认识金属材料及发展趋势

认识金属材料及发展趋势
认识金属材料及发展趋势

认识金属材料及发展趋势

柿子园中学贺俊航

金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。

人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。我们对金属材料的认识应从以下几方面开始:

一、分类:

金属材料通常分为黑色金属、有色金属和特种金属材料。

①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。

②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。

③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。

金属材料按生产成型工艺又分为铸造金属、变形金属、喷射成形金属,以及粉末冶金材料。铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造有色金属及合金。变形金属通过压力加工如锻造、轧制、冲压等成型,其化学成分与相应的铸造金属略有不同。喷射成形金属是通过喷射成形工艺制成具有一定形状和组织性能的零件和毛坯。

金属材料的性能可分为工艺性能和使用性能两种。

二、性能

为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。

材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。

材料的工艺性能指材料适应冷、热加工方法的能力。

三、生产工艺:

金属材料生产,一般是先提取和冶炼金属。

有些金属需进一步精炼并调整到合适的成分,然后加工成各种规格和性能的产品。提炼金属,钢铁通常采用火法冶金工艺,即采用转炉、平炉、电弧炉、感应炉、冲天炉(炼铁)等进行冶炼和熔炼;有色金属兼用火法冶金和湿法冶金工艺;高纯金属以及要求特殊性能的金属还采用区域熔炼、真空熔炼和粉末冶金工艺。金属材料通过冶炼并调整成分后,经过铸造成型,或经铸造、粉末冶金成型工艺制成锭、坯,再经塑性加工制成各种形态和规格的产品。对有些金属制品,要求

其有特定的内部组织和力学性能,还常采用热处理工艺。常用的热处理工艺有淬火、正火、退火、时效处理(将淬火后的金属制件置于室温或较高温度下保温适当时间,以提高其强度和硬度)等。

四、发展趋势:

金属材料的发展已从纯金属、纯合金中摆脱出来。随着材料设计、工艺技术及使用性能试验的进步,传统的金属材料得到了迅速发展,新的高性能金属材料不断开发出来。如快速冷凝非晶和微晶材料、高比强和高比模的铝锂合金、有序金属间化合物及机械合金化合金、氧化物弥散强化合金、定向凝固柱晶和单晶合金等高温结构材料、金属基复合材料以及形状记忆合金、钕铁硼永磁合金、贮氢合金等新型功能金属材料,已分别在航空航天、能源、机电等各个领域获得了应用,并产生了巨大的经济效益。

金属材料学基础试题及答案

金属材料的基本知识综合测试 一、判断题(正确的填√,错误的填×) 1、导热性好的金属散热也好,可用来制造散热器等零件。() 2、一般,金属材料导热性比非金属材料差。() 3、精密测量工具要选用膨胀系数较大的金属材料来制造。() 4、易熔金属广泛用于火箭、导弹、飞机等。() 5、铁磁性材料可用于变压器、测量仪表等。() 6、δ、ψ值越大,表示材料的塑性越好。() 7、维氏硬度测试手续较繁,不宜用于成批生产的常规检验。() 8、布氏硬度不能测试很硬的工件。() 9、布氏硬度与洛氏硬度实验条件不同,两种硬度没有换算关系。() 10、布氏硬度试验常用于成品件和较薄工件的硬度。 11、在F、D一定时,布氏硬度值仅与压痕直径的大小有关,直径愈小,硬度值愈大。() 12、材料硬度越高,耐磨性越好,抵抗局部变形的能力也越强。() 13、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 14、20钢比T12钢的含碳量高。() 15、金属材料的工艺性能有铸造性、锻压性,焊接性、热处理性能、切削加工性能、硬度、强度等。() 16、金属材料愈硬愈好切削加工。() 17、含碳量大于0.60%的钢为高碳钢,合金元素总含量大于10%的钢为高合金钢。() 18、T10钢的平均含碳量比60Si2Mn的高。() 19、一般来说低碳钢的锻压性最好,中碳钢次之,高碳钢最差。() 20、布氏硬度的代号为HV,而洛氏硬度的代号为HR。() 21、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 22、某工人加工时,测量金属工件合格,交检验员后发现尺寸变动,其原因可能是金属材料有弹性变形。() 二、选择题 1、下列性能不属于金属材料物理性能的是()。 A、熔点 B、热膨胀性 C、耐腐蚀性 D、磁性 2、下列材料导电性最好的是()。 A、铜 B、铝 C、铁烙合金 D、银 3、下列材料导热性最好的是()。 A、银 B、塑料 C、铜 D、铝 4、铸造性能最好的是()。 A、铸铁 B、灰口铸铁 C、铸造铝合金 D、铸造铝合金 5、锻压性最好的是()。

