质量工具MSA bias判定标准
质量管理工具之测量系统分析(MSA)

质量管理工具之测量系统分析(MSA)摘要:在日常生产中,我们经常根据获得的过程加工部件的测量数据去分析过程的状态、过程的能力和监控过程的变化;那么,怎么确保分析的结果是正确的呢?我们必须从两方面来保证,一是确保测量数据的准确性/质量,使用测量系统分析(MSA)方法对获得测量数据的测量系统进行评估;二是确保使用了合适的数据分析方法,如使用SPC工具、试验设计、方差分析、回归分析等。
下面主要针对测量系统分析(MSA)来进行讲解。
测量系统分析(MSA)测量系统分析(MSA)是对每个零件能够重复读数的测量系统进行分析,评定测量系统的质量,判断测量系统产生的数据可接受性。
测量系统分析(MSA)的目的:•确定所使用的数据是否可靠:•评估新的测量仪器•将两种不同的测量方法进行比较•对可能存在问题的测量方法进行评估•确定并解决测量系统误差问题量测过程说明:如果测量的方式不对,那么好的结果可能被测为坏的结果,坏的结果也可能被测为好的结果,此时便不能得到真正的产品或过程特性。
测量系统的组成1)量具:任何用来获得测量结果的裝置。
2)测量系统:量具 ( equipment )测量人員 ( operator )被测量工件 ( parts )程序、方法 ( procedure, methods )上述几点的交互作用测量系统误差其中:“重复性”和“再现性”是测量误差的主要来源。
理想的测量系统理想的测量系统在每次使用时,应只产生“正确”的测量结果。
每次测量结果总应该与一个标准值相符。
一个能产生理想测量结果的测量系统,应具有零方差、零偏倚和所测的任何产品错误分类为零概率的统计特性。
以上是对测量系统分析(MSA)的基本内容进行了介绍,MSA作为质量管理的五大核心工具之一,对于品质的质量控制起到了非常重要的作用。
MSA(培训课程)

• 磨损或损坏的基准,基准出现误差
• 校准不当或调整基准的使用不当
• 仪器质量差─设计或一致性不好
• 仪器设计或方法缺乏稳健性
• 不同的测量方法─装置、安装、夹紧、技术
• 量具或零件变形
• 环境变化─温度、湿度、振动、清洁度
• 违背假定、在应用常量上出错
• 应用─零件尺寸、位置、操作者技能、疲劳、观察错误
■测量定义为赋值(或数)给具体事物以表示它们之间 关于特定性的关系。这个定义由美国标准局首次提出。
赋值过程定义为测量过程,而赋予的值定义为测量值。
■量具:任何用来获得测量结果的装置。
■测量系统:是用来对被测特性定量测量或定性评价的 仪器或量具、标准、操作、方法、夹具、 软件、人员、环境和假设的集合;用来获 得测量结果的整个过程。
• 足够的分辨率和灵敏度。为了测量的目的,相对 于过程变差或规范控制限,测量的增量应该很小。 通常所有的十进制或10/1法则,表明仪器的分辨 率应把公差(过程变差)分为十份或更多。这个规则 是选择量具期望的实际最低起点。
• 测量系统应该是统计受控制的。这意味着在可重
复条件下,测量系统的变差只能是由于普通原因
利用同一量具,重复量测相同工件同一质量特性,所得数据 之 变异性。是指数据的分布。
位置 (Location )
宽度 (Width )
10
MSA 测量系统分析
4.1低质量数据的原因和影响
■低质量数据的普遍原因之一是变差太大 ■一组数据中的变差多是由于测量系统及其环境的相
互作用造成的。 ■如果相互作用产生的变差过大,那么数据的质量会
太低,从而造成测量数据无法利用。如:具有较大 变差的测量系统可能不适合用于分析制造过程,因 为测量系统的变差可能掩盖制造过程的变差。
简单明了的MSA(测量系统分析)方法

MSA(MeasurementSystemAnalysis)使用数理统计和图表的方法对测量系统的分辨率和误差进行分析,以评估测量系统的分辨率和误差对于被测量的参数来说是否合适,并确定测量系统误差的主要成分。
以事实和数据驱动管理,而数据是测量的结果,因此在开展统计分析时,要特别强调数据本省的质量和相应的测量系统分析。
测量:是指对具体事物赋予数值,以表示它们与特定特性之间的关系。
在这个过程中,由人员、仪器或量具、测量对象、操作方法和环境构成的整体就是测量系统。
所谓测量系统分析,是指运用统计学的方法对测量系统进行评估,在合适的特性位置测量正确的参数,了解影响测量结果的波动来源及分布,并确认测量系统是否符合工程需求。
任何实测数据的波动都可以看作过程的波动和测量系统的波动之和,即σ2总=σ2过程+σ2测量系统六个常见的测量系统评估项目稳定性、偏倚、线性、分辨率、重复性和再现性。
其中偏倚是测量系统准确度的度量。
01偏倚Bias测量观察平均值与该零部件采用精密仪器测量的标准平均值的差值02线性表征量具预期工作范围内偏倚值的差别03稳定性表征测量系统对于给定的零部件或标准件随时间变化系统偏倚中的总偏差量,与通常意义上的统计稳定性是有区别的04重复性指同一个评价人,采用同一种测量仪器,多次测量同一零件的同一特性时获得的测量值(数据)的偏差05再现性指由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的偏差通常,前三种指标用于评价测量系统的准确性,后两种指标用于评价测量系统的精确性。
