 的前 n 项和,若 Sn 2an 3 ,则 Sn
及以上学生人数为 63 人,据此模型预报我校今年被清华、北大等世界名校录取的学生人数为
A. 111
B. 117
C. 118
D. 123
11.已知
F1 、 F2 为双曲线
x2 C : a2
y2 b2
1(a 0, b
0) 的左、右焦点,点 P 为双曲线 C 右支上一点,
直线 PF1 与圆 x2 y2 a2 相切,且 PF2 F1F2 ,则双曲线 C 的离心率为
( 2)在棱 CC1上是否存在点 E ,使得平面 AEB1与平面 ABC 所成锐二面角为 , 6
若存在,求 CE的长,若不存在,请说明理由 .
C1
A1
B1
E
C
21. ( 本小题满分 12 分 )
已知函数 f (x) ln( ax 2) 2 (x 0) . 1x
( 1)当 a 2 时,求 f ( x) 的最小值;( 2)若 f ( x)
又因为 CF 平面 AEB1 , EG 平面 AEB1 ,
所以 CF // 平面 AEB1 ;
E
( 2)假设存在满足条件的点 E ,设 CE 0
1.
以 F 为原点,向量 FB、FC、AA1 方向为 x 轴、 y 轴、 z 轴正方向,建立空间C 直角坐标系 .

哈尔滨三中一模14

哈尔滨三中一模14

2014年哈尔滨市第三中学第一次高考模拟考试答案数学(理工类)一、选择题1.C2.B3.D4.C5.B6.B7.C8.C9.B 10.D 11.A 12.A二、填空题13.n n14. 2015. 616. (三、解答题17.解:(I)112,2n na a a+-==,所以数列{}na为等差数列,则2(1)22na n n=+-=;-----------------------------------------------3分11482,16b a b a====,所以3418,2bq qb===,则2nnb=;-------------------------------------------------------------------6分(II)12nn n nc a b n+==,则23411222322nnT n+=⋅+⋅+⋅++345221222322nnT n+=⋅+⋅+⋅++两式相减得2341212223222n nnT n++-=⋅+⋅+⋅++-----------9分整理得2(1)24nnT n+=-+.-----------------------------------------------12分18.解:(Ⅰ)因为第四组的人数为60,所以总人数为:560300⨯=,由直方图可知,第五组人数为:0.02530030⨯⨯=人,又6030152-=为公差,所以第一组人数为:45人,第二组人数为:75人,第三组人数为:90人---------------------------------------------------------------------------------------------------4分(Ⅱ)设事件A =甲同学面试成功,则()=P A 114121111111423523523523515⨯⨯+⨯⨯+⨯⨯+⨯⨯=……………..8分 (Ⅲ)由题意得,0,1,2,3=ξ0333361(0)20===C C P C ξ, 1233369(1)20===C C P C ξ, 2133369(2)20===C C P C ξ, 3033361(3)20===C C P C ξ 分布列为3()0123202020202=⨯+⨯+⨯+⨯=E ξ…………………..12分19. (I ) PD PA =,Q 为AD 的中点,AD PQ ⊥∴,又 底面ABCD 为菱形,︒=∠60BAD ,AD BQ ⊥∴ ,又Q BQ PQ = ∴⊥AD 平面PQB ,又 ⊂AD 平面PAD ,∴平面⊥PQB 平面PAD ;-----------------------------6分(II ) 平面⊥PAD 平面ABCD ,平面 PAD 平面AD ABCD =,AD PQ ⊥⊥∴PQ 平面ABCD .∴以Q 为坐标原点,分别以QP QB QA ,,为z y x ,,轴建立空间直角坐标系如图.则)0,3,2(),0,3,0(),3,0,0(),0,0,0(-C B P Q ,设−→−−→−=PC PM λ(10<<λ), 所以))1(3,3,2(λλλ--M ,平面CBQ 的一个法向量是)1,0,0(1=n ,设平面MQB 的一个法向量为=2n ),,(z y x ,所以⎪⎩⎪⎨⎧=⋅=⋅−→−−→−22n QB n QM取=2n )3,0,233(λλ-,-----------------------------------------9分 由二面角C BQ M --大小为︒60,可得:||||||212121n n n n ⋅=,解得31=λ,此时31=PC PM --------------------------------12分20. 解:(I )因为点()2,1A 在抛物线px y C 2:2=()0>p 上,所以p 24=,有2=p ,那么抛物线x y C 4:2=---------------------------------------2分 若直线l 的斜率不存在,直线l :5=x ,此时()()()2,1,52,5,52,5A Q P -()()0522,4522,4=+-⋅--=⋅QA PA -------------------------------------------3分若直线l 的斜率存在,设直线l :()()0,25≠--=k x k y ,点()11,y x P ,()22,y x Q⎩⎨⎧--==2)5(42x k y xy , 有()()⎪⎩⎪⎨⎧>++=∆+-==+⇒=+--0251616820,40254421212k k kk y y k y y k y ky ,---------------5分()()()()()()()024164212416412412,12,12121222121221212122212221212121212211=++-++-+-=++-+++-=++-+++-=--⋅--=⋅y y y y y y y y y y y y y y yy y y y y y y x x x x y x y x QA PA 那么,QA PA ⋅为定值.--------------------------------------------------------------------------7分 (II ) 若直线l 的斜率不存在,直线l :5=x ,此时()()()2,1,52,5,52,5A Q P -5845421=⨯⨯=∆APQ S 若直线l 的斜率存在时,()()221221y y x x PQ -+-=()22221221216328011411kk k k y y y y k++⋅+=-+⋅+=------------------9分 点()2,1A 到直线l :()25--=x k y 的距离2114kk h ++=------------------------------10分()()4221125821k k k k h PQ S APQ+++=⋅⋅=∆,令211⎪⎭⎫⎝⎛+=k u ,有0≥u , 则u u S APQ 482+=∆没有最大值.---------------------------------------------------------12分 21. 解:(Ⅰ)当1a =时,21()(1)xf x x ex -=--,则211(2)()x x x x e f x e----'=, 令21()(2)x h x x x e -=--,则1()22x h x x e -'=--,显然()h x '在3(,2)4上单调递减.又因为31()042h '=-<,故3(,2)4x ∈时,总有()0h x '<,所以()h x 在3(,2)4上单调递减.---------------------------------------------3分 又因为(1)0h =,所以当3(,1)4x ∈时,()0h x >,从而()0f x '>,这时()f x 单调递增,当(1,2)x ∈时,()0h x <,从而()0f x '<,这时()f x 单调递减, 当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 在3(,2)4上的极大值是(1)1f =.-----------------------------5分(Ⅱ)由题可知21()()xg x x a e-=-,则21()(2)xg x x x a e-'=-++.根据题意方程220x x a -++=有两个不等实数根1x ,2x ,且12x x <, 所以440a ∆=+>,即1a >-,且122x x +=.因为12x x <,所有11x <.由211()()x g x f x λ'≤,其中21()(2)xf x x x e a -'=--,可得1111222111()[(2)]x x x x a ex x e a λ---≤--又因为221112,2x x x a x =--=,2112a x x =-,将其代入上式得:1111221111112(2)[(2)(2)]x x x x e x x e x x λ---≤-+-,整理得11111[2(1)]0x x x e e λ---+≤.--------------------------------------------------------8分即不等式11111[2(1)]0x x x ee λ---+≤对任意1(,1)x ∈-∞恒成立(1) 当10x =时,不等式11111[2(1)]0x x x e e λ---+≤恒成立,即R λ∈;(2) 当1(0,1)x ∈时,11112(1)0x x eeλ---+≤恒成立,即111121x x e e λ--≥+ 令11121()2(1)11x xx e k x e e ---==-++,显然()k x 是R 上的减函数, 所以当(0,1)x ∈时,2()(0)1e k x k e <=+,所以21ee λ≥+;(3)当1(,0)x ∈-∞时,11112(1)0x x eeλ---+≥恒成立,即111121x x e e λ--≤+ 由(2)可知,当(,0)x ∈-∞时,2()(0)1e k x k e >=+,所以21ee λ≤+; 综上所述,21ee λ=+.-------------------------------------12分 22. (Ⅰ)连接BD ,则ABD AGD ∠=∠,90︒∠+∠=ABD DAB ,90︒∠+∠=C CAB 所以∠=∠C AGD ,所以180︒∠+∠=C DGE ,所以,,,C E G D 四点共圆. ………………………………..5分(Ⅱ)因为2⋅=EG EA EB ,则2=EB ,又F 为EB 三等分,所以23=EF ,43=FB , 又因为2FB FC FE FD FG =⋅=⋅,所以83=FC ,2=CE …………………….10分23.(I )直线l 的普通方程为:0333=+-y x ;曲线的直角坐标方程为1)2(22=+-y x ---------------------------4分 (II )设点)sin ,cos 2(θθ+P )(R ∈θ,则2|35)6cos(2|2|33sin )cos 2(3|++=+-+=πθθθd所以d 的取值范围是]2235,2235[+-.--------------------------10分 24. (I )不等式的解集是),3[]3,(+∞--∞ ------------------------------5分(II )要证)()(ab f a ab f >,只需证|||1|a b ab ->-,只需证22)()1(a b ab ->-而0)1)(1(1)()1(22222222>--=+--=---b a b a b a a b ab ,从而原不等式成立.----------------------------------------10分。

