功分器的设计原理
威尔金森功分器原理

威尔金森功分器原理
威尔金森功分器原理是一种物理和电子学的理论,用于计算传输线段上的功率分配。
它由美国物理学家约翰·威尔金森(John Willison)在1885年提出,是一种常用的电线路分析方法。
它使电力系统设计者可以快速计算出电网中各个分支线的功率分布情况,从而实现对电力系统的有效管理。
威尔金森功分器原理是以网络中每一段线路的电阻为基础,建立起一个等效电路来模拟网络的分布状况,然后利用电路的电压和电流的知识,可以计算出每个分支线上功率的分配情况。
威尔金森功分器原理的大致流程是:首先,建立一个由各个支路和母线组成的等效电路,其次,根据电路的电压和电流特性,对该等效电路进行计算,最后,根据计算的结果,得出每个支路上功率的分配情况。
威尔金森功分器原理具有很多优点,比如,它可以提供精确的功率分配结果;它可以使设计者更好地控制电力系统的电压和电流;它可以减少电力系统中的损耗等。
威尔金森功分器原理的应用非常广泛,它可以用于计算电力系统中各个支路上功率的分配,从而实现电力系统的有效管理;它也可以用于解决其他电力系统中的问题,如故障诊断、电压调整等。
总之,威尔金森功分器原理是一种用于计算传输线段上功率分配的物理和电子学理论,它具有准确、可靠、灵活等特点,在电力系统设计和管理中具有重要作用。
功分器工作原理(图文)

功分器工作原理(图文)
时间:2015-08-14 来源:天线设计网TAGS:功分器无源器件
随着无线通信技术的快速发展, 各种通讯系统的载波频率不断提高, 小型化低功耗的高频电子器件及电路设计使微带技术发挥了优势。
在射频电路和测量系统中, 如混频器、功率放大器电路中的功率分配与耦合元件[的性能将影响整个系统的通讯质量。
功分器工作原理
传输线结构的功率分配器[ 5] 如图1(a)所示,输入端口特性阻抗为Z0 , 两段分支微带线电长度为λ/4 , 特性阻抗分别为Z02和Z03, 终端分别接负载R2 和R3 。
首先做以下3 条假设:
(1) Port1 无反射;
(2) Port2 ,3 输出电压相等且同相;
(3) Port2 , 3 输出功率比值为任意指定值1 /k2。
根据上面3 条可得:
由传输线理论有:
设R2 =kZ0 , 则Z02, Z03, R3 的计算公式为:
取k =1 , 即得到3 dB Wilkinson 功分器的各参数值为:R2 =R3 =Z0 , Z02=Z03= √2Z0, 为了增加隔离度在Port2 , 3 之间添加了一个电阻R =2Z0 , 其结构如图所示。
通过上述分析得到3 dB Wilkinson 功分器的所有元件的参数值, 接着就可以进行设计了。
Wilkinson 功分器的设计
Wilkinson 功分器的指标参数
描述3 dB Wilkinson 功分器的关键指标[有3 个:
由对称关系可知, 端口1 , 3 间的耦合度等于端口1 , 2间的耦合度。
在理想情况下, 中心频率处的回波损耗和隔离度应该接近负无穷大,耦合度应该尽量接近3 dB
实物展示:。
功分器原理

功分器原理功分器是一种可以将输入功率均匀分配到多个输出端口的无源器件。
它通常由微带线、耦合间隙和集电极等组成。
功分器的原理可以通过分析其结构和工作过程来理解。
下面将详细介绍功分器的原理。
功分器的主要结构包括输入传输线、输出传输线和耦合间隙。
输入传输线是将输入功率引入功分器内部的通路,输出传输线则是将功分器内部的功率引出的通路。
而耦合间隙则充当了传输线之间的耦合元件,通过它实现多个输出端口的功率分配。
功分器的工作原理可以分为两个步骤:功率输入和功率分配。
首先是功率输入。
当输入功率通过输入传输线进入功分器时,其会在输入传输线上形成一个电磁波。
这个电磁波沿着传输线前进,并在耦合间隙处发生耦合。
耦合间隙的设计使得耦合程度较高,从而能够有效地将这个电磁波分配到多个输出传输线上。
接下来是功率分配。
当电磁波进入耦合间隙后,它会被分为两部分。
一部分沿着输入传输线继续前进,成为主模式;另一部分则通过耦合间隙进入输出传输线,成为耦合模式。
主模式在继续往前传播的过程中,会逐渐减弱,同时在耦合间隙处发生反射。
这部分被反射的功率会沿着输入传输线返回,最终在功分器的输入端被耗散。
耦合模式则会继续沿着输出传输线传播,将分配到的功率引出功分器。
根据耦合间隙的设计和布局,这些耦合模式的功率可以按照预定的比例分配到多个输出端口上。