激光技术在金属材料加工工艺中的应用探析

激光技术在金属材料加工工艺中的应用探析 激光技术的研究和推广应用的水平是标志一个国家现代化程度的高级技术之一。激光加工技术是利用激光束与物质相互作用的特性对材料进行切割、焊接、表面处理、打孔、微加工等的一门技术。如今,激光加工作为先进制造技术已广泛应用于汽车、电器、航空、电子、冶金、机械制造等重要部门。就激光技术的优势、常见的激光技术以及在金属材料加工工艺中的应用进行了研究,对提高产品质量、劳动生产率和减少材料消耗等起到愈来愈重要的作用。 标签:激光技术;工艺;加工 激光加工是一种新兴的先进制造技术,具有自己的特色与规律,经过多年的积淀形成了激光加工理论和各种激光加工工艺参数。随着世界科技与经济发展的需要,激光技术有了迅速发展。激光与普通光相比具有单色性、相干性、方向性和高光强。同样激光加工设备也涉及到众多学科因而决定了它的高科技性和高收益率。纵观国际和国内激光应用场情况经过多年来的研究开发和完善,当代的激光器和激光加工技术与设备已相当成熟形成系列激光加工工艺。 1 激光技术优势分析 1.1 加工速度快,效率高 激光切割是当前各国应用最多的激光加工技术,在国外许多领域,例如,汽车制造业和机床制造业都采用激光切割进行钣金零部件的加工。在航天工业中,铝合金用激光焊接的成功应用是飞机制造业的一次技术大革命。在汽车工业中,激光加工技术优化了汽车结构,提高了汽车性能,降低了耗油量。激光精加工和微加工不但促进了工业的发展,也为制造行业提供了有利条件。随着大功率激光器光束质量的不断提高,激光切割的加工对象范围之广,几乎包括了所有的金属和非金属材料。例如,可以利用激光对高硬度、高脆性、高熔点的材料,进行形状复杂的三维立体零件切割,这也正是激光切割的优势所在。由于激光加工技术的高效率、无污染、高精度、热影响区小,因此在工业中得到广泛应用。另外,激光切割的优点还包括设置时间短,对不同工件和外形具有很好的适应性。 1.2 精准率高,无污染 激光焊接激光焊接是将光斑非常细小高强度的激光照射到工件表面,通过激光与物质的相互作用,使作用区域内的母材局部快速熔化、汽化,实现焊接。与传统的加工热源相比,激光具有高亮度性、高方向性、高单色性和高相干性等特点,因此,激光加工是一种新型的高能束流加工技术,对提高产品质量和劳动生产率,实现生产的自动化和无污染,以及减少材料消耗等起到愈来愈重要的作用。例如,3D激光切割技术是加工高强钢最经济的技术。激光切割适合高强钢加工毛边过程。对于这种加工,3D激光切割尤其适合这种已经成型的金属薄板。如果钢的强度达到1500MPa,就只能采用激光切割技术才能实现,没有其他更经

认识实习报告金属材料工程专业

认识实习报告 专业:金材BG141; 姓名:孙宇航; 学号:6516114123; 指导教师:陈丹;

二零一五年九月时间过得很快,转眼之间已经大二了,然而大多数同学对本专业的认识还不够,学校为了让我们更多的了解金属工艺学,金属的低压锻造,金属的热处理技术的认识,加深金属在工业各领域应用的感性认识,开阔视野,了解相关设备及技术资料,熟悉典型零件的加工工艺,特意安排我们到沈阳航天三菱汽车发动机制造有限公司,沈阳锻造工业有限公司,沈阳航天誉兴机械制造有限公司进行实习,在引导员和老师的带领下,从总体了解各个企业的生产原料、产品以及生产流程,并熟悉了一些重要的零部件的生产方法。 1.以下就是这次实习参观的三家的简介: 一:沈阳航天三菱汽车发动机制造有限公司

沈阳航天三菱 沈阳航天三菱汽车发动机制造有限公司是由中国、日本、马来西亚三国五家公司出资组建的中外合资企业,成立于1997年8月。中国航天汽车有限责任公司占股比30%,三菱自动车工业株式会社占股比25%,沈阳建华汽车发动机有限公司占股比21%,马中投资控股有限公司占股比14.7%,三菱商事株式会社占股比9.3%,公司注册资本73,825万元人民币,资产总额304,879万元(2012年4月底),厂址坐落在辽宁省沈阳市浑南新区航天路6号。 它的企业产品有: 公司引进日本三菱自动车4G6系列 (2.0/2.4L )、4G6 MIVEC (可变气门正时 及升程技术)系列(2.0/2.4L )、A9系列 (1.1/1.3/1.5/1.6L)发动机制造技术,产品

具有技术领先,低噪音、低振动、低油耗特点,排放可达到国四标准。我公司2007年最新引进的A9系列发动机具有高性能、轻量化、高环保等主要特点,是继在德国生产销售后,全球上第二家及亚洲首家生产销售此款发动机的公司。 截止2009年12月,发动机累计产销超过100万台,已为国内20多家整车厂配套。发动机已随整车出口到美国、意大利、埃及、澳大利亚等国际市场。我公司是由日本三菱商标委员会授权在中国境内唯一合法使用三菱标志的发动机生产企业。 4G6系列(2.0/2.4L ) 4G6 MIVEC (可变气门正 A9系列(1.1/1.3/1.5/1.6L)时及升程技术)系列

金属材料认识实习报告20XX字

金属材料认识实习报告20XX字 ,我们将为大家提供关于20XX年实习报告的信息,敬请期待! :xx :实习报告范文| 实习报告模板| 会计实习报告 | 大学生实习报告 | 顶岗实习报告 | 金工实习报告 | 毕业实习报告 | 土木工程实习报告 | 生产实习报告 |实习周记| 3000字范文 金属材料认识实习报告认识实习,顾名思义,金属注重于认识,非实习也。虽说认识实习只有短短的一个礼拜,但其实不然,在这个炎炎的夏日,每过一个小时,就像过了一整天。所以按心理时间来算,我们实习了两个礼拜。三次报告注重于理论、思想,参观考察是书本联系实际的运动。。。。通过以上报告,我又重新考虑了我的观点,重新确立了我的学习思想和方针,学习并学好高分子材料与工程这一专业,不仅是在现在,还是在未来,不仅是对自我还是对社会,都是一件非常重要且有意义的一件事。还有一个非常吸引人的报告是,86届(应为87级)校友陈晓东所做的“财富是怎样炼成的”这一讲座。他所讲的内容打动了我们每一个学生的心灵。主要内容:讲解,自我认识与接触。主讲人:公司负责人,解老师一、首先对船体