哈尔滨市第三中学第一次高考模拟考试及答案

哈尔滨市第三中学第一次高考模拟考试及答案

2014年哈尔滨市第三中学第一次高考模拟考试数学试卷(理工类)考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整, 字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 集合{}2,1=M ,{}3,2,1=N ,{}N b M a ab x x P ∈∈==,,,则集合P 的元素个数为 A.3 B.4 C.5 D.62. 若i 是虚数单位,则复数ii+-12的实部与虚部之积为 A.43 B.43- C.i 43 D.i 43-3. 若βα,表示两个不同的平面,b a ,表示两条不同的直线,则α//a 的一个充分条件是A.ββα⊥⊥a ,B.b a b //,=βαC.α//,//b b aD.ββα⊂a ,// 4. 若312cos =θ,则θθ44cos sin +的值为 A.1813 B.1811C.95D.15. 若按右侧算法流程图运行后,输出的结果是76,则输入的N 的值为A.5B.6C.7D.8开始输入N 0,1==S k6. 若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤+-≤-+≥043041y x y x x ,则目标函数y x z -=3的最小值为A.4-B.0C.34D.4 7. 直线02=++y x 截圆422=+y x 所得劣弧所对 圆心角为 A.6π B.3π C.32π D.65π 8. 如图所示,是一个空间几何体的三视图,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表 面积是 A.π949 B.π37 C.π328 D.π928 9. 等比数列{}n a 中,若384-=+a a ,则()106262a a a a ++ 的值是A.9-B.9C.6-D.3 10. 在二项式nxx )2(4+的展开式中只有第五项的二项式系数最大,把展开式中所有的项重新排成一列,则有理项都互不相邻的概率为 A.61 B. 41 C.31 D.12511. 设A 、B 、P 是双曲线12222=-by a x ()0,0>>b a 上不同的三个点,且A 、B 连线经过坐标原点,若直线PA 、PB 的斜率之积为41,则该双曲线的离心率为 A.25 B. 26 C.2 D.315 12. 在平面直角坐标系xOy 中,已知P 是函数()ln f x x x x =-的图象上的动点,该曲线在点P 处的切线l 交y 轴于点(0,)M M y ,过点P 作l 的垂线交y 轴于点(0,)N N y .则NMy y 的范围是 222 2正视图俯视图侧视图A .),3[]1,(+∞--∞ B. ),1[]3,(+∞--∞ C. [3,)+∞ D. ]3,(--∞哈尔滨市第三中学第一次高考模拟考试数学试卷(理工类)第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13. 已知(0,)2πθ∈,由不等式1tan 2tan θθ+≥, 22222tan tan 2tan 3tan 22tan θθθθθ+=++≥, 33333tan tan tan 3tan 4tan 333tan θθθθθθ+=+++≥,归纳得到推广结论: tan 1()tan nm n n N θθ*+≥+∈,则实数=m _____________ 14. 五名三中学生中午打篮球,将校服放在篮球架旁边,打完球回教室时由于时间太紧,只有两名同学拿对自己衣服的不同情况有_____________种.(具体数字作答)15. 已知(0,1),(0,1),(1,0)A B C -,动点P 满足22||AP BP PC ⋅=,则||AP BP +的最大值为_____________16. 在ABC ∆中,内角,,A B C 所对的边长分别为,,a b c ,已知角A 为锐角, 且 22sin sin sin 4sin sin ()B C A B C m+==,则实数m 范围为_____________三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)数列{}n a 满足112,2n n a a a +-==,等比数列{}n b 满足8411,a b a b ==. (I )求数列{}n a ,{}n b 的通项公式; (II )设n n n c a b =,求数列{}n c 的前n 项和n T .18.(本小题满分12分)某高中毕业学年,在高校自主招生期间,把学生的平时成绩按“百分制”折算,排出前n 名学生,并对这n 名学生按成绩分组,第一组[75,80),第二组[80,85),第三组[85,90),第四组[90,95),第五组[95,100],如图为频率分布直方图的一部分,其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列,且第四组的人数为60.(I )请在图中补全频率分布直方图; (II )若Q 大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试.① 若Q 大学本次面试中有B 、C 、D 三位考官,规定获得两位考官的认可即面试 成功,且面试结果相互独立,已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为12、13,15,求甲同学面试成功的概率; ②若Q 大学决定在这6名学生中随机抽取3名学生接受考官B 的面试,第3组中有ξ名学生被考官B 面试,求ξ的分布列和数学期望. 19.(本小题满分12分)如图,在四棱锥ABCD P -中,底面ABCD 为菱形,︒=∠60BAD ,Q 为AD 的中点.(I )若PD PA =,求证:平面⊥PQB 平面PAD ;(II )若平面⊥PAD 平面ABCD ,且2===AD PD PA ,点M 在线段PC 上,试 确定点M 的位置,使二面角C BQ M --大小为︒60,并求出PCPM的值.20.(本小题满分12分)若点()2,1A 是抛物线px y C 2:2=()0>p 上一点,经过点()2,5-B 的直线l 与抛物线 C 交于Q P ,两点.BACDPQ频率组距O成绩0.020.04 0.06 75 80 85 90 95 1000.08 0.01 0.03 0.05 0.07(I )求证:QA PA ⋅为定值;(II )若点Q P ,与点A 不重合,问APQ ∆的面积是否存在最大值?若存在,求出最大 值; 若不存在,请说明理由.21.(本小题满分12分)设a R ∈,函数21()(1)x f x x e a x -=--. (Ⅰ)当1a =时,求()f x 在3(,2)4内的极值;(Ⅱ)设函数1()()(1)x g x f x a x e -=+--,当()g x 有两个极值点1x ,2x (12x x <) 时,总有211()()x g x f x λ'≤,求实数λ的值.(其中()f x '是函数()f x 的导函数.)请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 是的⊙O 直径,CB 与⊙O 相切于B ,E 为线段CB 上一点,连接AC 、AE 分别交⊙O 于D 、G 两点,连接DG 交CB 于点F . (Ⅰ)求证:C 、D 、G 、E 四点共圆.(Ⅱ)若F 为EB 的三等分点且靠近E ,EG 1=,GA 3=,求线段CE 的长.23.(本小题满分10分)选修4-4:坐标系与参数方程已知在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧=-=ty t x 33,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为03cos 42=+-θρρ (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)设点P 是曲线C 上的一个动点,求它到直线l 的距离d 的取值范围.O BA CEFDG24.(本小题满分10分)选修4-5:不等式选讲 已知函数1)(-=x x f .(Ⅰ)解不等式6)3()1(≥++-x f x f ;(Ⅱ)若1,1<<b a ,且0≠a ,求证:)()(ab f a ab f >.2014年哈尔滨市第三中学第一次高考模拟考试答案数学(理工类)一、选择题1.C2.B3.D4.C5.B6.B7.C8.C9.B 10.D 11.A 12.A 二、填空题13.nn 14. 20 15. 6 16. 66(2,)(,2)22--三、解答题17.解:(I )112,2n n a a a +-==,所以数列{}n a 为等差数则2(1)22n a n n =+-=;-----------------------------------------------3分11482,16b a b a ====,所以3418,2b q q b ===, 则2n n b =;-------------------------------------------------------------------6分 (II )12n n n n c a b n +==, 则23411222322n n T n +=⋅+⋅+⋅++ 345221222322n n T n +=⋅+⋅+⋅++两式相减得2341212223222n n n T n ++-=⋅+⋅+⋅++-----------9分整理得2(1)24n n T n +=-+.-----------------------------------------------12分18.解:(Ⅰ)因为第四组的人数为60,所以总人数为:560300⨯=,由直方图可知,第五组人数为:0.02530030⨯⨯=人,又6030152-=为公差,所以第一组人数为:45人,第二组人数为:75人,第三组人数为:90人频率组距0.040.06 0.080.03 0.050.07---------------------------------------------------------------------------------------------------4分(Ⅱ)设事件A =甲同学面试成功,则()=P A 114121111111423523523523515⨯⨯+⨯⨯+⨯⨯+⨯⨯=……………..8分 (Ⅲ)由题意得,0,1,2,3=ξ0333361(0)20===C C P C ξ, 1233369(1)20===C C P C ξ, 2133369(2)20===C C P C ξ, 3033361(3)20===C C P C ξ 分布列为ξ0 1 2 3P120 920 920 120 19913()0123202020202=⨯+⨯+⨯+⨯=E ξ…………………..12分19. (I ) PD PA =,Q 为AD 的中点,AD PQ ⊥∴,又 底面ABCD 为菱形,︒=∠60BAD ,AD BQ ⊥∴ ,又Q BQ PQ = ∴⊥AD 平面P Q B ,又⊂AD 平面PAD ,∴平面⊥PQB 平面PAD ;-----------------------------6分(II ) 平面⊥PAD 平面ABCD ,平面 PAD 平面AD ABCD =,AD PQ ⊥⊥∴PQ 平面ABCD .∴以Q 为坐标原点,分别以QP QB QA ,,为z y x ,,轴建立空间直角坐标系如图.zyxB ACDPQ则)0,3,2(),0,3,0(),3,0,0(),0,0,0(-C B P Q ,设−→−−→−=PC PM λ(10<<λ), 所以))1(3,3,2(λλλ--M ,平面CBQ 的一个法向量是)1,0,0(1=n ,设平面MQB 的一个法向量为=2n ),,(z y x ,所以⎪⎩⎪⎨⎧=⋅=⋅−→−−→−22n QB n QM取=2n )3,0,233(λλ-,-----------------------------------------9分 由二面角C BQ M --大小为︒60,可得:||||||212121n n n n ⋅=,解得31=λ,此时31=PC PM --------------------------------12分20. 解:(I )因为点()2,1A 在抛物线px y C 2:2=()0>p 上,所以p 24=,有2=p ,那么抛物线x y C 4:2=---------------------------------------2分若直线l 的斜率不存在,直线l :5=x ,此时()()()2,1,52,5,52,5A Q P -()()0522,4522,4=+-⋅--=⋅QA PA -------------------------------------------3分若直线l 的斜率存在,设直线l :()()0,25≠--=k x k y ,点()11,y x P ,()22,y x Q⎩⎨⎧--==2)5(42x k y xy , 有()()⎪⎩⎪⎨⎧>++=∆+-==+⇒=+--0251616820,40254421212k k kk y y k y y k y ky ,---------------5分 ()()()()()()()024164212416412412,12,12121222121221212122212221212121212211=++-++-+-=++-+++-=++-+++-=--⋅--=⋅y y y y y y y y y y y y y y yy y y y y y y x x x x y x y x QA PA 那么,QA PA ⋅为定值.--------------------------------------------------------------------------7分(II ) 若直线l 的斜率不存在,直线l :5=x ,此时()()()2,1,52,5,52,5A Q P -5845421=⨯⨯=∆APQ S 若直线l 的斜率存在时,()()221221y y x x PQ -+-=()22221221216328011411kk k k y y y y k++⋅+=-+⋅+=------------------9分 点()2,1A 到直线l :()25--=x k y 的距离2114kk h ++=------------------------------10分()()4221125821k k k k h PQ S APQ+++=⋅⋅=∆,令211⎪⎭⎫⎝⎛+=k u ,有0≥u , 则u u S APQ 482+=∆没有最大值.---------------------------------------------------------12分 21. 解:(Ⅰ)当1a =时,21()(1)xf x x ex -=--,则211(2)()x x x x e f x e----'=, 令21()(2)x h x x x e -=--,则1()22x h x x e -'=--,显然()h x '在3(,2)4上单 调递减. 又因为4311()042h e'=-<,故3(,2)4x ∈时,总有()0h x '<,所以()h x 在3(,2)4上单调递减.---------------------------------------------3分 又因为(1)0h =,所以当3(,1)4x ∈时,()0h x >,从而()0f x '>,这时()f x 单调递增, 当(1,2)x ∈时,()0h x <,从而()0f x '<,这时()f x 单调递减, 当x 变化时,()f x ',()f x 的变化情况如下表:x3(,1)41 (1,2))('x f+ 0 -)(x f极大所以()f x 在3(,2)4上的极大值是(1)1f =.-----------------------------5分(Ⅱ)由题可知21()()x g x x a e -=-,则21()(2)x g x x x a e -'=-++.根据题意方程220x x a -++=有两个不等实数根1x ,2x ,且12x x <, 所以440a ∆=+>,即1a >-,且122x x +=.因为12x x <,所有11x <. 由211()()x g x f x λ'≤,其中21()(2)x f x x x e a -'=--,可得1111222111()[(2)]x x x x a e x x e a λ---≤--又因为221112,2x x x a x =--=,2112a x x =-,将其代入上式得:1111221111112(2)[(2)(2)]x x x x e x x e x x λ---≤-+-,整理得11111[2(1)]0x x x e e λ---+≤.--------------------------------------------------------8分即不等式11111[2(1)]0x x x e e λ---+≤对任意1(,1)x ∈-∞恒成立(1) 当10x =时,不等式11111[2(1)]0x x x e e λ---+≤恒成立,即R λ∈; (2) 当1(0,1)x ∈时,11112(1)0x x eeλ---+≤恒成立,即111121x x e e λ--≥+ 令11121()2(1)11x xx e k x e e ---==-++,显然()k x 是R 上的减函数, 所以当(0,1)x ∈时,2()(0)1e k x k e <=+,所以21ee λ≥+; (3)当1(,0)x ∈-∞时,11112(1)0x x eeλ---+≥恒成立,即111121x x e e λ--≤+ 由(2)可知,当(,0)x ∈-∞时,2()(0)1e k x k e >=+,所以21ee λ≤+; 综上所述,21ee λ=+.-------------------------------------12分 22. (Ⅰ)连接BD ,则ABD AGD ∠=∠,90︒∠+∠=ABD DAB ,90︒∠+∠=C CAB 所以∠=∠C AGD ,所以180︒∠+∠=C DGE ,所以,,,C E G D 四点共圆.………………………………..5分(Ⅱ)因为2⋅=EG EA EB ,则2=EB ,又F 为EB 三等分,所以23=EF ,43=FB ,又因为2FB FC FE FD FG =⋅=⋅,所以83=FC ,2=CE …………………….10分23.(I )直线l 的普通方程为:0333=+-y x ;曲线的直角坐标方程为1)2(22=+-y x ---------------------------4分 (II )设点)sin ,cos 2(θθ+P )(R ∈θ,则2|35)6cos(2|2|33sin )cos 2(3|++=+-+=πθθθd 所以d 的取值范围是]2235,2235[+-.--------------------------10分 24. (I )不等式的解集是),3[]3,(+∞--∞ ------------------------------5分(II )要证)()(ab f a ab f >,只需证|||1|a b ab ->-,只需证22)()1(a b ab ->-而0)1)(1(1)()1(22222222>--=+--=---b a b a b a a b ab ,从而原不等式成立.----------------------------------------10分。