测量系统的准确性可以通过对设备的校准等对测量系统进行维护、监控,也就是说,通过对测量系统的分辨率、偏倚、线性和稳定性进行分析后进行校准后可以解决其准确性问题。
工程上通常用测量系统的精确性也就是其重复性和再现性来研究其统计特性,就是通常所说的“GR&R研究”。
测量系统分析流程及方法测量系统分析是一项重要的系统工程。
测量系统分析(MSA)方法

测量系统分析(MSA)方法测量系统分析(MSA)方法**** 1.目的对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据的质量。
2.范围适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。
3.职责3.1质管部负责测量系统分析的归口管理;3.2公司计量室负责每年对公司在用测量系统进行一次全面的分析;3.3各分公司(分厂)质检科负责新产品开发时测量系统分析的具体实施。
4.术语解释4.1测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。
4.2偏倚(Bias):指测量结果的观测平均值与基准值的差值。
4.3稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量平均值总变差,即偏倚随时间的增量。
4.4重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。
4.5再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。
4.6分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。
4.7可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为0.02mm。
4.8有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。
用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。
关于有效分辨率,在99%置信水平时其标准估计值为1.41PV/GR&R。
4.9分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。
4.10盲测:指在实际测量环境中,检验员事先不知正在对该测量系统进行分析,也不知道所测为那一只产品的条件下,获得的测量结果。
MSA指导

一、测量系统分析在日常生产中,我们经常根据获得的过程加工部件的测量数据去分析过程的状态、过程的能力和监控过程的变化;我们必须从两方面来保证分析的结果是正确的,一是确保测量数据的准确性/质量,使用MSA方法对获得测量数据的测量系统进行评估;二是确保使用了合适的数据分析方法,如使用SPC工具、试验设计、方差分析、回归分析等。
测量系统的误差由稳定条件下运行的测量系统多次测量数据的统计特性:偏倚和方差来表征。
偏倚指测量数据相对于标准值的位置,包括测量系统的偏倚(Bias)、线性(Linearity)和稳定性(Stability);而方差指测量数据的分散程度,也称为测量系统的R&R,包括测量系统的重复性(Repeatability)和再现性(Reproducibility)。
一般来说,测量系统的分辨率应为获得测量参数的过程变差的十分之一。
测量系统的偏倚和线性由量具校准来确定。
测量系统的稳定性可由重复测量相同部件的同一质量特性的均值极差控制图来监控。
测量系统的重复性和再现性由GageR&R研究来确定。
分析用的数据必须来自具有合适分辨率和测量系统误差的测量系统,否则,不管我们采用什么样的分析方法,最终都可能导致错误的分析结果。
在ISO10012-2和QS9000中,都对测量系统的质量保证作出了相应的要求,要求企业有相关的程序来对测量系统的有效性进行验证。
测量系统特性类别有F、S级别,另外其评价方法有小样法、双性、线性等.分析工具在进行MSA分析时,推荐使用Minitab软件来分析变异源并计算Gage R&R和P/T。
并且根据测量部件的特性,可以对交叉型和嵌套型部件分别做测量系统分析。
当一个部件只被一个测量员测量一次,其获得的数据模型就是嵌套模型;如果被多个测量员重复多次测量,其获得的数据模型就是交叉模型,而原则上,如果部件条件允许时,部件应该被多个测量员重复测量,以评估测量系统的再现性和重复性变差。
读完此文,终于懂了MSA(测量系统分析)

读完此文,终于懂了MSA(测量系统分析)1、什么是MSA?MSA是Measure System analyse的第一个字母的缩写。
2、为什么叫测量系统而不是测量工具或测量仪器?因为影响测量结果的因素除了所使用的仪器外,还包括测量的标准、操作人员的使用方法、读数误差、夹具的松紧、环境温度等综合因素。
