适用于RFID的几种小型加密算法比较

合集下载

RFID复习题1(参考)解析

RFID复习题1(参考)解析

一、填空题1、自动识别技术是应用一定的识别装置,通过被识别物品和识别装置之间的接近活动,自动地获取被识别物品的相关信息,常见的自动识别技术有语音识别技术、图像识别技术、射频识别技术、条码识别技术(至少列出四种)。

2、RFID的英文缩写是Radio Frequency Identification。

3、RFID系统通常由电子标签、读写器和计算机通信网络三部分组成。

4、在RFID系统工作的信道中存在有三种事件模型:①以能量提供为基础的事件模型②以时序方式提供数据交换的事件模型③以数据交换为目的的事件模型5、时序指的是读写器和电子标签的工作次序。

通常,电子标签有两种时序:TTF(Target Talk First),RTF(Reader Talk First)。

6、读写器和电子标签通过各自的天线构建了二者之间的非接触信息传输通道。

根据观测点与天线之间的距离由近及远可以将天线周围的场划分为三个区域:非辐射场区、辐射近场区、辐射远场区。

7、上一题中第二个场区与第三个场区的分界距离R为R=2D2/λ。

(已知天线直径为D,天线波长为 。

)8、在RFID系统中,读写器与电子标签之间能量与数据的传递都是利用耦合元件实现的,RFID系统中的耦合方式有两种:电感耦合式、电磁反向散射耦合式。

9、读写器和电子标签之间的数据交换方式也可以划分为两种,分别是负载调制、反向散射调制。

10、按照射频识别系统的基本工作方式来划分,可以将射频识别系统分为全双工、半双工、时序系统。

11、读写器天线发射的电磁波是以球面波的形式向外空间传播,所以距离读写器R处的电子标签的功率密度S为(读写器的发射功率为P Tx,读写器发射天线的增益为G Tx,电子标签与读写器之间的距离为R):S= (P Tx·G Tx)/(4πR2)。

12、按照读写器和电子标签之间的作用距离可以将射频识别系统划分为三类:密耦合系统、远耦合系统、远距离系统。

13、典型的读写器终端一般由天线、射频模块、逻辑控制模块三部分构成。

RFID射频识别技术PPT

RFID射频识别技术PPT

智能制造与rfid技术
rfid技术在智能制造领域的应用将进 一步深化,通过rfid技术实现生产过 程中的物料追踪、质量控制、设备监 控等功能,提高生产效率和产品质量 。
rfid技术还将应用于智能工厂的物流管 理、仓储管理、生产调度等方面,实 现工厂的智能化管理和运营。
无人零售与rfid技术
01
rfid技术在无人零售领域的应用将 进一步普及,通过rfid技术实现商 品的快速识别和结算,提高购物 效率和顾客体验。
技术标准与互操作性
总结词
目前RFID技术缺乏统一的标准和规范,导 致不同厂商的RFID设备之间难以实现互操 作,影响了技术的推广和应用。
详细描述
为了解决这个问题,需要制定统一的RFID 技术标准和规范,推动不同厂商之间的设备 互操作性。这可以通过建立行业协会、制定 标准组织等方式实现。同时,加强国际合作 和交流,推动全球范围内的RFID技术标准 化进程,也是解决这一问题的有效途径。
多透明度。
05 rfid技术面临的挑战与解 决方案
数据安全与隐私保护
总结词
随着RFID技术的广泛应用,数据安全和 隐私保护问题日益突出,需要采取有效 的措施来确保数据的安全性和隐私性。
VS
详细描述
RFID技术通过无线传输数据,容易受到 窃听和非法跟踪等安全威胁。为了解决这 个问题,可以采用加密技术对RFID数据 进行加密,以防止未经授权的访问和数据 泄露。此外,设置合理的访问控制和权限 管理机制,可以进一步保护数据的隐私和 安全性。
易受到金属和液体等物质的干扰
数据传输速度较慢
RFID信号容易受到金属和液体等物质的干 扰,影响识别效果。
与二维码等技术相比,RFID技术的数据传 输速度相对较慢。

不同加密算法的安全性比较分析

不同加密算法的安全性比较分析

不同加密算法的安全性比较分析一、引言在信息交流的现代社会中,加密算法已经成为了保障个人和企业隐私安全的重要手段,各种加密算法的不断出现和更新也对信息安全领域带来了新的挑战。