黑龙江省哈尔滨市第三中学校2023届高三第一次高考模拟考试数学试题(高频考点版)

黑龙江省哈尔滨市第三中学校2023届高三第一次高考模拟考试数学试题(高频考点版)

一、单选题二、多选题三、填空题1. 已知复数在复平面内对应的点在二象限,且,则实数的取值范围是A .或B.C .或D.2. 已知、是相异两个平面,、是相异两直线,则下列叙述中正确的是( )A .若,,则B .若,,则C .若,,,则D .若,,则3. 在三棱锥中,,分别为,的中点,设三棱锥的体积为,四棱锥的体积为,则( )A.B.C.D.4. 已知集合,,若,则取值范围是( )A.B.C.D.5. 双曲线绕坐标原点逆时针旋转后,可以成为函数的图象,则的角度可以为( )A.B.C.D.6. 若为第二象限角,则( )A .1B.C.D .7.已知函数,若函数恰有3个零点,则的取值可能为( )A.B .1C .2D.8. 已知三条直线,,能构成三角形,则实数m 的取值可能为( )A .2B.C.D.9.设随机变量的分布列为,则常数________.10. 已知函数,若函数的值域为,则实数的取值范围为__________.11. 已知函数,其导函数的图像如图所示,则下列所有真命题的序号为___________.①函数在区间上严格减; ②函数在区间上严格增;③函数在处取得极小值; ④函数在处取得极小值.12.若数列满足(,为常数),则称数列为调和数列.记数列=" " .黑龙江省哈尔滨市第三中学校2023届高三第一次高考模拟考试数学试题(高频考点版)黑龙江省哈尔滨市第三中学校2023届高三第一次高考模拟考试数学试题(高频考点版)四、解答题13. 如图为某简谐运动的图像,试根据图像回答下列问题:(1)这个简谐运动需要多长时间往复一次?(2)从点O算起,到曲线上的哪一点表示完成了一次往复运动?如果从点A算起呢?14. 已知定义域为的函数是奇函数.(1)判断单调性,并用单调性的定义加以证明;(2)若不等式对任意的恒成立,求实数的取值范围.15. 已知函数,.(1)若在上为单调递减函数,求的取值范围;(2)设函数有两个不等的零点,且,若不等式恒成立,求正实数的取值范围.16. 若(1)当时,设所对应的自变量取值区间的长度为(闭区间的长度为),试求的最大值;(2)是否存在这样的使得当时,?若存在,求出的取值范围;若不存在,说明理由.。