玻璃钢进行简要介绍: 1.玻璃钢(玻璃纤维增强塑料,GFRP或FRP),由合成树脂和玻璃纤维经复合工艺制作而成的一种功能型复合材料。性能特点:密度小,强度大,瞬间耐高温特性,良好的耐酸碱腐蚀性及不易导热性、电绝缘性,但硬度还是比不上钢铁,当然这是复合材料的通病了. 所以易做船体或游艇外壳。 2.对树脂的认识:⑴按分子结构:邻苯型、对苯型、间苯型、双酚A型、乙烯基型。 ⑵按功能:阻燃、耐热、光稳定、耐候、通用型等。昊天船艇公司用的就是多种不饱和聚酯树脂,不饱和聚酯树脂是复合材料生产中用量的树脂,由含有不饱和键(固化时不饱和键打开交联)的多元酸及多元醇反应生成。不饱和聚酯树脂:196#不饱和聚酯树脂,SR-1水溶性聚酯树脂,23#聚酯树脂,低收缩聚酯树脂,模具胶衣,固化剂02#,脱模剂01#。用于玻璃钢、纽扣、家具、雕塑及防腐。 3.玻璃纤维及制品:⑴玻璃纤维:EC9-32,EC9-32×3,EC-96×5,EC11-20XX等。⑵玻璃布:EWR800,EWR700(单向布),EWR600,EWR400,EW170,EW13#等。二、聚合物基复合材料(游艇模具)成型工艺:当然这一块公司并没有过多介绍,相对而言公司的手糊成型工艺较为简单,只是耗费劳动力而已. 1.热塑性树脂挤出成型工艺:⑴挤出成型工艺是借助旋转螺杆的推挤,使处在一定温度和压力下呈熔融流动状态的热塑性物料连续地通过一个口模,

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

金属材料的结构与性能

第一章材料的性能 第一节材料的机械性能 一、强度、塑性及其测定 1、强度是指在静载荷作用下,材料抵抗变形和断裂的能力。材料的强度越大,材料所能承受的外力就越大。常见的强度指标有屈服强度和抗拉强度,它们是重要的力学性能指标,是设计,选材和评定材料的重要性能指标之一。 2、塑性是指材料在外力作用下产生塑性变形而不断裂的能力。塑性指标用伸长率δ和断面收缩率ф表示。 二、硬度及其测定 硬度是衡量材料软硬程度的指标。 目前,生产中测量硬度常用的方法是压入法,并根据压入的程度来测定硬度值。此时硬度可定义为材料抵抗表面局部塑性变形的能力。因此硬度是一个综合的物理量,它与强度指标和塑性指标均有一定的关系。硬度试验简单易行,有可直接在零件上试验而不破坏零件。此外,材料的硬度值又与其他的力学性能及工艺能有密切联系。 三、疲劳 机械零件在交变载荷作用下发生的断裂的现象称为疲劳。疲劳强度是指被测材料抵抗交变载荷的能力。 四、冲击韧性及其测定 材料在冲击载荷作用下抵抗破坏的能力被称为冲击韧性。。为评定材料的性能,需在规定条件下进行一次冲击试验。其中应用最普遍的是一次冲击弯曲试验,或称一次摆锤冲击试验。 五、断裂韧性 材料抵抗裂纹失稳扩展断裂的能力称为断裂韧性。它是材料本身的特性。 六、磨损 由于相对摩擦,摩擦表面逐渐有微小颗粒分离出来形成磨屑,使接触表面不断发生尺寸变化与重量损失,称为磨损。引起磨损的原因既有力学作用,也有物理、化学作用,因此磨损使一个复杂的过程。 按磨损的机理和条件的不同,通常将磨损分为粘着磨损、磨料磨损、接触疲劳磨损和腐蚀磨损四大基本类型。

第二节材料的物理化学性能 1、物理性能:材料的物理性能主要是密度、熔点、热膨胀性、导电性和导热性。不同用 途的机械零件对物理性能的要求也各不相同。 2、化学性能:材料的化学性能主要是指它们在室温或高温时抵抗各种介质的化学侵蚀能 力。 第三节材料的工艺性能 一、铸造性能:铸造性能主要是指液态金属的流动性和凝固过程中的收缩和偏析的倾向。 二、可锻性能:可锻性是指材料在受外力锻打变形而不破坏自身完整性的能力。 三、焊接性能:焊接性能是指材料是否适宜通常的焊接方法与工艺的性能。 四、切削加工性能:切削加工性能是指材料是否易于切削。 五、热处理性能:人处理是改变材料性能的主要手段。热处理性能是指材料热处理的难易 程度和产生热处理缺陷的倾向。 第二章材料的结构 第一节材料的结合键 各种工程材料是由不同的元素组成。由于物质是由原子、分子或离子结合而成,其结合键的性质和状态存在的区别。 一:化学键 1:共价键 2:离子键 3:金属键 4:范德。瓦尔键 二:工程材料的键性 化学键:组成物质整体的质点(原子、分子、离子)间的相互作用力,成为化学键。 1:共价键:有些同类原子,例如周期表Ⅳa、Ⅴa、Ⅵa族中大多元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键,如金刚石、单质硅、SiC等属于共价键。 2:离子键:大部分盐类、碱类和金属氧化物在固态下是不导电的,熔融时可以导电。这类化合物为离子化合物。当两种电负性相差大的原子(如碱金属元素与卤素元素的原子)相互靠