本文旨在对常见的几种加密算法进行安全性比较分析,为读者提供更全面的信息安全保障建议。

二、对称加密算法对称加密算法又称共享密钥算法,将消息加密和解密使用相同的密钥,传输效率高,但密钥的安全问题使其逐渐无法适应日益复杂的信息交互环境。

1. DES算法DES算法是一种分组密码算法,密钥长度为56位,以8个字节为一组对明文进行加密。

虽然DES算法被证明存在一些安全漏洞,但其仍然被广泛应用。

2. AES算法AES算法是一种分组密码算法,密钥长度可为128位、192位或256位,对明文进行加密前需要对明文进行填充处理,加密速度较快且安全性较高,是目前被广泛应用的对称加密算法之一。

三、非对称加密算法非对称加密算法也称公钥密码算法,包含公钥和私钥两种密钥,公钥用于加密数据,私钥用于解密数据,安全性高但加密解密速度较慢。

1. RSA算法RSA算法是最早也是应用最广泛的非对称加密算法之一,基于大数因数分解的困难性,密钥长度可达到2048位以上,加密解密可靠性高,但相应的加密解密速度较慢,随着计算机技术的不断发展,RSA算法也存在一定的安全风险。

2. ECC算法ECC算法是基于椭圆曲线离散对数问题设计的非对称加密算法,密钥短、加密速度快、加密强度高,在移动设备、嵌入式系统等场景下应用广泛,但安全性也需要时刻关注。

四、哈希算法哈希算法也称散列算法,将任意长度的消息压缩成固定长度的摘要信息,生成的摘要信息不可逆,安全性高,但不适用于加密。

1. MD5算法MD5算法是一种广泛应用的哈希算法,在网络传输和文本文件校验等领域被广泛使用,但由于其容易被碰撞攻击,目前MD5算法已经逐步被安全性更高的哈希算法取代。

2. SHA-2算法SHA-2算法是一种安全性更强的哈希算法,分为256位、384位和512位三种版本,其安全性被广泛认可并得到了广泛的应用。

第2章 补充2-RFID应用实例

第2章 补充2-RFID应用实例

2 RFID在公共安全领域中的应用
RFID在食品链中的具体流程如下: (1)在食品或原材料源头加入RFID标签,写入食品或原材料的 基本信息,如产地、出产日期、储存方法及食用方法等 (2)加工厂完成食品加工,将原料和辅料的原始记录以及加工 过程的信息写入RFID标签; (3)仓储、运输、分销、配送等物流环节信息写入RFID标签; (4)到达超市、农贸市场、餐饮、快餐以及饭店,再将这一层
1)标签贴在包装箱或包装盒上 可采用RFID纸质防伪电子标签或易碎标签,贴在包装箱的封口 处,一旦打开包装则标签即被损毁,其电气线路断开且不能被恢 复,杜绝了造假者利用回收的外包装制假。
标签贴于封口处
12.1 RFID在防伪领域中的应用
2)将标签封在包装内部 制作外包装时也可将标签置于包装的内部,此标签利用RFID实 现无线数据传输功能。一旦外包装遭到破坏则镶嵌在内部的标签同 时也会失去功能,在外界不知情的情况下也能有效地实现防伪。 3)标签注塑封装在瓶盖(非金属)内 在制作瓶盖时将标签注塑在瓶盖内部,当酒瓶被开启时,通过 瓶盖上特殊设计的应力切口毁掉标签,从而防止酒瓶的重复利用。
3.RFID技术在贵重商品防伪系统中的优势
1)供应过程的追踪 RFID技术可以实时、准确、完整地记录及追踪产品运行情况,
全面高效地加强从产品的生产、运输到销售等环节的管理,并提供
各种易用完善的查询、统计、数据分析等功能。例如,通过在酒瓶 标签上的每个产品特有编码,随时掌握货品状态,以便仓储管理。
2)有效的防伪功能
RFID在矿井安全中的应用
在井下实现RFID技术,可以实现准确、实时、快速履行煤矿安 全监测职能,保证抢险救灾、安全救护等措施高效运作。 利用RFID技术的优势,建立一个能对井下流动工作人员进行定 位、跟踪、考勤等的综合管理系统。该系统由井下子系统与井上子 系统两部分组成: 井下子系统主要由安装在工作人员帽子或者衣服上的标签、根 据井下地形和要求放置在各个点的读写器、分布在巷道各个监测点 的分机组成。 井上子系统主要由数据通信接口、主机(含监控管理软件)等 组成,用来实时监测井下人员的动态信息,井下与井上通过通信电 缆完成通信。