2014年哈尔滨市第三中学第一次高考模拟考试答案

2014年哈尔滨市第三中学第一次高考模拟考试答案

2021年哈尔滨市第三中学第一次高考模拟测验答案数学〔文史类〕一、选择题1.B2.B3.B4.C5.A6.B7.C8.C9.D 10.D 11.A 12.A 二、填空题13.nn 14. 71615. 6 16. 6((,2)2 三、解答题17.解:〔I 〕112,2n n a a a +-==,所以数列{}n a 为等差数列,那么2(1)22n a n n =+-=;-----------------------------------------------3分11482,16b a b a ====,所以3418,2b q q b ===, 那么2nn b =;-------------------------------------------------------------------6分 〔II 〕12n n n n c a b n +==, 那么23411222322n n T n +=⋅+⋅+⋅++两式相减得2341212223222n n n T n ++-=⋅+⋅+⋅++-----------9分整理得2(1)24n n T n +=-+.-----------------------------------------------12分18.解:〔Ⅰ〕因为第四组的人数为60,所以总人数为:560300⨯=,由直方图可知,第五组人数为:0.02530030⨯⨯=人,又6030152-=为公差,所以第一组人数为:45人,第二组人数为:75人,第三组人数为:90人……………………….6分 〔Ⅱ〕第四组中抽取人数:660490⨯=人,第五组中抽取人数:630290⨯=人,所以95分以上的共2人.设第四组抽取的四报酬1234,,,A A A A ,第五组抽取的2报酬12,B B ,这六人分成两组有两种情况,情况一:12,B B 在同一小组有4种可能成果,情况二:12,B B 不在同一小组有6种可能成果,总共10种可能成果,所以两人在一组的概率为42105= ……………………….12分19.〔I 〕 PD PA =,Q 为AD 的中点,AD PQ ⊥∴,又 底面ABCD 为菱形,︒=∠60BAD ,AD BQ ⊥∴ ,又Q BQ PQ = ∴⊥AD 平面PQB ,又⊂AD 平面PAD ,∴平面⊥PQB 平面PAD ;----------------------------6分〔II 〕 平面⊥PAD 平面ABCD ,平面 PAD 平面AD ABCD =,AD PQ ⊥⊥∴PQ 平面ABCD ,⊂BC 平面ABCD ,⊥∴PQ BC ,又BQ BC ⊥,Q QP QB = ,∴⊥BC 平面PQB ,又MC PM 2=, ∴32232332131=⋅⋅⋅⋅⋅==--PQB M QBM P V V ---------------------------12分20. 解:〔I 〕因为点()2,1A 在抛物线px y C 2:2=()0>p 上,所以p 24=,有2=p ,那么抛物线x y C 4:2=---------------------------------------2分 假设直线l 的斜率不存在,直线l :5=x ,此时()()()2,1,52,5,52,5A Q P - BA C D P Q()()0522,4522,4=+-⋅--=⋅QA PA ---------------------------------------------3分假设直线l 的斜率存在,设直线l :()()0,25≠--=k x k y ,点()11,y x P ,()22,y x Q⎩⎨⎧--==2)5(42x k y xy , 有()()⎪⎩⎪⎨⎧>++=∆+-==+⇒=+--0251616820,40254421212k k kk y y k y y k y ky ,---------------------5分那么,QA PA ⋅为定值.--------------------------------------------------------------------------7分 〔II 〕假设直线l 的斜率不存在,直线l :5=x ,此时()()()2,1,52,5,52,5A Q P - 假设直线l 的斜率存在时,()()221221y y x x PQ -+-=()22221221216328011411kk k k y y y y k++⋅+=-+⋅+=-------------------9分 点()2,1A 到直线l :()25--=x k y 的距离2114kk h ++=------------------------------10分()()4221125821k k k k h PQ S APQ+++=⋅⋅=∆,--------------------------------------11分 满足:()()21611258422=+++kk k k有12321--=k 或12321---=k ---------------------------------------------12分21.〔Ⅰ〕当1a =时,函数2()3ln f x x x x=-+,那么2231(21)(1)()x x x x f x x x-+--'==. ()0f x '=得:121,12x x ==当x 变化时,()f x ',()f x 的变化情况如下表:因此,当2x =时,()f x 有极大值,而且()ln 24f x =--极大值; 当1x =时,()f x 有极小值,而且()2f x =-极小值.--------------------------4分 〔Ⅱ〕由()1xg x e x =--,那么()1xg x e '=-,解()0g x '>得0x >;解()0g x '<得0x <所有()g x 在(,0)-∞是减函数,在(0,)+∞是增函数, 即()=(0)0g x g =最小值对于任意的12(0,),x x R ∈+∞∈,不等式12()()f x g x ≤恒成立,那么有1()(0)f x g ≤即可.即不等式()0f x ≤对于任意的(0,)x ∈+∞恒成立.-------------------------------6分 〔1〕当0a =时,1()xf x x-'=,解()0f x '>得01x <<;解()0f x '<得1x > 所以()f x 在(0,1)是增函数,在(1,)+∞是减函数,()(1)10f x f ==-<最大值, 所以0a =符合题意. 〔2〕当0a <时,(21)(1)()ax x f x x--'=,解()0f x '>得01x <<;解()0f x '<得1x >所以()f x 在(0,1)是增函数,在(1,)+∞是减函数,()(1)10f x f a ==--≤最大值,得10a -≤<,所以10a -≤<符合题意. 〔3〕当0a >时,(21)(1)()ax x f x x--'=,()0f x '=得121,12x x a ==12a >时,101x <<, 解()0f x '>得102x a <<或1x >;解()0f x '<得112x a<< 所以()f x 在(1,)+∞是增函数,而当x →+∞时,()f x →+∞,这与对于任意的(0,)x ∈+∞时()0f x ≤矛盾 同理102a <≤时也不成立. 综上所述,a 的取值范围为[1,0]-.---------------------------------------------12分22.〔Ⅰ〕连接BD ,那么ABD AGD ∠=∠,90︒∠+∠=ABD DAB ,90︒∠+∠=C CAB 所以∠=∠C AGD ,所以180︒∠+∠=C DGE ,所以,,,C E G D 四点共圆. ………………………………..5分〔Ⅱ〕因为2⋅=EG EA EB ,那么2=EB ,又F 为EB 三等分,所以23=EF ,43=FB , 又因为2FB FC FE FD FG =⋅=⋅,所以83=FC ,2=CE …………………….10分 23.〔I 〕直线l 的普通方程为:0333=+-y x ;曲线的直角坐标方程为1)2(22=+-y x -------------------------------4分 〔II 〕设点)sin ,cos 2(θθ+P )(R ∈θ,那么所以d 的取值范围是]2235,2235[+-.--------------------------------10分 24.〔I 〕不等式的解集是),3[]3,(+∞--∞ -------------------------------5分〔II 〕要证)()(ab f a ab f >,只需证|||1|a b ab ->-,只需证22)()1(a b ab ->-而0)1)(1(1)()1(22222222>--=+--=---b a b a b a a b ab ,从而原不等式成立.-------------------------------------------10分。