对金属材料的基本认识

对金属材料的基本认识 作者:李志高 【摘要】金属材料之所以获得如此广泛的应用,除因冶炼铸铁和钢的铁矿石 在地壳中储存丰富外,主要是由于它具有制造机器所需要的物理、化学性能,并且还可以用简便的工艺方法加工成适用的机器零件,也即具有所需的工艺性能。熟悉金属材料的主要性能以及金属材料的成分,组织,性能之间的关系,以便根据零件的技术要求合理的选用金属材料。制造出高质量的机器,应用于日常生活中。 【关键词】金属材料性能铁碳合金刚的热处理工业用钢 【前言】机械制造中应用最广泛的是金属材料。一个国家金属材料的产量或 耗用量体现其国民经济发展水平。选出优良的金属材料,使得最终的产品能达到最高的质量,成了人们关注的焦点。这里主要介绍金属材料的主要性能及成分、组织、性能之间的关系。 一. 金属材料的主要性能 (一)力学性能 金属材料的力学性能又称机械性能,是金属材料在力的作用下所表现的性能。1.强度与塑性。金属材料的强度和塑性是通过拉伸试验测定的。强度是金属材料在力的作用下,抵抗塑性变形和断裂的能力。强度有多种指标,工程上以屈服点和抗拉强度最为常用。塑性是金属材料在力的作用下,产生不可逆永久变形的能力。常用的塑性指标是伸长率和断面收缩率。 2.硬度。金属材料表面抵抗局部变形,特别是塑性变形、压痕、划痕的能力称为硬度。硬度是衡量金属软硬的指标。金属材料的硬度是在硬度计上测出的。常用的有布氏硬度(HB)和洛氏硬度法(HR)。 3.韧性。金属材料断裂前吸收的变形能量的能力称为韧性,通常采用摆锤冲击弯曲试验机来测定。 4.疲劳强度。承受循环应力的零件在工作一段时间后,有时突然发生断裂,而且所承受的应力往往低于该金属材料的屈服点,这种断裂称为疲劳断裂。 (二)物理、化学及工艺性能。 1.物理性能。金属材料的物理性能主要有密度、熔点、热膨胀性、导热性、导电性和磁性等。由于机器零件的用途不同,对其物理性能的要求也有所不同。2.化学性能。主要是指在常温或高温时,抵抗各种介质侵蚀的能力,如耐酸性、耐碱性、抗氧化性等。 3.工艺性能。是金属材料物理、化学性能和力学性能在加工过程中的综合反可锻性

常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 1.生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。 硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和 Fe 形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于 FeS 化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S <0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 2)磷 磷是由矿石带入钢中的,一般说磷也是有害元素。磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。高级优质钢: P <0.025%;优质钢: P<0.04%;

金属材料的主要性能指标及涵义

㈠物理性能指标 密度符号:γ单位:kg/m3或g/cm3涵义说明:密度是金属材料的特性之一,它 表示某种金属材料单位体积的质量,不同金属材料的密度是不同的。在机械制造业上,通常利用“密度”来计算零件毛坯的质量(习惯上称质量)。金属材料的密度也直接关系到由它所制成的零件或构件的质量或紧凑程度,这点对于要求减轻机件自重的航空和宇航工业制件具有特别重要的意义 ㈡弹性指标 弹性模量符号:E 单位Mpa; 切削模量符号:G 单位Mpa涵义说 明:金属材料在弹性范围内,外力和变形成比例地增加,即应力与应变成正比例关系时(胡克定律),这个比例系数就称为弹性模量。根据应力,应变的性质通常又分为:弹性模量(E)和切削模量(G),弹性模量的大小,相当于引起物体单位变形时所需应力的大小,所以,它在工程技术上是衡量材料刚度的指标,弹性模量越大,刚度也越大,亦即在一定应力作用下,发生的弹性变形越小。任何机器零件,在使用过程中,大都处于弹性状态,对于要求弹性变形较小的零件,必须选用弹性模量大的材料 比例极限符号:σ (R P)单位Mpa 涵义说明:指伸长与负荷成正比地增 p 加,保持直线关系,当开始偏离直线时的应力称比例极限,但此位置很难精确测定,通常把能引起材料试样产生残余变形量为试样原长的0.001%或0.003%、0.005%、0.02%时的应力,规定为比例极限 弹性极限符号:σ 单位Mpa 涵义说明:这是表示金属材料最大弹性大的 e 指标,即在弹性变形阶段,试样不生产塑性变形时所能承受的最大应力,它和σp一样也难精确测定,一般多不进行测定,而以规定的σp数值代替之 ㈢强度性能指标 强度极限符号:σ单位Mpa 涵义说明:指金属材料受外力作用,在断裂前,单位面积上所能承受的最大载荷 抗拉强度符号:σ (R m)单位Mpa 涵义说明:指外力是拉力时的强度 b 极限,它是衡量金属材料强度的主要性能指标 抗弯强度符号:σ (σw)单位Mpa 涵义说明:指外力是弯曲力时的强度 bb 极限 抗压强度符号:σ (σy)单位Mpa涵义说明:指外力是压力时的强度极 bc 限,压缩试验主要适用于低塑性材料,如铸铁等 抗剪强度符号:τ单位Mpa 涵义说明:指外力是剪切力时的强度极限 抗扭强度符号:τ 单位Mpa涵义说明:指外力是扭转力时的强度极限 b