RFID技术安全性分析和解决方案

RFID技术安全性分析和解决方案

RFID技术安全性分析和解决方案作者:蔡菁来源:《速读·上旬》2018年第08期摘要:射频识别(RFID)标签以其容量大,速度快,支持移动识别、多目标识别和非可视识别,正逐步应用于生产制造、交通运输、批发零售等诸多行业,可以说RFID的应用已经遍布我们生活的方方面面。

那么RFID的安全问题也日益突出,如何解决RFID的安全问题就显得尤为重要,本文就是在这样的背景下,阐述了RFID的安全威胁和解决方案。

关键词:RFID;安全;Hash函数一、引言RFID系统一般由三个实体部分与两种通信信道组成,即电子标签、阅读器、后台应用系统与无线通信信道、后端网络通信信道。

对于攻击者来说,这几部分都可能成为攻击对象,攻击者模型如图1所示。

二、安全威胁攻击RFID系统的手段一般分为被动攻击、主动攻击、物理攻击、内部人员攻击和软/硬件配装攻击5种。

1.被动攻击被动攻击不修改数据,而是获得系统中的敏感信息,通过对电子标签与阅读器之间的无线信道的窃听,攻击者可以获得电子标签中的数据,分析出大量有价值的信息。

2.主动攻击主动攻击涉及对系统数据的篡改或增加虚假的数据。

其手段主要包括:(1)假冒:对于RFID系统,既可以假冒电子标签也可以假冒阅读器。

(2)重放:攻击者可以把以前的合法通信数据记录下来,然后重放出来以欺骗标签或阅读器。

(3)篡改:对RFID系统而言,可以篡改空中接口数据或者标签数据。

(4)拒绝服务:针对RFID的空中接口实施拒绝服务是比较容易的。

(5)病毒攻击。

三、RFID安全关键问题RFID系统中电子标签固有的内部资源有限、能量有限和快速读取要求,以及具有的灵活读取方式,增加了在RFID系统中实现安全的难度。

实现符合RFID系统的安全协议、机制,必须考虑RFID系统的可行性,同时重点考虑以下几方面的问题。

1.算法复杂度对于存储资源最为缺乏的RFID电子标签要求加密算法不能占用过多的计算周期。

无源EPC C1G2电子标签的内部最多有2000个逻辑门,而通常的DES算法需要2000多个逻辑门。

RFID应用及原理 第二章 RFID系统概论

RFID应用及原理 第二章 RFID系统概论

根据应用不同,读写器可以是手持式或固定式。
读写器在RFID系统中起到举足轻重的作用:


读写器的频率决定了RFID系统的工作频段; 读写器的功率直接影响射频识别的距离。
电子标签
由外壳、天线、基片、集成电路、连接电路五部分组成, 性能取决于标签的天线、集成电路和封装水平。每个标 签具有唯一的EPC编码,附着在物体上标识目标对象, 按电子标签获得能量的方法,一般可分为 :
RFID未来发展趋势

超高频RFID 是未来RFID的发展趋势。 RFID系统小型化、低成本和天线结构简单。 读写器将向多功能、多接口、多制式、并向模块化、小型 化、便携式、嵌入式、智能型方向发展。 海量的RFID信息处理、传输和安全隐私保护机制。 RFID系统集成软件向嵌入式、智能化、可重组方向发展。 构建RFID公共服务体系,与红外感应器,激光扫描仪,
该频段RFID技术无线电发射设备射频指标:
1、 载波频率容限:20×10-6; 2、 信道带宽及信道占用带宽(99%能量):250KHz; 3、 信道中心频率: fc(MHz)=840.125+N×0.25和 fc(MHz)=920.125+M×0.25(N,M为0-19之间的整数); 4、 邻道功率泄漏比:40dB(第一邻道),60dB(第二邻道); 5、 工作模式为跳频扩频方式,每跳频信道最大驻留时间2秒。 表2.1 中国800/900MHz频段RFID技术发射功率
图2.1 RFID的工作原理
RFID 标签 RFID 标签 RFID 标签 RFID 标签 RFID 标签 阅读器 数据&事件 集成 企业应用
阅读器 数结构图
RFID系统
1、RFID系统通常由天线、读写器、电子标签及应用软件组成。读写 器控制射频模块控制天线发出射频信号,电子标签主动发送(有源标 签)或者凭借感应电流所获得的能量(无源标签)发送出芯片中的存 储信息,读写器解读数据,送至应用软件中心进行数据处理。 2、在一个RFID系统中,电子标签一般占总投资的60%至70%。读写 器和计算机系统的投资是一次性的,但电子标签的数量且随着时间的 推移和应用的扩大,逐年会增加。 2、电子标签含有物品唯一标识体系的编码,包括电子产品代码EPC、 泛在识别号UCODE、车辆识别代码VIN、国际证券标识号ISIN、以 及IPv6等等。 3、其中,电子产品代码(EPC)是全球产品代码的一个分支,它包含 著一系列的数据和信息,如产地,日期代码和其他关键的供应信息。