黑龙江省哈尔滨市第三中学校2024届高三学年第一次模拟考试数学试卷及答案

黑龙江省哈尔滨市第三中学校2024届高三学年第一次模拟考试数学试卷及答案

2024哈三中高三学年第一次模拟考试数学试卷考试说明:(1)本试卷满分150分.考试时间为120分钟;(2)回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.(3)考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若3-i1+iz =,i 为虚数单位,则z ()A .2i -B .12i -C .12i+D .2i+2.设集合1{1},12A xB x x ⎧⎫=<=-<<⎨⎩⎭,则A B = ()A .(,1)-∞B .11,2⎛⎫- ⎪⎝⎭C .(1,1)-D .10,2⎛⎫ ⎪⎝⎭3.冰嘎别名冰尜,是东北民间少年儿童游艺品,俗称“陀螺”.通常以木镟之,大小不一,一般径寸余,上端为圆柱形,下端为锥形.如图所示的是一个陀螺立体结构图.己知,B C 分别是上、下底面圆的圆心,6,2AC AB ==,底面圆的半径为2,则该陀螺的体积为()图1图2A .803πB .703πC .20πD .563π4.在ABC 中,角,,A B C 的对边分别为,,a b c ,若sin cos 2Bb Cc =,且||||CA CB CA CB +=- ,则A =()A .6πB .3πC .4πD .2π5.已知某商品近期价格起伏较大,假设第一周和第二周的该商品的单价分别为m 元和n 元()m n ≠,甲、乙两人购买该商品的方式不同,甲每周购买100元的该商品,乙每周购买20件该商品,若甲、乙两次购买平均单价分别为12,a a ,则()A .12a a =B .12a a <C .12a a >D .12,a a 的大小无法确定6.已知数列{}n a 为等比数列,n S 为数列{}n a 的前n 项和,若4863,,5a a a 成等差数列,则1056S a a =+()A .1219B .114C .314D .211367.有3台车床加工同一型号的零件,第1,2,3台加工的次品率分别为5%,2%,4%,加工出来的零件混放在一起.己知第1,2,3台车床加工的零件数的比为4: 5: 11,现任取一个零件,记事件i A =“零件为第i 台车床加工”(1,2,3)i =,事件B =“零件为次品”,则()1P A B =()A .0.2B .0.05C .537D .10378.设0a >且1a ≠,若函数()()32223722,0()2log ,0e a x x a a x x f x x x x ⎧-+-++≤⎪=⎨->⎪⎩有三个极值点,则实数a 的取值范围是()A .10,(2,e)e ⎛⎫ ⎪⎝⎭B .1,1(1,e)e ⎛⎫ ⎪⎝⎭C .1,1(1,2)e ⎛⎫ ⎪⎝⎭D .1,1(1,2)3⎛⎫ ⎪⎝⎭二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.杭州亚运会于2023年9月23日至10月8日举办,某学校举办了一场关于杭州亚运会相关知识问答竞赛,比赛采用计分制(满分100分),该校学生成绩绘制成如下频率分布直方图,图中3b a =.则下列结论正确的是()A .0.01a =B .该校学生成绩的众数为80分C .该校学生成绩的75%分位数是85分D .该校学生成绩的平均分是76.510.已知抛物线2:2(0)C y px p =>的焦点F 与椭圆22154x y +=的右焦点重合,,A B 是抛物线C 上不同的两点,O 为坐标原点,则()A .抛物线C 的标准方程为24y x=B .若直线AB 经过点F ,则以线段AB 为直径的圆与y 轴相切C .若点(1,1),Q P 为抛物线C 上的动点,则PQF 周长的最小值为3+D .若0OA OB ⋅=,则||||32OA OB ⋅≥11.如图,已知正三棱台111ABC A B C -是由一个平面截棱长为6的正四面体所得,其中12AA =,以点A 为球心,11BCC B 的交线为曲线,P Γ为Γ上一点,则下列结论中正确的是()A .点A 到平面11BCCB 的距离为B .曲线Γ的长度为4πC .CP 的最小值为2D .所有线段AP 所形成的曲面的面积为3三、填空题:本题共3小题,每小题5分,共15分.12.已知52345012345(23)x a a x a x a x a x a x +=+++++,则1a =_______.(用数字作答)13.已知圆221:3C x y +=,圆222:(1)(2)3C x y -+-=,直线:2l y x =+.若直线l 与圆1C 交于,A B 两点,与圆2C 交于,D E 两点,,M N 分别为,AB DE 的中点,则||MN =________.14.设*{1,2,,}m N m = 表示不超过()*m m N∈的正整数集合,kA 表示k 个元素的有限集,()S A 表示集合A中所有元素的和,集合(){}*,m k k k m T S A A =⊆N ,则3,2T =_________;若(),32024m S T ≤,则m 的最大值为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数21()sincos (0)2f x x x x ωωωω=->.(1)当1ω=时,求函数()f x 在0,2π⎛⎫⎪⎝⎭上的值域;(2)在ABC 中,内角,,A B C 的对边分别为,,,a b c AD 为BAC ∠的平分线,若()f x 的最小正周期是2,0,23A f a AD π⎛⎫===⎪⎝⎭,求ABC 的面积.16.如图1,在平行四边形ABCD 中,60,22D DC AD =︒==,将ADC 沿AC 折起,使点D 到达点P 位置,且PC BC ⊥,连接PB 得三棱锥P ABC -,如图2.图1图2(1)证明:平面PAB ⊥平面ABC ;(2)在线段PC 上是否存在点M ,使平面AMB 与平面MBC 的夹角的余弦值为58,若存在,求出||||PM PC 的值,若不存在,请说明理由.17.已知函数()e xf x ax =+.(1)若1a =-,求函数()f x 的单调区间;(2)当0x >时,2()1f x x >+恒成立,求实数a 的取值范围.18.这个冬季,哈尔滨文旅持续火爆,喜迎大批游客,冬天里哈尔滨雪花纷飞,成为无数南方人向往的旅游胜地,这里的美景,美食,文化和人情都让人流连忘返,严寒冰雪与热情服务碰撞出火花,吸引海内外游客纷至沓来.据统计,2024年元旦假期,哈尔滨市累计接待游客304.79万人次,实现旅游总收入59.14亿元,游客接待量与旅游总收入达到历史峰值.现对某一时间段冰雪大世界的部分游客做问卷调查,其中75%的游客计划只游览冰雪大世界,另外25%的游客计划既游览冰雪大世界又参观群力音乐公园大雪人.每位游客若只游览冰雪大世界,则得到1份文旅纪念品;若既游览冰雪大世界又参观群力音乐公园大雪人,则获得2份文旅纪念品.假设每位来冰雪大世界景区游览的游客与是否参观群力音乐公园大雪人是相互独立的,用频率估计概率.(1)从冰雪大世界的游客中随机抽取3人,记这3人获得文旅纪念品的总个数为X ,求X 的分布列及数学期望;(2)记n 个游客得到文旅纪念品的总个数恰为1n +个的概率为n a ,求{}n a 的前n 项和n S ;(3)从冰雪大世界的游客中随机抽取100人,这些游客得到纪念品的总个数恰为n 个的概率为n b ,当n b 取最大值时,求n 的值.19.在平面直角坐标系xOy 中,双曲线2222:1(0,0)x y H a b a b-=>>的实轴长为4,渐近线方程为20x y ±=.(1)求双曲线H 的标准方程;(2)过点(4,0)P 作直线l 交双曲线H 左右两支于,A B 两点(异于顶点),点A 关于x 轴的对称点为E ,证明直线BE 过定点Q ;(3)过双曲线H 上任意不同的两点,C D 分别作双曲线H 的切线,若两条切线相交于点M ,且0MC MD ⋅=,在第(2)的条件下,求MPQ S 的最大值及此时点M 的坐标.2024哈三中高三学年第一次模拟考试数学答案1-4CCDA5-8BADC9ACD10AD11ACD12.2401314.{3,4,5};2215.(1)1,12⎛⎤-⎥⎝⎦(2)216.(1)略(2)2317.(1)单调递减区间(,0)-∞单调递增区间(0,)+∞(2)2a e>-18.(1)2727(3)(4)6464P X P X ====91(5)(6)6464P X P X ====15()4E X =(2)34(4)4nn S n ⎛⎫=-+ ⎪⎝⎭(3)12519.(1)2214x y -=(2)(1,0)Q (3)(0,MPQ S M =。