(人、机、料、法、环)使用的仪器是好的,并不意味着测量出的结果就是准确的,因此称为测量系统。
是对影响测量结果的因素的综合分析.3、为什么要做MSA?是为了对所使用的测量系统做一个科学、系统的分析和评定,保证测量出的结果是真实、有效的(六西格玛中强调用数据说话)。
4、量具经过校验是合格的,是否可以不用做MSA分析?现在要用一把千分尺测量槽的直径。
千分尺长期测量这一款产品,两个接触面上因为磨损出现了一个和产品直径相对应的圆弧(如红线所示)。
校验时测量标准块用的接触面的最高点,因此校验是合格的。
但如果拿来测量产品,就会因为圆弧而有一定的误差。
5、MSA分析的前提A、选择合适的量具:必须保证量具有足够的分辩率力,最少满足1/10原则。
分辩力太低不能探测出过程中的变差。
B、测量系统是稳定而且受控制的,即不能包括特殊变差在内。
如有特殊变差则不能用于控制。
6、哪些情况下需做MSA分析?·购买的新量具;·根据顾客要求或过程要求;·持续改进的过程中,测量数据之前;·按PPAP的要求,所有CP中提到的量具都需要进行分析。
对于用同一个量具测量多个尺寸的情况,则选择KPC尺寸或公差最小的尺寸进行分析。
7、MSA方法的分类· 计量型分析(极差法、均值极差法等)· 计数型分析(交叉法)· 破坏型分析(嵌套法)8、基本术语MSA中的术语很多,主要是分析以下几项,合称MSA的五性(详见下页图示):·偏倚·线性·稳定性·重复性和再现性,合称R&R或GRR偏倚:实际测量值和真值间的差值·通常又被称为”准确度“,但是因为准确度还有其它多种意思,因此不建议用准确度来代替”偏倚“。
测量系统分析(MSA)作业规范
测量系统分析(MSA)作业规范制订部门:品质部1. 目的对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据质量。
2. 范围适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。
3、权限与职责3.1 品质部负责测量系统分析的归口管理;每年对公司在用测量系统进行一次全面的分析。
3.2工程、品质负责新产品开发时测量系统分析的具体实施。
4.术语解释4.1 测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。
4.2 偏倚(Bias):指测量结果的观测平均值与基准值的差值。
4.3 稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量平均值总变差,即偏倚随时间的增量。
4.4 重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。
4.5 再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。
4.6 分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。
4.7 可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为0.02mm。
4.8 有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。
用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。
关于有效分辨率,在99%置信水平时其标准估计值为1.41PV/GR&R。
4.9 分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。
4.10 盲测:指在实际测量环境中,检验员事先不知正在对该测量系统进行分析,也不知道所测为哪一只产品的条件下,获得的测量结果。
MSA
MSA
• 可利用平均值—极差控制图来研究稳定性
– 平均值失控表示:系统不再正确地测量(偏倚已 经改变) – 可能的原因:需要校准等
0.2010 0.1995 0.1980
1.000 0.995 0.990
50
50
0
Gage R&R
Repeat
Reprod
Part-to-Part
1
2
3
4
5 P/T
6
7
8
9
10
0
Gage R&R
Repeat
Reprod
Part-to-Part
1
2
3
4
5 P/T
6
7
8
9
10
R Chart by operator
2 m
测量系统分析 ⊙为什么要进行MSA?
MSA
•因此我们需要:
通过一系列的科学方法——确保具有合适分辨力和 较小的测量系统误差的测量系统。
测量系统分析 ⊙为什么要进行MSA?
MSA
• MSA系统可以让你获得什么?
– 接受新测量设备的准则; – 一种测量设备与另一种测量设备的比较; – 评价怀疑有缺陷的量具的依据; – 维修前后测量设备的比较; – 计算过程变差所需的方法,以及生产过程的可 接受性水平;
测量系统分析 ⊙什么是MSA?