值得注意的是,功分器的功率分配是根据耦合间隙的特性来实现的。
通过调整耦合间隙的宽度、长度以及两传输线之间的距离,可以改变功分器的功率分配比例。
因此,在设计功分器时需要根据具体的应用需求来确定功率分配比例,并进行精确的耦合间隙设计。
总之,功分器通过输入传输线引入输入功率,并利用耦合间隙将输入功率分配到多个输出传输线上。
通过调整耦合间隙的设计,可以实现不同的功率分配比例。
这使得功分器在无线通信、微波雷达等领域中有着广泛的应用。
功分器设计

摘要摘要功率分配器简称功分器,在被用于功率分配时,一路输入信号被分成两路或多路较小的功率信号。
功率合成器与功率分配器属于互易结构,利用功率分配器与功率合成器可以进行功率合成。
功分器在相控阵雷达,大功率器件等微波射频电路中有着广泛的应用。
现在射频和微波系统的设计越来越复杂,对电路的指标要求也越来越高,电路的功能也越来越多,电路的尺寸越来越小,而设计周期越来越短,传统的设计方案已经不能满足微波电路设计的需求,使用微波软件工具进行微波系统的设计已经成为微波电路设计的必然趋势。
小型低功耗器件是射频电路设计的研究热点,而微带技术具有小型化低功耗的优点,为此我学习了功分器的基本原理,结合当下的实际情况,设计了一个Wilkinson 功分器,并使用基于矩量法的ADS 软件设计、仿真和优化计算相关数据参数,进行参数的优化,并制作了一个性能良好的Wilkinson功分器。
关键词:功分器,ADS,优化参数IABSTRACTABSTRACTPower divider is referred to as power divider, in which the input signal is divided into two (or more) smaller power signals when the power distribution is used.Power synthesizer,and a power divider is reciprocity structure, power synthesis can be carried out using the power splitter and combiner.Power divider is widely used in phased array radar,high power devices and other microwave circuits.Now the design of RF and microwave system is more and more complex, the circuit requirements are also getting higher and higher,more and more functions of the circuit,the circuit size is getting smaller and smaller and design cycle becoming shorter and shorter, the traditional design scheme has been unable to meet the demand of microwave circuit design,using microwave software tools for the design of microwave system has become the inevitable trend of the microwave circuit design.small size and low power consumption devices is the focus of the research on the RF circuit design,and microstrip technology has the advantages of miniaturization and low power consumption. Therefore,I learned the basic principle of power divider, combined with the current actual situation,the design of the a