黑龙江省哈尔滨市第三中学2022-2023学年高三下学期3月第一次模拟考试 数学 Word版含答案

2023年哈三中高三学年 第一次高考模拟考试数学试卷一、选择题(共60分)(一)单项选择题(共8小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合{}2023,1xM y y x -==>,{}2023log ,01N x y x x ==<<,则M N ⋂=( ) A .102023y y ⎧⎫<<⎨⎬⎩⎭B .{}01y y <<C .112023yy ⎧⎫<<⎨⎬⎩⎭D .∅2.在△ABC 中,0AB BC ⋅>是△ABC 为钝角三角形的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3.定义在R 上的奇函数()f x 满足()()11f x f x +=-.当[]0,1x ∈时,()33f x x x =+,则()2023f =( ) A .-4B .4C .14D .04.苏轼是北宋著名的文学家、书法家、画家,在诗词文书画等方面都有很深的造诣.《蝶恋花春景》是苏轼一首描写春景的清新婉丽之作,表达了对春光流逝的叹息词的下阙写到:“墙里秋千墙外道.墙外行人,墙里佳人笑.笑渐不闻声渐悄,多情却被无情恼.”假如将墙看作一个平面,秋千绳、秋千板、墙外的道路看作直线,那么道路和墙面平行,当秋千静止时,秋千板与墙面垂直,秋千绳与墙面平行.在佳人荡秋千的过程中,下列说法中错误的是( )A .秋千绳与墙面始终平行B .秋千绳与道路始终垂直C .秋千板与墙面始终垂直D .秋千板与道路始终垂直5.已知()1,0A -,()1,0B ,若在直线()2y k x =-上存在点P ,使得∠APB =90°,则实数k 的取值范围为( )A .⎡⎢⎣⎦B .⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝⎦⋃C .33⎛⎫⎪ ⎪⎝⎭D .,33⎛⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭⋃ 6.哈尔滨市第三中学古诗词大赛中,12强中有3个种子选手,将这12人任意分成3组(每组4个人),则3个种子选手恰好被分在同一组的概率为( ) A .14B .13C .155D .3557.在边长为3的菱形ABCD 中,∠BAD =60°,将△ABD 绕直线BD 旋转到.A BD '△,使得四面体A BCD '外接球的表面积为18π,则此时二面角A BD C '--的余弦值为( )A .13- B .12- C .1 3D .8.已知(ln1.21a =,b =0.21,0.21c e =-,则( )A .a >b >cB .c >a >bC .c >b >aD .b >c >a(二)多项选择题(共4小题,每小题5分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得2分,有选错的得0分) 9.已知函数()sin 26f x x π⎛⎫=-⎪⎝⎭,则下列说法中正确的是( ) A .()y f x =的最小正周期为π B .()y f x =的图象关于3x π=对称C .若()y f x =的图象向右平移ϕ(0ϕ>)个单位后关于原点对称,则ϕ的最小值为53π D .()f x 在,62ππ⎡⎤-⎢⎥⎣⎦上的值域为[]1,1-10.已知圆锥SO (O 是圆锥底面圆的圆心,S 是圆锥的顶点)的母线长为3P ,Q 为底面圆周上的任意两点,则下列说法中正确的是( )A .圆锥SO 的侧面积为B .△SPQ 面积的最大值为C .三棱锥O -SPQ 体积的最大值为53D .圆锥SO 的内切球的体积为43π11.已知抛物线2:4C x y =,O 为坐标原点,F 为抛物线C 的焦点,点P 在抛物线上,则下列说法中正确的是( )A .若点()2,3A ,则PA PF +的最小值为4B .过点()3,2B 且与抛物线只有一个公共点的直线有且仅有两条C .若正三角形ODE 的三个顶点都在抛物线上,则△ODE的周长为D .点H 为抛物线C 上的任意一点,()0,1G -,HG t HF =,当t 取最大值时,△GFH 的面积为2 12.已知a ≠0,b ≠0且b >-1,()()1ln 1a ab e b =-+,则下列说法中错误的是( ) A .a b ≤B .若关于b 的方程1bm a+=有且仅有一个解,则m =e C .若关于b 的方程1bm a+=有两个解1b ,2b ,则122b b e +> D .当a >0时,11222a b b <++ 二、填空题:本题共4小题,每小题5分,共20分. 13.()41212x x ⎛⎫--⎪⎝⎭的展开式中,常数项为______. 14.已知x +y =4,且x >y >0,则21x y y+-的最小值为______. 15.设n S 是数列{}n a 的前n 项和,23n n S a n =+-,令4(log 1)n n b a =-,则12125125b b b ++⋅⋅⋅+=______.16.如图,椭圆22221x y a b +=(a >b >0)与双曲线22221x y m n-=(m >0,n >0)有公共焦点()1,0F c -,()2,0F c (c >0),椭圆的离心率为1e ,双曲线的离心率为2e ,点P 为两曲线的一个公共点,且1260F PF ∠=︒,则221213e e +=______;I 为12F PF △的内心,1F ,I ,G 三点共线,且0GP IP ⋅=,x 轴上点A ,B 满足AI IP λ=,BG GP μ=,则22λμ+的最小值为______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,设△ABC 外接圆的半径为R ,且()2212cos cos bc R B C =+.(1)求角A 的大小;(2)若D 为BC 边上的点,AD =BD =2,CD =1,求tan B . 18.(本题满分12分)已知递增等差数列{}n a 满足:26727a a a ++=,1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)若12122n a n n n n a b a a +++⋅=,求数列{}n b 的前n 项和n T .19.(本题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△P AD 为等边三角形,平面P AD ⊥平面ABCD ,PB ⊥BC .(1)求点A 到平面PBC 的距离;(2)E 为线段PC 上一点,若直线AE 与平面ABCD所成的角的正弦值为10,求平面ADE 与平面ABCD 夹角的余弦值. 20.(本题满分12分)在数学探究实验课上,小明设计了如下实验:在盒子中装有红球、白球等多种不同颜色的小球,现从盒子中一次摸一个球,不放回.(1)若盒子中有8个球,其中有3个红球,从中任意摸两次. ①求摸出的两个球中恰好有一个红球的概率;②记摸出的红球个数为X ,求随机变量X 的分布列和数学期望.(2)若1号盒中有4个红球和4个白球,2号盒中有2个红球和2个白球,现甲、乙、丙三人依次从1号盒中摸出一个球并放入2号盒,然后丁从2号盒中任取一球.已知丁取到红球,求甲、乙、丙三人中至少有一人取出白球的概率. 21.(本题满分12分)已知平面内动点M 到定点F (0,1)的距离和到定直线y =4的距离的比为定值12. (1)求动点M 的轨迹方程;(2)设动点M 的轨迹为曲线C ,过点()1,0的直线交曲线C 于不同的两点A 、B ,过点A 、B 分别作直线x =t 的垂线,垂足分别为1A 、1B ,判断是否存在常数t ,使得四边形11AA B B 的对角线交于一定点?若存在,求出常数t 的值和该定点坐标;若不存在,说明理由. 22.(本题满分12分)已知函数()2ln 1f x x ax x =-++.(1)当a =0时,求函数()()xg x xe f x =-的最小值;(2)当()y f x =的图象在点()()1,1f 处的切线方程为y =1时,求a 的值,并证明:当*n N ∈时,)211ln 112knk k =⎛⎫+<+- ⎪⎝⎭∑.答案一、选择题:二、填空题: 13.-10 14.215.3116.4;1+三、解答题: 17.(1)2sin sin b cR B C==,24sin sin bc R B C = 2sin sin 1cos cos B C B C =+,1cos()cos 2B CA +=-=- 1cos 2A =,(0,)A π∈,3A π= (2)2CDA B ∠=∠,23C B π=- sin sin CD ADDAC C=∠,即2sin sin 33CD ADB B ππ=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭11cos sin 2sin 2222B B B B ⎛⎫+=- ⎪ ⎪⎝⎭ 3sin 22B B = tan B =18.(1)()()12111312274a d a a d a d +=+=+⎧⎪⎨⎪⎩,∵d >0,∴112a d =⎧⎨=⎩. ∴21n a n =-(2)1(21)222(21)(23)2321n n nn n b n n n n +-⋅==-++++ ∴122233n n T n +=-+19.(1)取AD 中点O ,连接OB ,OP∵PAD △为等边三角形,∴OP AD ⊥,OA =1,OP =又∵平面PAD ⊥平面ABCD ,平面PAD⋂平面ABCD =AD ,OP ⊂平面P AD∴OP ⊥平面ABC ,又∵OB ⊂平面ABCD ,∴OP OB ⊥ ∵PB BC ⊥,∴BC AD ∥,∴PB AD ⊥又∵OP AD ⊥,OP ⊂平面POB ,PB ⊂平面POB ,OP PB P ⋂= ∴AD ⊥平面PO ,又∵OB ⊂平面POB ,∴AD OB ⊥∴OB =PB =设点A 到平面PBC 的距离为h 则1133PBC ABC S h S OP ⋅=⋅△△∴2h =(2)分别以OA ,OB ,OP 为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系则P ,()C -,()1,0,0A ,()1,0,0D -设PE PC λ=,则(2)E λ-,(2)AE λ=--- ∵OP ⊥平面ABC ,D 平面AB 的法向量1(0,0,1)n =130cos ,10AE n =13λ=,∴2,33E ⎛- ⎝ ∴平面ADE 的法向量2(0,2,1)n =-∴平面ADE 与平面ABCD 夹角的余弦值为125cos ,5n n =20.(1)①设事件A =“摸出的两个球中恰好有一个红球”11352815()28C C P A C ==(2)X 可取0,1,2,23528()k kC C P X k C -==,k =0,1,2 ∴X 的分布列为33()284E X =⨯=(2)设事件B =“丁丁取到红球”,事件C =“甲、乙、丙三人中至少有1人取出白球”211234444433388832112344444433338888432()77744()5432()497777C C C C C P BC C C C P C B C C C C C C P B C C C C ⨯+⨯+⨯===⨯+⨯+⨯+⨯∣ 21.(1)22143y x +=(2)22341201y x x my +-==+⎧⎨⎩,()2234880m y my ++-=122843m y y m -+=+,122843y y m -=+,1212y y my y += 若存在常数t ,使得四边形11AA B B 的对角线交于一定点,由对称性知,该定点一定在x 轴上,设该定点为(),0D s ,则1A ,B ,D 共线,A ,1B ,D 共线 设()11,A x y ,()22,B x y ,()11,A t y ,则()1221,A B x t y y =--,()11,A D s t y =--,则()()1221()y x t y y s t --=--()1212121221212121(1)2y y y ty my y y ty t y y s y y y y y y -+-+--+--===---则t -1=2,t =3,s =2同理,A ,1B ,D 共线,t =3,s =2∴存在常数t =3,使得四边形11AA B B 的对角线交于一定点,该定点为()2,0 22.(1)当a =0时,()1ln xg x xe x x =---. 方法一:()g x 定义域(0,)+∞,1()(1)x g x x e x ⎛⎫'=+-⎪⎝⎭令1()xh x e x =-,21()0xh x e x'=+>,∴()h x 在(0,)+∞上递增 ∵(1)10h e =->,1202h ⎛⎫=-<⎪⎝⎭,∴()h x 在1,12⎛⎫⎪⎝⎭上有唯一零点0x即()00010x h x ex =-= 在()00,x 上,()0h x <,即()0g x '<,()g x 在()00,x 递减 在()0,x +∞上,()0h x >,即()0g x '>,()g x 在()0,x +∞上递增 ∵01x ex =,∴00ln x x =- ∴()0min 000000ln ()1110xg x g x x e x x x x ==---=+--= 方法二:先证:1xe x ≥+,当x =0时,取“=”ln ln 1x x x xe e x x +=≥++(存在0x 使00ln 0x x +=)∴ln 10xxe x x ---≥成立 (2)1()21f x ax x'=-+,依题意,(1)0f '=∴a =1 即2()ln 1f x x x x =-++,(21)(1)()x x f x x-+-'=∴()f x 在()0,1递增,(1,)+∞递减.∴max ()(1)1f x f == ∴在(1,)+∞上,2ln 11x x x -++<,即ln (1)x x x <-,ln 1xx x <-取11x n =+,则1ln 1111n n n⎛⎫+ ⎪⎝⎭<+,即11ln 11n n n ⎛⎫+<+ ⎪⎝⎭∴()11111ln 112ln 1ln 11223n n n n ⎛⎫+⎛⎫⎛⎫+++⋅⋅⋅++<+++⋅⋅⋅++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭而11111231n +++⋅⋅⋅+<+++⋅⋅⋅+1<+++⋅⋅⋅+11)2=+++⋅⋅⋅+1=∴21111ln 1ln(11)2ln 1ln 111)22knk n n k n =⎛⎫⎛⎫⎛⎫+=++++⋅⋅⋅++<-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑。