MSA
连续变量测量系统分析
OK 偏移?“准确性” OK (居中性—均值)
分辨率
线性?
OK
稳定性? 校准?
OK “精确性”(R&R) (离散性—偏差)
测量系统分析 ⊙什么是MSA?
MSA
• 测量系统的分辨率的意义:
MSA - 测量系统分析(MSA)在
四、测量系统所应具有之统计特性
测量系统必须处于统计控制中,这意味着测 量系统中的变差只能是由于普通原因而不是由 于特殊原因造成的。这可称为统计稳定性 。 测量系统的变差必须比制造过程的变差小 。 变差应小于公差带 。 测量精度应高于过程变差和公差带两者中精 度较高者,一般来说,测量精度是过程变差和 公差带两者中精度较高者的十分之一 。 测量系统统计特性可能随被测项目的改变而 变化。若真的如此,则测量系统的最大的变差 应小于过程变差和公差带两者中的较小者 。
第二阶段的评定 目的是在验 。 常见的就是“量具R&R”是其中的一种型 式。
七、各项定义
1、 量具: 任何用来获得测量结果的装置,包 括用来测量合格/不合格的装置 。 2、测量系统:用来获得表示产品或过程特 性的数值的系统,称之为测量系统。测量系 统是与测量结果有关的仪器、设备、软件、 程序、操作人员、环境的集合。 3、量具重复性:指同一个评价人,采用同一 种测量仪器,多次测量同一零件的同一特性 时获得的测量值(数据)的变差。
17、数据 Data = 在一定条件下观测值的集合。可以 是计量型数据(量化的值,并有测量单位)或抽象 的数值(计数型数据或总数值,例如好/坏、通过/ 失败等)。 18、实验设计 Designed Experiment = 一种有计划 的研究,包括一系列有意图性的对过程要素进行改 变与其效果观测,对这些结果进行统计分析以便确 定过程变异之间的关系,从而改变这过程。 19、分辨力 Discrimination = 与最小可度单位同意。 分辨力是测量装置和标准的测量解析度、刻度限制、 或最小可检出的单位。它是量具设计的固有属性, 并通常以测量或分类的单位来呈现。数据的分类数 常称为分辨比率,因为它描述了对观测到的过程变 异,能够可靠的被区隔为多少类别。
msa测量系统分析定义与内容
测量系统分析在日常生产中,我们经常根据获得的过程加工部件的测量数据去分析过程的状态、过程的能力和监控过程的变化;那么,怎么确保分析的结果是正确的呢?我们必须从两方面来保证,一是确保测量数据的准确性/质量,使用测量系统分析(MSA)方法对获得测量数据的测量系统进行评估;二是确保使用了合适的数据分析方法,如使用SPC工具、试验设计、方差分析、回归分析等。
测量系统的误差由稳定条件下运行的测量系统多次测量数据的统计特性:偏倚和方差来表征。
偏倚指测量数据相对于标准值的位置,包括测量系统的偏倚(Bias)、线性(Linearity)和稳定性(Stability);而方差指测量数据的分散程度,也称为测量系统的R&R,包括测量系统的重复性(Repeatability)和再现性(Reproducibility)。
一般来说,测量系统的分辨率应为获得测量参数的过程变差的十分之一。
测量系统的偏倚和线性由量具校准来确定。
测量系统的稳定性可由重复测量相同部件的同一质量特性的均值极差控制图来监控。
测量系统的重复性和再现性由GageR&R研究来确定。
分析用的数据必须来自具有合适分辨率和测量系统误差的测量系统,否则,不管我们采用什么样的分析方法,最终都可能导致错误的分析结果。
在ISO10012-2和QS9000中,都对测量系统的质量保证作出了相应的要求,要求企业有相关的程序来对测量系统的有效性进行验证。
测量系统特性类别有F、S级别,另外其评价方法有小样法、双性、线性等.分析工具在进行MSA分析时,推荐使用Minitab软件来分析变异源并计算Gage R&R和P/T。
并且根据测量部件的特性,可以对交叉型和嵌套型部件分别做测量系统分析。
另外,Minitab软件在分析量具的线性和偏倚研究以及量具的分辨率上也提供很完善的功能,用户可以从图形准确且直观的看出量具的信息。
MSA的基本内容数据是通过测量获得的,对测量定义是:测量是赋值给具体事物以表示他们之间关于特殊特性的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质量工具MSA bias判定标准
一、MSA定义
测量系统定义:
用来对被测特性赋值的量具和其它设备,人员,标准,规程,操作,软件,环境和假设的集合,用来获得测量结果的整个过程.