Wilkinson power divider, and use based on method of moments of the ADS software to design,simulation and optimization calculation parameters,parameter optimization, and produced a good performance of Wilkinson power divider.Key words: power divider,ADS,optimization parametersII目录目录第1章引言 (1)1.1 功分器的发展概况 (1)第2章研究理论基础 (2)2.1 功分器的理论基础 (2)2.2 功分器技术基础 (4)2.2.1 什么是功分器 (4)2.2.2 功分器的重要性 (4)2.2.3 Wilkinson功分器的优点 (4)2.3 wilkinson基本工作原理: (5)2.4 Wilkinson功率功分器的基本指标 (6)2.4.1.输入端口的回波损耗 (6)2.4.2插入损耗 (7)2.4.3输入端口间的隔离度 (7)2.4.4功分比 (7)2.4.5相位平衡度 (7)第3章ADS的介绍 (8)3.1 ADS趋势 (8)3.2线性分析 (9)3.3电磁反正分析 (10)3.4仿真向导 (10)第4章功分器的原理图设计仿真与优化 (12)4.1 等分威尔金森功分器的设计指标 (12)4.2 建立工程与设计原理图 (12)4.2.1 建立工程 (12)4.2.2 设计原理图: (13)4.2.3 基板参数设置 (16)4.2.4 基板参数输入 (18)4.2.5 插入V AR (19)I I I目录4.2.6 V AR参数设置 (19)4.2.7 V AR微带线 (19)4.3 功分器原理图优化仿真 (21)4.4 功分器优化版图生成 (24)4.5 功分器优化 (24)4.6 功分器的版图生成与仿真 (31)第5章结论 (36)参考文献 (37)致谢 (38)外文资料原文 (39)译文 (41)I V第1章引言第1章引言1.1 功分器的发展概况功率分配器是将输入信号功率分成相等或不相等的几路输出的一种多端口的微波网络,广泛应用于雷达,多路中继通信机等大功率器件等微波射频电路中。
功分器工作原理(图文)

功分器工作原理(图文)引言概述:功分器是一种常用的无线通信设备,它在无线通信系统中起着至关重要的作用。
本文将详细介绍功分器的工作原理,并通过图文方式进行解释,以帮助读者更好地理解功分器的工作原理。
一、功分器的基本概念1.1 功分器的定义功分器,全称功率分配器,是一种用于将输入功率分配到多个输出端口的无源器件。
它通常由一组耦合的传输线构成,能够实现输入功率的平均分配或者按照一定的比例分配到各个输出端口。
1.2 功分器的分类功分器可以根据其工作原理和结构特点进行分类。
常见的功分器包括等分功分器、反射式功分器和混合式功分器。
等分功分器将输入功率平均分配到各个输出端口,反射式功分器则根据输入功率的幅度和相位进行分配,而混合式功分器则结合了等分功分器和反射式功分器的特点。
1.3 功分器的应用功分器广泛应用于无线通信系统中,特别是在天线系统和射频前端模块中。
它可以用于实现天线的多路复用、功率控制、信号分配等功能,为无线通信系统的正常运行提供了重要的支持。
二、等分功分器的工作原理2.1 等分功分器的结构等分功分器通常由一组等长度的传输线组成,每个传输线都与输入端口和输出端口相连。
这些传输线之间通过耦合结构相互连接,形成一个平衡的功分网络。
2.2 等分功分器的工作原理当输入功率进入等分功分器时,它会被传输线平均分配到各个输出端口。
这是因为等分功分器的传输线长度相等,导致输入信号的传播时间相同,从而实现了功率的等分。
2.3 等分功分器的特点等分功分器具有功率分配均匀、频率响应平坦、插入损耗低等特点。
它可以满足无线通信系统对功率分配的要求,提高系统的性能和可靠性。
三、反射式功分器的工作原理3.1 反射式功分器的结构反射式功分器通常由一组耦合的传输线和反射器组成。
传输线连接输入端口和输出端口,而反射器则用于根据输入功率的幅度和相位进行功率分配。
3.2 反射式功分器的工作原理当输入功率进入反射式功分器时,它会被传输线分配到不同的反射器。
T型功分器的设计与仿真.