东北三省三校2015届高三第一次高考模拟考试_理科数学试卷_word版含答案

哈尔滨师大附中 2015年高三第一次联合模拟考试理科数学试卷东北师大附中 辽宁省实验中学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求)1.已知集合{|21}A x x =-<<,2{|20}B x x x =-≤,则A B I 等于A .{|01}x x <<B .{|01}x x ≤<C .{|01}x x <≤D .{|21}x x -<≤2=A.)i B .1 + i C .iD .-i3.点(1,1)M 到抛物线y = ax 2准线的距离为2,则a 的值为A .14B .112-C .14或112- D .14-或1124.设S n 是公差不为零的等差数列{}n a 的前n 项和,且a 1 > 0,若S 5 = S 9,则当S n 最大时,n =A .6B .7C .8D .9 5.执行如图所示的程序框图,要使输出的S 值小于1,则输入的t 值不能是下面的A .2012B .2013C .2014D .2015 6.下列命题中正确命题的个数是①对于命题p :x R ∃∈,使得210x x +-<,则p ⌝:x R ∀∈,均有210x x +->; ②p 是q 的必要不充分条件,则p ⌝是q ⌝的充分不必要条件;③命题“若x y =,则sin sin x y =”的逆否命题为真命题;④“1m =-”是“直线l 1:(21)10mx m y +-+=与直线l 2:330x my ++=垂直”的充要条件。

黑龙江哈尔滨第三中学2015届高三第二次模拟考试数学(理)试卷(扫描版含答案)

2015年哈尔滨市第三中学第二次高考模拟考试数学(理工)答案一、 选择题二、1-5 BADBC 6-10CCDDA 11-12 AB二、填空题(13) 39 (14)72 (15)332(16)32 17. (Ⅰ)由c B a B a 3cos 3sin =+,得分2sin 3cos sin 3sin sin C B A B A =+),sin(3cos sin 3sin sin B A B A B A +=+分4sin cos 3sin sin B A B A = 分63,3tan π==A A (Ⅱ)分87cos 22222b A bc c b a =-+=分107212cos 222 -=-+=ab c b a C分1233tan ,7233sin -==C C18.(Ⅰ)由题知,25.0=a ,设该群中某成员抢到钱数不小于3元为事件A ,则35.01.025.0)(=+=A P . ………………………………4分(Ⅱ)(2) 由直方图知,抢到钱数在2元以下的共15人,其中1元以下的有3人. 所以X 可能取值为0,1,2,3,455220)0(315312===C C X P ,455198)1(31521213===C C C X P , 45536)2(31511223===C C C X P 4551)3(31533===C C X P ,……………8分 列为所以X 的分布…………10分所以X 的期望为534551345536245519814552200)(=⨯+⨯+⨯+⨯=X E …………………12分19.(Ⅰ)连结C B 1,交1BC 于点M ,则M 为1BC 中点,又D 为AC 中点,故MD ∥1AB ,又因为11BDC AB 平面⊄,1BDC MD 平面⊂,所以1AB ∥面1BDC . ------------------------4分(Ⅱ)以1C 为原点,如图建立空间直角坐标系. 设a AA =1,则)2,0,0(),0,,2(1B a A ,)0,0,2(),0,,1(1A a D ,)2,,2(1-=a A B ,)0,0,1(=DA ,)2,,1(1-=a D B ,)2,0,2(11-=B A ,设平面D AB 1的法向量为),,(z y x m =,则⎪⎩⎪⎨⎧=⋅=⋅01DA m A B m ,得),2,0(a m =, ----------5分同理得平面D B A 11的法向量为),1,(a a n =, ------6分cos 45cos =︒2=a . - ------------------8分)0,2,2(1--=AC ,)2,2,0(=m ,设直线1AC 与平面D AB 1所成角为θ,则21cos sin =θ,︒=30θ. ------------12分 20.126)1(22=+y x ----------4分024)3(1262),(),()2(22222211=--+⇒⎪⎩⎪⎨⎧=+-=my y m y xmy x y x N y x M θθcos 364sin =⋅ON OM ,90οθ=当02121=+y y x x ,0434232)1(,04)(2)1(22221212=++-+-+=++-+m mm m m y y m y y m 315±=m ----------7分 当,90οθ≠θθcos 364sin =⋅ON OM ,364sin ||||=θON OM21362sin ||||21y y ON OM S -===θ,384)(21221=-+y y y y 38324)34(222=+++m m m 0,3=±=m m ,综上所述,0,3=±=m m ,315±=m - ---------12分 21.(Ⅰ)当29=a 时,22)1(125)(++-='x x x x x f ,………………………………2分单调区间为⎪⎭⎫ ⎝⎛21,0和()+∞,2为增函数;⎪⎭⎫ ⎝⎛2,21上为减函数…………………4分(Ⅱ)由22)1(1)2()(++-+='x x x a x x f ,要使)(x f 在),0(+∞上为增函数 只需1)2(2+-+x a x 在),0(+∞恒大于等于0,得xx x a 122++≤恒成立,由421122≥++=++xx x x x ,得实数a 的取值范围为]4,(-∞;……………8分先考察当4=a 时方程32)(2+-=x x x f 的解的个数 由14ln )(++=x x x f 在),0(+∞上为增函数,且21141ln )1(=++=f , 而322+-x x 也当1=x 时得2,且函数322+-=x x y 在)1,0(上递减,所以方程14ln ++x x 322+-=x x 在]1,0(上有且只有一个解1=x ……………9分下面证明方程14ln ++x x 322+-=x x 在),1(+∞上无解易证1ln -<x x 在),1(+∞上恒成立 只需证明-+-322x x 114->+x x 在),1(+∞上恒成立即可, 记24()341F x x x x =-+-+,得()21432)(++-='x x x F , 再记()2142)(++=x x x G ,得()0182)(3>+-='x x G 在),1(+∞上恒成立所以)(x G 在),1(+∞上增,而3)1(=G ,所以)(x F '在),1(+∞上恒正,所以)(x F 在),1(+∞上增,而0)1(=F ,所以-+-322x x 114->+x x 在),1(+∞上成立 综上:当4=a 时,方程1ln ++x ax 322+-=x x 只有一个解……………10分 而当4<a 时,14ln 1ln ++<++x x x a x , 且由上知≤++14ln x x 322+-x x ,所以4<a 时方程无解……………12分22. (Ⅰ)由DBC ACD ∠=∠,得DBC ∆∽分3 DCE ∆DCDB DE DC =,分52 DB DE DC ⋅= (Ⅱ)设M AC OD =⋂222r CM OM =+;分8222 CD CM MD =+分103,12)1(122 ==-+-r r r23. (Ⅰ)由已知[]2,2,1:2-∈-=x x y M ;分2: t y x N =+联立方程有一个解,可得11t +<≤+或54t =-分5(Ⅱ)当2-=t 时,直线N: 2-=+y x ,设M 上点为)1,(200-x x,则823243)21(212002≥++=++=x x x d , 当012x =-,所以所求的最小距离为823分10 24. (Ⅰ)2-=a ,原不等式分1122 +≤-⇔x x31221221≤⇔+≤-⇔+≤-≥x x x x x x 时分3311221221≥⇔+≤-⇔+≤-≤x x x x x x 时综上原不等式的解集为分53,31 ⎥⎦⎤⎢⎣⎡(Ⅱ)323)(+≤++⇔+≤x x a x x x f 分723233232ax a a x x x a x -≤≤--⇔≤+⇔+≤++ 15223123-≤≤-⇔≥-≤--a aa 且分10注明:数学勘误文理第6题,改为文理第19题及答题卡中,立体图形中左下角的改为。