对金属材料学科的认识

对金属材料学科的认识
对金属材料学科的认识 材料学院金属材成及金属材料专业认识实习报告 认 郑州大学 材料科学与工程学院 识实习报告专 业:金属材料科学与工程 姓 名:张 博扬 学 号: 20120800725 指导老师:汤文博时 间:2014.09.01——2014.09.11
b5E2RGbCAP
目录 实习的意义和目的???????????????? 1 实习要求???????????????????? 1
p1EanqFDPw
基本要求?????????????????? 1 课后问题?????????????????? 3 报告要求?????????????????? 3 实习日程安排??????????????????3 实习内容???????????????????? 4
DXDiTa9E3d
郑州海特模具有限公司???????????? 4 郑州华晶金刚石股份有限公司????????? 6 司?????????? 10 郑州煤机综机设备有限公
RTCrpUDGiT
郑起重工设备有限公司???????????? 13
河南玉洋铝箔制造有限公司?????????? 17 厂??????? 20
中国航天电子技术研究院 693 分
5PCzVD7HxA
郑州机械研究所??????????????? 24
郑州郑锅容器有限公司???????????? 26 课后问题回答及实习心得????????????? 29
jLBHrnAILg
1 / 15

一、 实习的意义和目的 认识实习是材料成型与控制工程专业重要的教学环节,它是培养学生的实践等解决 实际问题的第二课堂,它是专业知识培养的摇篮,也是对工业生产流水线的直接认识与 认知。实习中应该深入实际,认真观察,获取直接经验知识,巩固所学基本理论,保 质保量的完成指导老师所布置任务。学习工人师傅和工程技术人员的勤劳刻苦的优秀 品质和敬业奉献的良好作风,培养我们的实践能力和创新能力,开拓我们的视野,培 养生产实际中研究、观察、分析、解决问题的能力。
xHAQX74J0X
通过认知实习,我们要对材料科学与工程专业建立感性认识,并进一步了解本专 业的学习实践环节。通过接触实际生产过程,一方面,达到对所学专业的性质、内容 及其在工程技术领域中的地位有一定的认识,为了解和巩固专业思想创造条件,在实 践中了解专业、熟悉专业、热爱专业。另一方面,让学生对炼铁---炼钢---轧钢的整 个钢铁生产系统及厂间的相互关系有基本的了解.对钢锭的轧钢生产过程及主要工艺设 备建立起必须的感性认识;同时,对铸造,焊接与锻压等生产过程建立起必要的感性认识, 以便为以后续专业课程的学习作好准备. 二、 实习要求 在 9 月 1 日的动员大会上,汤老师从四个专业方向出发对我们本次的实习提出了基 本要求。 铸造方向: 1、了解铸造合金的熔炼设备及工艺 2、了解砂处理设备与工艺,型芯砂的混制设备及工艺 3、了解铸造生产线与工装、模具设计 4、了解合金铸件的铸造工艺及质量控制
2 / 15
LDAYtRyKfE

常用金属材料的密度表

常用金属材料的密度表 材料名称 密度,克/ 立方厘米材料名称 密度,克/ 立方厘米 灰口铸铁 6.6~7.4不 锈 钢1Crl8NillNb、Cr23Ni187.9 白口铸铁7.4~7.72Cr13Ni4Mn98.5 可锻铸铁 7.2~7.43Cr13Ni7Si2 8.0 铸钢7.8纯铜材8.9工业纯铁7.8759、62、65、68黄铜8.5普通碳素钢7.8580、85、90黄铜8.7优质碳素钢7.8596黄铜8.8碳素工具钢7.8559-1、63-3铅黄铜8.5易切钢7.8574-3铅黄铜8.7锰钢7.8190-1锡黄铜8.8 15CrA铬钢7.7470-1锡黄铜8.54 20Cr、30Cr、40Cr铬钢7.8260-1和62-1锡黄铜8.5 38CrA铬钢7.8077-2铝黄铜8.6铬钒、铬镍、铬镍钼、铬锰、 硅、铬锰硅镍、硅锰、硅铬钢7.85 67-2.5、66-6-3-2、60-1-1铝黄铜8.5 镍黄铜 8.5 铬镍钨钢7.80锰黄铜8.5铬钼铝钢7.65硅黄铜、镍黄铜、铁黄铜8.5含钨9高速工具钢8.35-5-5铸锡青铜8.8含钨18高速工具钢8.73-12-5铸锡青铜8.69高强度合金钢`7.826-6-3铸锡青铜8.82轴承钢7.817-0.2、6.5-0.4、6.5-0.1、4-3锡青铜8.8 不锈钢0Cr13、1Cr13、2Cr13、3Cr13、 4Cr13、Cr17Ni2、Cr18、9Cr18、 Cr25、Cr28 7.754-0.3、4-4-4锡青铜8.9 Cr14、Cr177.74-4-2.5锡青铜8.75 0Cr18Ni9、1Cr18Ni9、 1Cr18Ni9Ti、 2Cr18Ni9 7.855铝青铜8.2 1Cr18Ni11Si4A1Ti7.52锻 铝 LD8 2.77 7铝青铜 7.8LD7、LD9、LD10 2.8 19-2铝青铜7.6超硬铝 2.85 9-4、10-3-1.5铝青铜7.5LT1特殊铝 2.75 10-4-4铝青铜7.46工业纯镁 1.74 铍青铜8.3变 形 镁 MB1 1.76 3-1硅青铜8.47MB2、MB8 1.78 1-3硅青铜8.6MB3 1.79 1铍青铜8.8MB5、MB6、MB7、MB15 1.8 0.5镉青铜8.9铸镁 1.8 0.5铬青铜8.9工业纯钛(TA1、TA2、TA3) 4.5 1.5锰青铜8.8 钛 合 金 TA4、TA5、TC6 4.45 5锰青铜8.6TA6 4.4 白 铜 B5、B19、B30、BMn40-1.58.9TA7、TC5 4.46 BMn3-128.4TA8 4.56 BZN15-208.6TB1、TB2 4.89 BA16-1.58.7TC1、TC2 4.55 BA113-38.5TC3、TC4 4.43 纯铝 2.7TC7 4.4 防 锈 铝 LF2、LF43 2.68TC8 4.48 LF3 2.67TC9 4.52 LF5、LF10、LF11 2.65TC10 4.53 LF6 2.64纯镍、阳极镍、电真空镍8.85 LF21 2.73镍铜、镍镁、镍硅合金8.85 硬 铝 LY1、LY2、LY4、LY6 2.76镍铬合金8.72 LY3 2.73锌锭(Zn0.1、Zn1、Zn2、Zn3)7.15 LY7、LY8、LY10、LY11、LY14 2.8铸锌 6.86 LY9、LY12 2.784-1铸造锌铝合金 6.9 LY16、LY17 2.844-0.5铸造锌铝合金 6.75 锻 铝 LD2、LD30 2.7铅和铅锑合金11.37 LD4 2.65铅阳极板11.33 LD5 2.75