T型功分器的设计与仿真1.改进型威尔金森功分器的工作原理功率分配器属于无源微波器件,它的作用是将一个输入信号分成两个(或多个)较小功率的信号,工程上常用的功分器有T型结和威尔金森功分器。
威尔金森功分器是最常用的一种功率分配器。
图1所示的为标准的二路威尔金森等功率分配器。
从合路端口输入的射频信号被分成幅度和相位都相等的两路信号,分别经过传输线Bl和BZ,到达隔离电阻两端,然后从两个分路端口输出,离电阻R两端的信号幅度和相位都相等,R上不存在差模信号,所以它不会消耗功率,如果我们不考虑传输线的损耗,则每路分路端口将输出二分之一功率的信号。
图1威尔金森功分器但是这种经典威尔金森等功率分配器有几个缺点:1、大功率应用的时候,要求隔离电阻的耗散功率大因此电阻的体积也会比较大2、如果功分器应用于较高的频段,波长就会与大功率电阻的尺寸相比拟,这样就需要考虑电阻的分布参数。
3、为了提高功分器性能,就要尽量减小Bl和BZ这两段传输线之间的藕合,因此在实际设计时,要求四分之一波长传输线Bl、BZ之间的距离较大,在低频应用时,由于四分之一波长较长,占用面积还是太大了,此外,四分之一波长传输线Bl、BZ的阻抗较高,因此线宽较细,制板的相对误差更大[24]。
为克服这些缺点,本文采用了一种改进型的威尔金森等功率分配器,如图2所示图2 改进型威尔金森功分器可以看到,它仅由四段传输线组成,没有隔离电阻。
传输线A 、Cl 、CZ 的特 征阻抗均为Z0。
传输线B 位于A 和Cl 、CZ 之间,它的电长度为四分之一波长, 特征阻抗为Z0/2。
从合路端输入的信号,通过传输线B ,被分成幅度和相位相等的的两路信号,分别经过传输线Cl 和C2到达分路端口一和二,在整个结构中,传输线B 起到了阻抗变换的作用。
从传输线A 、B 相接处向左看,输入阻抗为Z0。
从传输线B 与C1、C2相接处向右看,输入阻抗为Z0/2。
利用四分之一阻抗变换器的原理我们知道,传输线的特征阻抗为2/00Z Z ∙,即Z0/2。
功分器工作原理(图文)
功分器工作原理(图文)功分器是一种常见的电子器件,广泛应用于无线通信、雷达、卫星通信等领域。
它能够将输入信号分成多个不同频率的输出信号,具有重要的信号处理功能。
本文将详细介绍功分器的工作原理,并通过图文的方式进行解析。
一、功分器的基本概念功分器,全称为功率分配器,是一种被动器件,用于将输入信号按照一定的比例分配到多个输出端口上。
它通常由微带线、耦合器、隔离器等组成,具有低损耗、高隔离度等特点。
1.1 微带线功分器中的微带线是一种常用的传输线,由导体和绝缘层组成。
它的特点是结构简单、成本低廉,能够在高频率范围内传输信号。
微带线的宽度、长度和介质常数等参数会影响功分器的性能。
1.2 耦合器功分器中的耦合器用于将输入信号分配到不同的输出端口上。
常见的耦合器有平面耦合器、同轴耦合器等。
耦合器的设计需要考虑耦合度、带宽和插入损耗等因素。
1.3 隔离器功分器中的隔离器用于隔离不同的输出端口,防止信号之间的相互干扰。
隔离器通常由衰减器、隔离阻抗等组成。
隔离器的设计需要考虑隔离度、带宽和插入损耗等因素。
二、功分器的工作原理功分器的工作原理基于电磁场的相互作用和传输线的特性。
当输入信号进入功分器时,经过微带线、耦合器和隔离器等组件的作用,信号被分配到不同的输出端口上。
2.1 输入信号的传输输入信号首先通过微带线传输,微带线的特性阻抗和传输损耗会对信号产生影响。
通过合理设计微带线的宽度、长度和介质常数等参数,可以实现对输入信号的传输。
2.2 信号的分配经过微带线后,输入信号进入耦合器,耦合器将信号按照一定的比例分配到不同的输出端口上。
耦合器的设计需要考虑耦合度和插入损耗等因素,以实现对信号的精确分配。
2.3 信号的隔离分配到不同输出端口上的信号经过隔离器的作用,实现信号之间的隔离。
隔离器的设计需要考虑隔离度和插入损耗等因素,以实现对信号的有效隔离。
三、功分器的应用领域功分器作为一种重要的信号处理器件,广泛应用于无线通信、雷达、卫星通信等领域。
射频功分器原理
射频功分器原理一、引言射频功分器是一种常见的无源射频器件,可以将一个输入信号分配到多个输出端口,或者将多个输入信号合并成一个输出信号。