黑龙江省哈尔滨市第三中学2015届高三第二次模拟考试数学(理)试题(扫描版)

2015年哈尔滨市第三中学第二次高考模拟考试数学(理工)答案一、选择题1-5 BADBC 6-10CCDDA 11-12 AB二、填空题(13)39 (14)72 (15)(16)17. (Ⅰ)由,得(Ⅱ)18.(Ⅰ)由题知,,设该群中某成员抢到钱数不小于3元为事件A,则. ………………………………4分(Ⅱ)(2) 由直方图知,抢到钱数在2元以下的共15人,其中1元以下的有3人.所以可能取值为0,1,2,3,,,,……………8分所以的分布列为…………10分所以的期望为…………………12分19.(Ⅰ)连结,交于点,则为中点,又为中点,故∥,又因为, ,所以∥面. ------------------------4分(Ⅱ)以为原点,如图建立空间直角坐标系. 设,则, , , , , ,设平面的法向量为,则,得, ----------5分同理得平面的法向量为, ------6分,得. - ------------------8分, ,设直线与平面所成角为,则,. ------------12分20. ----------4分,----------7分当,,,综上所述,,- ---------12分21.(Ⅰ)当时, ,………………………………2分单调区间为和为增函数;上为减函数…………………4分(Ⅱ)由,要使在上为增函数只需在恒大于等于0,得恒成立,由,得实数的取值范围为;……………8分先考察当时方程的解的个数由在上为增函数,且,而也当时得,且函数在上递减,所以方程在上有且只有一个解……………9分下面证明方程在上无解易证在上恒成立只需证明在上恒成立即可,记,得,再记,得在上恒成立所以在上增,而,所以在上恒正,所以在上增,而,所以在上成立综上:当时,方程只有一个解……………10分而当时, ,且由上知,所以时方程无解……………12分22. (Ⅰ)由,得∽,(Ⅱ)设;23. (Ⅰ)由已知;联立方程有一个解,可得或(Ⅱ)当时,直线N:,设M上点为,,则,当时取等号,满足,所以所求的最小距离为24. (Ⅰ),原不等式综上原不等式的解集为(Ⅱ)注明:数学勘误文理第6题,改为文理第19题及答题卡中,立体图形中左下角的改为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年哈尔滨市第三中学第一次高考模拟考试
理科数学参考答案
一、选择题:
题号
1 2 3 4 5 6 7 8 9 10 11 12
答案
A C C D B B C D B A B B
二、填空题:

13.1022
14.8(225)

15.4
16.3(3,]4
三、解答题:

17.解:(Ⅰ)BBBBBA22sin)sin21cos23()sin21cos23(sin

43)sin(cos4
3
22
BB

2
3
sinA
,3A. ………………………… 6分

(Ⅱ) 12cosAbACAB,24bc,
又bccbAbccba3)(cos22222,10cb,
cb,4b,6c
.………………………… 12分

18.解:(Ⅰ) )1()1(3)1)(1(11nnnnaaaa,

3111111nnaa
,即311nnbb,nb是等差数列.………6分
(Ⅱ)11b,3231nbn,………………………… 10分

231n
a
n
,25nnan.………………………… 12分

19. (Ⅰ)因为D、E分别是边AC和AB的中点,
所以BCED//,
因为BC平面BCH,ED平面BCH,
所以//ED平面BCH
因为ED平面BCH,ED平面AED,平面BCH平面HIAED
所以HIED//
又因为BCED//,
所以
IH
//
BC

. ………

…………………………… 4分
(Ⅱ) 如图,建立空间右手直角坐标系,由
题意得,
)0,0,0(D,)0,0,2(E,)2,0,0(A

)0,1,3(F,)0,2,0(E,)1,0,0(H

)2,0,2(EA,)0,1,1(EF

)1,2,0(CH
,)0,0,1(21DEHI,

设平面AGI的一个法向量为),,(1111zyxn,则

0011nEBnEA,


001111yx
zx

,令11z,解得11x,11y,则)1,1,1(1n

设平面CHI的一个法向量为),,(2222zyxn,则
0022nHInCH,


002221x
zy

,令22z,解得11y,则)2,1,0(2n

15
15
5321,cos21

nn

所以二面角CGIA的余弦值为1515 …………………………… 8分
(Ⅲ)法(一))2,1,3(AF,设)2,,3(AFAG
)12,,3()2,,3()1,0,0(AGAHGH
则02nGH,解得32,

3142)2(13323
2
22
AFAG
………………… 12分

法(二)取CD中点J,连接AJ交CH于点K,连接HJ,HKJ与CKA相似,

A
H
I

C
D

B
F

G

E

z

y
x
得2KJAK,易证GKHI//,所以314232AFAG…………… 12分

20. 解: (Ⅰ)因为OAB的面积为368,所以364By,……………2分
代入椭圆方程得)364,34(B,
抛物线的方程是:xy82 ……………4分
(Ⅱ) 存在直线l: 0411yx符合条件
解:显然直线l不垂直于y轴,故直线l的方程可设为4xmy,

与xy82联立得03282myy.

设),(),,(2211yxDyxC,则32,82121yymyy

12
2

11sin21sin2EF

OCODCODOCODyySSOEOFyyOEOFEOF


FE

yy

32

.……………6分

由直线OC的斜率为
11
1
8
yx
y


,故直线OC的方程为xyy18,与1121622yx联立得

1)1211664(212yyE,同理1)1211664(222yy
F

所以
2
E
y
1)1211664)(1211664(22212yyy

F
………8分

可得2Ey223625612148Fym
要使37712SS,只需
2
22
32(12148)77362563m








………10分

即21214849121m
解得11m,所以存在直线l: 0411yx符合条件………………………… 12分
21.解:(Ⅰ)bxaxxaxf)1()1ln()1(2)(,
0)0(baf

22
(1)(1)(1)feaebeaee
2

1ee

1a
,1b. ………………………………4分

(Ⅱ)xxxxf)1ln()1()(2,

设22)1ln()1()(xxxxxg,)0(x,xxxxg)1ln()1(2)(
(())2ln(1)10gxx,)(xg

在,0上单调递增,

0)0()(gxg,)(xg在,0上单调递增,
0)0()(gxg


2
)(xxf
.………………………………8分

(Ⅲ)设22)1ln()1()(mxxxxxh,
mxxxxxh2)1ln()1(2)(

(Ⅱ) 中知)1()1ln()1(22xxxxxx,xxx)1ln()1(,

mxxxh23)(

①当023m即23m时,0)(xh,)(xh在,0单调递增,0)0()(hxh,成立.

②当03m即23m时,xmxxxh)21()1ln()1(2)(,
mxxh23)1ln(2)(,令0)(xh
,得012320mex,

当0,0xx时,0)0()(hxh,)(xh在0,0x上单调递减0)0()(hxh,不成立.
综上,23m.………………………………12分
22. (Ⅰ)由PADPCB,AA,得PAD与PCB相似,

设,PAxPDy则有224xyyxyx,所以224ADxBCy…………5分

(Ⅱ)90C,4,22,22PAPCBC………………………………10分
23.解:(Ⅰ)直线l 的普通方程为420xy

曲线C的直角坐标系下的方程为2222()()122xy
圆心22(,)22到直线420xy的距离为52512d
所以直线l与曲线C的位置关系为相离. ……………5分
(Ⅱ)设22(cos,sin)22M,

cossin2sin()2,24xy

.……………10分

24. (Ⅰ)① 当12x时,1223xxx,所以3x
② 当102x时,12123xxx,所以为
③ 当0x时,121xx,所以1x
综合①②③不等式的解集为,31,……………5分

(Ⅱ)即12122122axxaxx
由绝对值的几何意义,只需11322aa…………………10分

相关文档
最新文档