测量系统变差来自于:
设备,人员,原材料,操作规程,环境等
测量误差来源
如果测量的方式不对,那么好的结果可能被测为坏的结果,坏的结果也可能被测为好的结果,此时便不能得到真正的产品或过程特性。
准确度与精密度误差:
1.偏倚(Bias)
是测量结果的观测平均值与基准值的差值。
真值的取得可以通过采用
更高等级的测量设备进行多次测量,取其平均值。
1.1造成过份偏倚的可能原因
仪器需要校准
仪器、设备或夹紧装置的磨损
磨损或损坏的基准,基准出现误差
校准不当或调整基准的使用不当
仪器质量差─设计或一致性不好
线性误差Ø应用错误的量具
不同的测量方法─设置、安装、夹紧、技术
测量错误的特性
量具或零件的变形
环境─温度、湿度、振动、清洁的影响
违背假定、在应用常量上出错
应用─零件尺寸、位置、操作者技能、疲劳、观察错误
指由同一个操作人员用同一种量具经多次测量同一个零件的同一特性时获得的测量值变差(四同)
重复性与偏倚值是独立的
零件(样品)内部:形状、位置、表面加工、锥度、样品一致性。
仪器内部:修理、磨损、设备或夹紧装置故障,质量差或维护不当。
基准内部:质量、级别、磨损
方法内部:在设置、技术、零位调整、夹持、夹紧、点密度的变差
评价人内部:技术、职位、缺乏经验、操作技能或培训、感觉、疲劳。
环境内部:温度、湿度、振动、亮度、清洁度的短期起伏变化。
违背假定:稳定、正确操作
仪器设计或方法缺乏稳健性,一致性不好
应用错误的量具Ø量具或零件变形,硬度不足
应用:零件尺寸、位置、操作者技能、疲劳、观察误差(易读性、视差)
由不同操作人员,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差(三同一异)
3.1再现性不好的可能潜在原因:
零件(样品)之间:使用同样的仪器、同样的操作者和方法时,当测量零件的类型为A,B,C时的均值差。
仪器之间:同样的零件、操作者、和环境,使用仪器A,B,C等的均值差
标准之间:测量过程中不同的设定标准的平均影响
方法之间:改变点密度,手动与自动系统相比,零点调整、夹持或夹紧方法等导致的均值差
评价人(操作者)之间:评价人A,B,C等的训练、技术、技能和经验不同导致的均值差。
对于产品及过程资格以及一台手动测量仪器,推蕮进行此研究。
环境之间:在第1,2,3等时间段内测量,由环境循环引起的均值差。
这是对较高自动化系统在产品和过程资格中最常见的研究。
违背研究中的假定
仪器设计或方法缺乏稳健性
操作者训练效果
应用─零件尺寸、位置、观察误差(易读性、视差)
4.线性(Linearity)
在量具正常工作量程内的偏倚变化量多个独立的偏倚误差在量具工作量程内的关系是测量系统的系统误差构成
4.1线性误差的可能原因
仪器需要校准,需减少校准时间间隔;
仪器、设备或夹紧装置磨损;
缺乏维护—通风、动力、液压、腐蚀、清洁;
基准磨损或已损坏;
校准不当或调整基准使用不当;
仪器质量差;—设计或一致性不好;
仪器设计或方法缺乏稳定性;
应用了错误的量具;
不同的测量方法—设置、安装、夹紧、技术;
量具或零件随零件尺寸变化、变形;
环境影响—温度、湿度、震动、清洁度;
其它—零件尺寸、位置、操作者技能、疲劳、读错。
5.稳定性(Stability)
测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。
5.1不稳定的可能原因
仪器需要校准,需要减少校准时间间隔
仪器、设备或夹紧装置的磨损
正常老化或退化
缺乏维护─通风、动力、液压、过滤器、腐蚀、锈蚀、清洁
磨损或损坏的基准,基准出现误差
校准不当或调整基准的使用不当
仪器质量差─设计或一致性不好
仪器设计或方法缺乏稳健性
不同的测量方法─装置、安装、夹紧、技术
量具或零件变形
环境变化─温度、湿度、振动、清洁度
违背假定、在应用常量上出错
应用─零件尺寸、位置、操作者技能、疲劳、观察错误。