在无线通信系统中,射频功分器广泛应用于天线阵列、分布式天线系统、室内覆盖系统等场合。
本文将介绍射频功分器的基本原理、分类、设计方法和应用。
二、基本原理射频功分器的基本原理是通过电磁场耦合实现信号的分配和合并。
在传输线上,电磁波可以通过电容耦合、电感耦合或者微带线耦合等方式实现两条传输线之间的能量转移。
当两条传输线之间存在电磁耦合时,它们之间的能量会相互影响,从而实现信号的分配和合并。
三、分类根据功率分配方式不同,射频功分器可以分为等功率分配型和不等功率分配型。
等功率分配型指所有输出端口接收到的信号功率相等;不等功率分配型指各个输出端口接收到的信号功率不同。
根据结构形式不同,射频功分器可以分为平面波导型、微带线型、插入型、单元型等。
其中,平面波导型功分器适用于高功率、高频率的场合,微带线型功分器适用于低功率、小尺寸的场合。
四、设计方法射频功分器的设计方法主要包括传输线理论方法和矩阵理论方法。
传输线理论方法是通过计算传输线的特性阻抗和长度来实现信号的分配和合并;矩阵理论方法是通过构建矩阵方程来求解各个输出端口的信号幅度和相位。
在具体设计中,需要考虑以下因素:频率范围、插入损耗、隔离度、反射损耗等。
为了满足这些要求,可以采用优化设计算法,如基于遗传算法或者模拟退火算法的优化设计方法。
五、应用射频功分器广泛应用于天线阵列、分布式天线系统、室内覆盖系统等场合。
在天线阵列中,射频功分器可以将一个输入信号平均分配到多个天线单元上,从而实现波束形成和方向控制;在室内覆盖系统中,射频功分器可以将一个输入信号分配到多个室内天线上,从而实现室内信号覆盖。
六、总结射频功分器是一种常见的无源射频器件,通过电磁场耦合实现信号的分配和合并。
根据功率分配方式和结构形式不同,射频功分器可以分为多种类型。
功分器设计报告
(4)输出端口间的隔离度 端口 3 和端口 2 互为隔离端口,在理想情况下,隔离端口间应没有相互输出 的功率,但由于设计及制作精度的限制,使隔离端口间尚有一些功率输出。端口 3 到端口 2 的隔离度定义为: D 20 lg S 23 (dB)
/ 4
Zo 2Z o Zo
2Z o Zo 2Z o
/ 4
图2
关于这一点,我没有详述,大家可以参考由栾秀珍、房少军、金红和邰佑城 老师编著的《微波技术》这本书,书中对这阐述的非常详细。
三、功分器的基本指标
(1)频率范围 频率范围是各种射频和微波电路工作的前提, 功率分配器的设计结构和尺寸 大小与工作频率密切相关, 必须首先明确功率分配器的工作频率,才能进行具体 的设计工作。尤其是需要指明中心频率及其频带宽度。 (2)输入端口 1 的回波损耗 用 RL1 表示的端口 1 的回波损耗为: RL1 20 lg S11 (dB) (3)输入输出间的传输损耗 定义为输出端口 2 的输出功率 P2 和输入端口 1 的输入功率 P1 之比,记为
姓名:陶伟 班级:电科 09-1 班 学号:2220092322
一、 引言
功率分配器是将输人功率分成相等或不相等的几路功率输出的一种多端口 微波网络。在微波系统中, 需要将发射功率按一定的比例分配到各发射单元, 如 相控阵雷达等, 因此功分器在微波系统中有着广泛的应用。它的性能好坏直接影 响到整个系统能量的分配、合成效率。功率分配器有多种形式,其中最常用的是 四分之一波长(λp/4)功率分配器,这种功率分配器称为威尔金森(Wilkinson) 功率分配器。 威尔金森功率分配器由三端口网络构成, 其功率分配可以是相等的, 也可以是不相等的。在这里,我介绍的是等功率分配的微带线 Wilkinson功率分 配器。
微带不等分功分器设计与仿真
微带不等分功分器设计与仿真一、摘要功分器全称功率分配器,英文名Power divider,是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时可也称为合路器。
一个功分器的输出端口之间应保证一定的隔离度。
功分器的主要技术参数有功率损耗(包括插入损耗、分配损耗和反射损耗)、各端口的电压驻波比,功率分配端口间的隔离度、功率容量和频带宽度等。