我对材料科学四要素的认识

我对材料科学四要素的认识 武晓博 材料科学是上世纪五十年代提出的,以研究和揭示固体材料性质规律为主的一门科学,与能源、信息并列为现代科学技术的三大支柱。随着高技术的兴起,又把新材料与信息技术、生物技术并列作为新技术革命的重要标志。如今,材料已成为国民经济建设、国防建设和人民群众生活的重要组成部分。 一般所说的材料,包括传统材料和各种新型材料。材料科学的任务,就是研究材料的性质、使用性能、结构与成分、合成与加工这四者间的关系,因而将其称为材料科学的四个基本要素。 1、材料的性质。材料的性质是功能特性和效用的描述符,是材料对电、磁、光、热、机械载荷的反应,包括力学性质、物理性质以及化学性质。 (1)力学性质。包括强度、硬度、刚度、塑性、韧性等。 强度:材料抵抗外应力的能力; 硬度:材料在表面上的小体积内抵抗变形或破裂的能力; 刚度:外应力作用下材料抵抗弹性变形能力; 塑性:外力作用下,材料发生不可逆的永久性变形而不破坏的能力; 韧性:材料从塑性变形到断裂全过程中吸收能量的能力。 (2)物理性质。包括电学性质、磁学性质、光学性质及热学性质等。 电学性质:主要包括材料的导电性、绝缘性及介电性等; 磁学性质:主要包括材料的抗磁性、顺磁性及铁磁性等; 光学性质:主要包括材料的光反射、光折射、光学损耗及光透性等; 热学性质:主要包括材料的导热性、热膨胀、热容和熔化等。 (3)化学性质包括催化性质及防化性质等。 2、材料的性能。在某种环境或条件作用下,为描述材料的行为或结果,按照特定的规范所获得的表征参量,称为材料的性能。包括力学性能、 (1)力学性能。 弹性表征:包括弹性极限、屈服强度、比例极限等; 塑性表征:包括延伸率、断面收缩率、冲杯深度等; 硬度表征:包括布氏硬度、洛氏硬度、维氏硬度等; 刚度表征:包括弹性模量、杨氏模量、剪切模量等; 疲劳强度表征:包括疲劳极限和疲劳寿命等; 抗蠕变性表征:包括蠕变极限和持久强度等; 韧性表征:包括断裂韧性和K和断裂韧性J等。ICIC(2)物理性能。 电学性能表征:包括导电率、电阻率、介电常数等; 磁学性能表征:包括磁导率、矫顽力、磁化率等; 光学性能表征:包括光反射率、光折射率、光损耗率等; 热学性能标准:包括热导率、热膨胀系数、熔点、比热等。

金属材料性能知识大汇总(超全)

金属材料性能知识大汇总 1、关于拉伸力-伸长曲线和应力-应变曲线的问题 低碳钢的应力-应变曲线 a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。 b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σP;弹性极限σ ε;屈服点σS;抗拉强度σb;断裂强度σk。 真应变e=ln(L/L0)=ln(1+ε) ;真应力s=σ(1+ε)= σ*eε指数e为真应变。 c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。

2、关于弹性变形的问题 a、相关概念 弹性:表征材料弹性变形的能力 刚度:表征材料弹性变形的抗力 弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。 弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。 包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。 弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。 金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗 b、相关理论: 弹性变形都是可逆的。 理想弹性变形具有单值性、可逆性,瞬时性。但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。 弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映