二、设计目的和意义三、设计原理功分器全称功率分配器,是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时可也称为合路器。
一个功分器的输出端口之间应保证一定的隔离度。
功分器的主要技术参数有功率损耗(包括插入损耗、分配损耗和反射损耗)、各端口的电压驻波比,功率分配端口间的隔离度、功率容量和频带宽度等。
功分器也叫过流分配器,分有源,无源两种,可平均分配一路信号变为几路输出,一般每分一路都有几dB的衰减,信号频率不同,分配器不同衰减也不同,为了补偿衰减,在其中加了放大器后做出了无源功分器。
功分器的功能是将一路输入的卫星中频信号均等的分成几路输出,通常有二功分、四功分、六功分等等。
功分器的工作频率是950MHz-2150MHz,卫视烧友想必对功分器是再熟悉不过了。
以上三个器件的用途和性能是完全不同的,但在日常使用中往往容易把名称混淆了,使得人们在使用中容易产生困惑.*接收系统中的多台卫星接收机,共用一面天线,几面天线共用一台卫星接收机,以及两台以上卫星接收机和两面以上天线共用,它们之间的连接除了依靠电缆之外,主要是靠切换器的组合编程来实现的。
功分器是接多个卫星接收机用的.如果一套天线要接多个卫星接收机就要用功分器.根据所接接收机的多少选用功分器.如果接两接收机就用二功分器.接四接收机就用四功分器。
功率分配器可以采用定向耦合器和分路器两种方法实现。
但定向耦合器的结构较复杂 , 其功率分配的比值又往往与频率有关 , 无法满足宽带功率分配的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计资料项目名称:微带功率分配器设计方法拟制:审核:会签:批准:二00六年一月微带功率分配器设计方法1. 功率分配器论述:1.1定义:功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。
1.2分类:1.2.1功率分配器按路数分为:2路、3路和4路及通过它们级联形成的多路功率分配器。
1.2.2功率分配器按结构分为:微带功率分配器及腔体功率分配器。
1.2.2根据能量的分配分为:等分功率分配器及不等分功率分配器。
1.2.3根据电路形式可分为:微带线、带状线、同轴腔功率分配器。
1.3概述:常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下:(1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。
微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。
(2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。
下面对微带线、带状线功率分配器的原理及设计方法进行分析。
2.设计原理:2.1分配原理:微带线、带状线的功分器设计原理是相同的,只是带状线的采用的是对称性空气填充或介质板填充,而微带线的主要采用的是非对称性部分介质填充和部分空气填充。
下面我们以一分二微带线功率分配的设计为例进行分析。
传输线的结构如下图所示,它是通过阻抗变换来实现的功率的分配。
图1:一分二功分器示意图在现有的通信系统中,终端负载均为50Ω,也就是说在分支处的阻抗并联后到阻抗结处应为50Ω。
如上图匹配网络,从输入端口看Ω==500Z Z in ,而Ω==50//21in in in Z Z Z ,且是等分的,所以1in Z =2in Z ,①处1in Z 、②处2in Z 的输入阻抗应为100Ω,这样由①、②处到输出终端50Ω需要通过阻抗变换来实现匹配。
2.2阶梯阻抗变换:在微波电路中,为了解决阻抗不同的元件、器件相互连接而又不使其各自的性能受到严重的影响,常用各种形式的阻抗变换器。
其中最简单又最常用的四分之一波长传输线阶梯阻抗变换器(图2)。
它的特性阻抗Z1为待匹配的阻抗。
Z2Z1Z0图2:λ/4阻抗变器示意图根据特性阻抗匹配原理:Lin R Z Z 201=,其中in Z 为匹配后的输入阻抗,01Z 为四分之一波长传输线特性阻抗,L R 为负载阻抗,则201Z Z Z ⨯=,其长度L 为中心频率导引波长的1/4,即L=λg/4。
相当于电长度θ为θ=π/2。
这种变换器的显著特点就是简单,用任一种形式的传输线均能实现,但当频率偏离中心时,其电长度不再是π/2,变换特性也随之恶化。
它对频率的敏感,使它仅适合于窄带运用。
在需要宽带匹配的场合,应采用多节阶梯阻抗变换器或各种渐变线变换器。
我们常用的通信频率范围较宽,所以经常采用多节来实现,下面对多节阻抗变化器进行分析。
在多节阶梯阻抗变换器中,各阻抗阶梯所产生的反射波彼此抵消,于是匹配的频带得以展宽。
多节阶梯阻抗变换器中最常用的是每节长度为1/4波长变换器(图3)。
图3:多节λ/4阻抗变器示意图对于阻抗变化器,衡量其性能与设计所根据的指标,通常是:匹配带宽、带内最大电压驻波比以及插入损耗等。
同样,一个功分器也是一个阻抗变换器,也是从这几个方面来考虑设计的。
多节阶梯阻抗变化器带内的电压驻波比响应特性常用的是最平坦响应和切比雪夫响应两种,但与带通滤波器不同的是它对带外抑制没什么要求。
参考图3,设待匹配的阻抗值为Z0和Zn+1,其设Zn+1>Z0。
为了设计计算方便,我们把阻抗值对Z0进行归一化。
这样,待匹配的阻抗值就分别为1和R= Zn+1/Z0,R 也称为阻抗变换比。
如图1,从100Ω到50Ω的阻抗变换比R=100/50=2 。
我们知道,对于单节的1/4波长阻抗匹配,201R Z Z ⨯=(Z0=R2=50Ω)所以502201⨯=⨯=R Z Z Ω=70.7Ω。
对于多节的,计算原理同单节的,每一节的阻抗都等于前后阻抗的几何平均值,即11+-⨯=n n n Z Z Z 。
无耗传输线构成的四分之一波长阶梯阻抗变换器,一般设计的主要依据是许可的最大电压驻波比ρm ,和所需的带宽Δ。
Δ=2(λg1-λg2)/(λg1+λg2)=2(f2-f1)/(f2+f1)λg1和λg2分别为实际频带的下限和上限频率的导引波长,即f1、f2分别为下限和上限频率,根据ρm 和Δ可以确定所需要的节数。
进行完阻抗变换后,如果一个功分器各输出路之间没有隔离,信号就会相互干扰,无法实现功分,那么下面我们将对如何实现隔离进行分析。
2.2隔离原理:上面运用阶梯阻抗变换器原理仅仅对功分器的传输进行了匹配,而每个输出端口间并没有进行匹配,所以端口间没有隔离。
为了实现隔离可以通过输出路与路间的阻抗匹配(常称为隔离电阻)达到要求,那么下面采用奇、偶模法来进行分析。
图4:激励响应示意图如上图,当输出端加激励U 时,可等效为偶模激励和奇模激励的叠加 。
图5:偶模电压激励等效图 如图5,当偶模电压激励时,两路的相位相同,则信号沿阶梯阻抗变换器传输,理论上隔离电阻上是没信号的,前面已经分析这个电图6:奇模电压激励等效图如图6,当奇模电压激励时,两路的相位相差180度,则信号沿隔离电阻传输,要达到匹配,则需对隔离电阻进行分析。
+ V/2-+ V/2 -当节数m=1时,在分配原理中已经进行了分析,如图6,此时1/4波长阻抗为100Ω,则R//100Ω= 0Z =50Ω,隔离电阻R=100Ω。
当m=2时,隔离电阻的计算公式如下:图7:两节二功分器示意图 ()()Φ-+=21221212cot 2Z Z Z Z Z Z R()()2212212122Z Z Z R Z Z R R -++= ⎥⎦⎤⎢⎣⎡+--=Φ1121121212f f f f π. 当m ≥3时,我们可以运用二端口网络进行分析,只是隔离电阻的计算相当繁琐,可以查附表Ⅱ,阻抗分别为0Z 归一化值。
还给出了输入和输出端口的最大电压驻波比ρ0,ρ2,ρ3。
3.设计步骤:功分器的设计可以分为以下几个步骤来进行。
3.1确定相对带宽:根据频率范围,确定中心频率:2b f a f m f += (b a f f ,分别为下,上限频率),主通带的相对带宽:m a b f f f -=ϖ。