金属材料工艺种类及加工方法探讨

金属材料工艺种类及加工方法探讨 发表时间:2018-12-18T10:01:26.913Z 来源:《基层建设》2018年第33期作者:李丰梅1 邱守光2 [导读] 摘要:面对迅猛发展的社会、各项技术和研究,资源一直是必不可少而又紧缺的,科技的不断发展使得更多的资源可以被利用,并且利用的方面随着工艺的不同而不同,尤其是在金属材料的利用上,在各种机械,生产工具等方面尤为突出,金属材料工艺的不断突破,使金属材料在不同工艺下的特点不同,用途不同,金属材料可以在不同领域充分利用,每种金属材料都能发挥自身的效用,本文列举了金 属材料的工艺种类并探讨了金属材料的加工方法。 ①通标标准技术服务有限公司南京分公司江苏南京 210014; ②南京德邦金属装备工程股份有限公司江苏南京 211153 摘要:面对迅猛发展的社会、各项技术和研究,资源一直是必不可少而又紧缺的,科技的不断发展使得更多的资源可以被利用,并且利用的方面随着工艺的不同而不同,尤其是在金属材料的利用上,在各种机械,生产工具等方面尤为突出,金属材料工艺的不断突破,使金属材料在不同工艺下的特点不同,用途不同,金属材料可以在不同领域充分利用,每种金属材料都能发挥自身的效用,本文列举了金属材料的工艺种类并探讨了金属材料的加工方法。 关键词:金属材料;加工工艺;方法探讨由于资源的有限,不足以支持社会进步的需求,人们不断进取、研究和发明,出现了许多加工方法,根据不同金属材料的特性,使用不同的加工方法,金属材料的效益发挥最大化,浪费最小化,金属材料工艺种类和金属材料的加工方法成为了人们深入研究的重点。 1.金属材料工艺种类 金属材料工艺主要有铸造工艺、锻压工艺、焊接工艺、切削工艺、热处理性能,每种工艺的原理、方法、要求、适用金属都是不同的,了解每种工艺的适用情况,是金属材料工艺的重点,由于用错了加工工艺方法,对金属材料而言是种极大的浪费。 1.1铸造工艺 金属铸造工艺是指高温将金属熔化成液体,将液体浇进想要的模型中,再进行一段时间的冷却凝固,凝固后再进行一定的处理得到想要的形状和功能,铸造工艺使对金属材料的加工时间大大减少,金属经过铸造,更加稳定,出现废品情况较低,但也有充型能力差的问题,同时,由于金属本身不具有透气性,在铸造的过程中要进行有效的排气,还要注意在金属熔化成液体定型凝固的时候有可能出现裂纹的情况。铸造工艺不适用于小批量,形状复杂的情况。铸造技术已经成为现代机械制造业的基础工艺之一。 1.2锻压工艺 锻压是锻造和冲压两项技术的结合,是指通过锻压机械的锤头等对金属胚料施加压力从而得到想要的形状。金属组织通过锻压而改变,使得金属组织的内部更加紧密,性能大大增加。金属的可塑性是锻压技术的基础,如果金属的可塑性差,使用锻压技术将会适得其反。锻压适用于批量生产,可使用尺寸精确的模具。 1.3焊接工艺 焊接工艺需要考虑到金属的材质,化学成分,内部结构等。焊接工艺的方法有很多,比如手弧焊、埋弧焊、钨极氩弧焊等,不同的金属材质选用的焊接方法不同,焊接工艺整体流程比较复杂,确定焊接使用方法后,还要确定焊接工艺参数,以及其他的焊接需要的措施,焊接工艺的优点是密封性好,适用于各种容器的制造,焊接工艺还可以和铸造工艺,锻压工艺相结合,提高经济效益。 1.4切削工艺 切削工艺在金属材料加工方面地位非常重要,切削技术是指用刀具对金属材料进行切割,从而得到想要的形状,切削工艺对切削的刀具要求非常严格,切削工艺经常用于对精度要求较高的零件,切削工艺一般是对铸造工艺,锻压工艺进行细加工,得到准确的零件。 1.5热处理性能 热处理工艺是指将金属材料放在一定介质中,对其进行加热、保温、冷却等,改变了金属材料的内部结构,从而改变了金属材料的性能。热处理工艺在处理金属材料时,对金属材料加热,以此温度保温一段时间后再冷却,由于加热和冷却的速度不同,从而改变了金属的内部结构,在加热、保温、冷却过程中不间断的衔接,降低成本。 2.金属材料加工方式 由于金属材料的工艺种类不同,对金属材料的加工方式也各有不同,主要有热处理加工方法、高速切削加工方法、温挤压成型加工方法、金属材料焊接技术工艺等。 2.1热处理加工方法 热处理方法可以改变金属材料的内部结构,可以使原本更加耐热,硬度更强,一般用于汽车、航空零部件的加工方法上。热处理方法主要分为退火、正火、淬火、时效处理四大方法。退火是加热保温后逐渐冷却的过程,退火的过程使金属材料的韧性和可塑性都大大提高。正火的过程是将金属材料加热到临界温度点以上,自然冷却的过程,正火在某些情况下可以代替退火,如用于要求不高的零件上。淬火是指在加热到金属材料临界点之后进行保温一段时间,再加入淬火剂,使温度骤降,这样能增加金属材料的硬度和强度。时效处理是指零件使用时间较长之后会出现形状,尺寸大小的变化,对金属材料进行时效处理,可以有效的提高金属材料的稳定性。 2.2高速切削加工方法 高速切削方法是在切削加工方法上提高了速度,高效而且消耗低,普通切削加工方法中存在的问题,在高速切削加工方法中都得以改善。高速切削方法主要用于模具制造中,成为模具制造工艺的主流方法。 高速切削加工方法的优势有大大提高了加工速度,是常规切削方法速度的十倍,在汽车模具制造中广泛应用。速度提升的同时自然也提高了效率,甚至可以省去修光的过程。同时,高速切削加工方法由于切削的速度快,切削表面更加光滑,高速切削加工方法一定程度上简化了工序,一般来说,常规的切削加工存在于淬火之前,使用高效切削加工方法不会导致表面硬化,省去了修正表面的工序。高速切削方法还可以加工形状复杂并且硬度较硬的零件,因为速度快,所以能够切割硬度较大的零件,这种方法速度快并且精准,对于要求精度的零件也是可以做到的。 2.3温挤压成型加工方法