3.2确定各个端口的波纹系数:输入端口:ρ0(max)=设计频带内波纹大小ρm 输出端口:ρ2(max)=ρ3(max)≈1+0.2(ρm -1)输出端口最小隔离度近似为:I (min)≈20log135.2-m ρ dB 3.3确定T 型节处的阻抗变换比: 根据上面分配原理可知,对于公分器在T 型节处,阻抗比为:一分二:R=2 一分三:R=3 一分四:R=43.4确定1/4波长阻抗变换器的节数:根据ϖ、ρ查表(见附录),可以确定采用四分之一波长的节数m ,一般也可以根据m=f2/f1(f2为终止频率,f1为起始频率)来确定。
3.5计算每一级1/4波长的阻抗(对输入输出端驻波进行匹配):根据上述阶梯阻抗原理对每一级1/4波长进行匹配,确定每一级的阻抗,从而根据线路板的厚度及介电常数确定好传输线的宽度,传输线的长度是中心频率的1/4导波长。
3.6计算每一级的隔离电阻(对输出端间进行匹配):根据上述隔离原理可以通过阻抗变换对输出端口间进行匹配,从而使设计满足需要的隔离。
3.7插入损耗分析:插入损耗主要指理论损耗与附加损耗,理论损耗指理论上即存在的,是不可以消除的,这从能量守恒原理可知,对于功分器理论损耗为: 理想分配损耗(dB )=10log(1/N) N 为功分器路数。
设计时一定要考虑如何尽量减小由接头、线路板、电阻等引起的附加损耗,这就要求对材料进行分析,选择合适的材料也是很重要的。
表Ⅰ:常见功分器的理论损耗3.8功分器功率分析:我们知道,当从功率分配器的输入端加一功率,由于每一路间的信号是同幅同相的,而且理论上电路是完全匹配的,所以隔离电阻上无功率通过,也就是说不承受功率,所以功分器的功率容量主要根据插入损耗计算出在传输线上损耗的能量,从而计算出能够承受的最大功率即可。
当功分器作为合路器使用时我们可以根据以上隔离电阻原理进行分析,计算出隔离电阻上所承受的功率。
下面以一分二功分器作为合路器,以10W功率输入为例:(1) 当一输出端输入10W,其它端口接负载时,输入端输出的功率为5W,另一端口输出功率为0,隔离电阻消耗功率为5W。
(2)当功分器两输出端输入同幅同相10W功率信号,输入端输出功率为20W,隔离电阻不消耗功率。
(3)功分器两输出端输入同幅反相10W功率信号,输入端输出功率为0,隔离电阻消耗功率为20W。
4、设计实例:以0.8G-2.5G微带一分二的设计为例:4.1计算节数:①要实现两路功分,两路输入阻抗应为100Ω,并联后为50Ω②这样从输入端到输出端要实现匹配的阻抗比R=100Ω/50Ω=2,③要实现的带宽为0.8G-2.5G.中心频率为1.65GHz,相对带宽△=(2.5GHz-0.8GHz)/1.65GHz=1.03由以上条件可以查表,我们知道,频带要做的越宽,所需四分之一波长的节数也越多,但有个制约条节,如果节数多了 ,那样引起的插损也就越大,所以在做到带宽的同时,应尽量减少节数。
另外,要根据指标,查到相应的节数,在附表中查到的△=1.2,R=2的最大电压驻波比VSWR=1.2,最少用三节,理论能做到1.2的驻波比,但实际中还是很难做到驻波比1.2的指标,在设计时采用了四节,在表中查到△=1.2,R=2时最大电压驻波比VSWR=1.1。
4.2计算每节归一化阻抗:要查到每一节的阻抗及其长度,阻抗是用来确定微带线的宽度,依据表格可以查到每节的归一化阻抗(设计都是对50Ω阻抗进行归一化):08829.11=Z29123.12=Z54891.113==Z RZ 83775.124==Z R Z4.3算出每节的阻抗值:Ω=Ω⨯=41.545008829.11ZΩ=Ω⨯=56.645029123.12ZΩ=Ω⨯=45.775054891.13ZΩ=Ω⨯=89.915083775.14Z4.4依据阻抗值和每节四分之一波长,算出每节的长度和宽度(可以利用微带线计算软件),线路板厚0.8mm,介电常数2.45。
mm W 97.11= mm L 94.311= ① mm W 48.12= mm L 25.322= ② mm W 06.13= mm L 6.323= ③mm W 74.04= mm L 94.324= ④4.5计算隔离电阻:通过表Ⅱ可知,对于上面的0825一分二功分器,有四个隔离电阻,R4=2.06*50Ω≈100Ω,R3=3.45*50Ω≈170Ω,R2=5.83*50Ω≈290Ω,R3=9.64*50Ω≈480Ω。