(整理)常用金属材料密度表

精品文档 精品文档 常用金属材料密度表,包括黑色、有色金属材料及其合金材料的密度。 密度(10^3kg/m^3)(g/cm^3) 材料名称 密度 克/厘米3 材料名称 密度 克/厘米3 灰口铸铁 6.6~7.4 不锈钢 1Crl8NillNb 、Cr23Ni18 7.9 白口铸铁 7.4~7.7 2Cr13Ni4Mn9 8.5 可锻铸铁 7.2~7.4 3Cr13Ni7Si2 8.0 铸钢 7.8 纯铜材 8.9 工业纯铁 7.87 59、62、65、68黄铜 8.5 普通碳素钢 7.85 80、85、90黄铜 8.7 优质碳素钢 7.85 96黄铜 8.8 碳素工具钢 7.85 59-1、63-3铅黄铜 8.5 易切钢 7.85 74-3铅黄铜 8.7 锰钢 7.81 90-1锡黄铜 8.8 15CrA 铬钢 7.74 70-1锡黄铜 8.54 20Cr 、30Cr 、40Cr 铬钢 7.82 60-1和62-1锡黄铜 8.5 38CrA 铬钢 7.80 77-2铝黄铜 8.6 铬钒、铬镍、铬镍钼、铬锰、硅、 铬锰硅镍、硅锰、硅铬钢 7.85 67-2.5、66-6-3-2、60-1-1铝黄铜 8.5 镍黄铜 8.5 铬镍钨钢 7.80 锰黄铜 8.5 铬钼铝钢 7.65 硅黄铜、镍黄铜、铁黄铜 8.5 含钨9高速工具钢 8.3 5-5-5铸锡青铜 8.8 含钨18高速工具钢 8.7 3-12-5铸锡青铜 8.69 高强度合金钢 7.82 6-6-3铸锡青铜 8.82 轴承钢 7.81 7-0.2、6.5-0.4、6.5-0.1、4-3锡青铜 8.8 不 锈 钢 0Cr13、1Cr13、2Cr13、3Cr13、4Cr13、 Cr17Ni2、Cr18、9Cr18、Cr25、Cr28 7.75 4-0.3、4-4-4锡青铜 8.9 Cr14、Cr17 7.7 4-4-2.5锡青铜 8.75 0Cr18Ni9、1Cr18Ni9、Cr18Ni9Ti 、 2Cr18Ni9 7.85 5铝青铜 8.2 1Cr18Ni11Si4A1Ti 7.52 锻铝 LD8 2.77 7铝青铜 7.8 LD7、LD9、LD10 2.8 19-2铝青铜 7.6 超硬铝 2.85 9-4、10-3-1.5铝青铜 7.5 LT1特殊铝 2.75 10-4-4铝青铜 7.46 工业纯镁 1.74 铍青铜 8.3 变形镁 MB1 1.76 3-1硅青铜 8.47 MB2、MB8 1.78 1-3硅青铜 8.6 MB3 1.79 1铍青铜 8.8 MB5、MB6、MB7、MB15 1.8

我对材料科学与工程的认识和了解

专业介绍与概论 作业 题目:我对材料科学与工程专业的了解和认识班级: 学号: 姓名:

我对材料科学与工程专业的认识和了解 在上大学之前,我无意中就了解到当今世界的三的经济支柱是材料,信息,能源。又发现材料在我们的生活中无处不在,并且在高中通过对物理化学的不断学习,才使我在高三毕业后毫不犹豫地选择了材料科学工程专业,相信我的选择没有错。 上大学后,我对本专业有了更多的了解。在咱们学校材料科学与工程分金属材料及热处理,建筑材料工程,表面工程三个方向。下面是我分别对这三个方向的了解。 1.金属材料及热处理: 金属材料这好理解,就是金属做的材料,一般以铁为主,钢一类,使用很广。热处理可以简单的分为组织结构控制和表面处理。组织控制就是:淬火、正火、回火、退火,通过控制钢铁的加温温度,将金属原本的缺陷得以弥补,也可以将原来比较软的钢变硬,原来很脆的便的柔韧,这要看具体的工件的工作要求。在当今社会生产中,金属材料的应用是十分广泛的,尤其是钢铁材料,在工业。农业。交通运输。建筑以及国防等各方面都离不开他。随着现代化工农业以及科学技术的发展,人们对金属材料的性能要求越来越高。为满足这一点,一般可以采取两种方法:研制新材料和对金属材料进行热处理。后者是最广泛,最常用的方法。热处理是一种综合工艺。热处理工艺学就是研究这种综合工艺的原理及规律的一门学科。

业务培养目标:培养从事金属材料的设计、使用、质量控制 和检验,热处理,研究发展新材料、新工艺以及管理的高级工程 技术人才。 业务培养要求:本专业学生主要学习材料科学的基础理论, 掌握金属材料的成份、组织结构、生产工艺、环境与性能之间关 系的基本规律,研究钢铁材料、有色金属合金、功能材料及特殊 性能合金,通过合金设计和工艺设计,提高材料的性能和质量, 并开发新材料、新工艺。 毕业生应获掌握物理化学、金用学、金属材料学等材料科学的理论;掌握金属材料的冶炼、铸造、冷热加工和热处理等生产 工艺的基本知识和技术经济管理知识;具有材料的基本检测技术和计算机应用等基本技能;具有正确选择、合理使用金民材料。质量控制与实验分析以及合金设计的初步能力;具有制定合理的热处理工艺,分析热处理质量问题以及正确选用热处理设备的能力;具有研究开发新材料、热处理新工艺和新设备的初步能力。 主要实践环节:金工实习、认识实习、生产实习、课程设计、专业实验、计算机应用及上机实践、热处理车间设计、毕业论文(设计)。毕业生可从事材料科学与工程的教学与科研工作,可在机械、电子、冶金、石化、交通、轻纺等工厂的理化检验部门,从事材

相关文档
最新文档