RFID复习资料

RFID复习资料

填空题(第一章)1.RFID 的英文全称是Radio Frequency Identification 。

2.典型的RFID 系统主要由阅读器、电子标签、RFID 中间件和应用系统软件组成,一般把中间件和应用软件统称为应用系统。

3.读写器和电子标签通过各自的天线构建了两者之间的非接触信息传输通道。

根据观测点与天线之间的距离由近及远可以将天线周围的场划分为3个区域:无功近场区、辐射近场区和辐射远场区。

4.辐射近场区和辐射远场区分界距离R 为(D22 )。

(已知天线直径为D ,天线波长为λ。

)5.在RFID 系统中,实现读写器与电子标签之间能量与数据的传递耦合类型有两种:电感耦合式和反向散射耦合式。

6.按照读写器和电子标签之间的作用距离可以将射频识别系统划分为密耦合系统、遥耦合系统和远距离系统。

(第二章)1.编码是为了达到某种目的而对信号的一种变换。

根据编码的目的不同,编码理论有信源编码、信道编码和保密编码3个分支。

2.数字调制的方法通常称为键控法,常用的数字调制解调方式有幅移键控、频移键控和相移键控。

在RFID系统中,使用最多的数字调制方法是幅移键控。

3.RFID常用的编码方式有单极性不归零码编码、曼彻斯特编码、单极性归零编码、差动双相编码、密勒编码、变形密勒编码和差分编码。

4.使用非接触技术传输数据时,很容易遇到干扰,使传输数据发生意外的改变从而导致传输错误。

此类问题通常是由外界的各种干扰和多个应答器同时占用信道发送数据产生碰撞造成的,针对这两种情况,常用的处理方法是校验和法和多路存取法。

5.在射频识别系统中常用的纠错编码是校验和法,最常用的校验和法是奇偶校验、纵向冗余校验和循环冗余校验。

6.常用在多路存取(多路通信)方式有空分多路法、时分多路法、码分多路法。

在RFID系统中,主要采用时分多路法。

7.目前,在RFID系统中常用的防碰撞算法包括ALOHA算法和二进制树搜索算法。

(第三章)1.在低频和高频频段,读写器与电子标签基本都采用线圈天线。

各种加解密算法比较

各种加解密算法比较

各种加解密算法比较加解密算法是信息安全领域中的重要组成部分,它们用于保护敏感数据的机密性和完整性。

不同的加解密算法具有不同的特点和应用场景。

本文将比较常见的几种加解密算法,包括对称加密算法(如DES、AES)、非对称加密算法(如RSA、ECC)、哈希函数算法(如MD5、SHA-256),以及它们的优劣势。

1.对称加密算法对称加密算法使用相同的密钥对数据进行加密和解密,速度快,适合大数据量的加密。

常见的对称加密算法有:- DES(Data Encryption Standard):首个商用加密算法,使用56位密钥,安全性相对较低;- AES(Advanced Encryption Standard): 现代对称加密算法,使用128、192或256位密钥,安全性较高,被广泛应用。

对称加密算法的优势是加解密速度快,适用于大量数据加密,但密钥分发和管理较为困难。

2.非对称加密算法非对称加密算法使用一对密钥(公钥和私钥)进行加密和解密,安全性较高,但加解密速度较慢。

常见的非对称加密算法有:- RSA(Rivest-Shamir-Adleman): 由三位密码学家发明,安全性高,应用广泛,但对于长文本加密性能较差;- ECC(Elliptic Curve Cryptography): 使用椭圆曲线算法,具有相当于RSA更短密钥长度的安全性。

非对称加密算法的优势是通过分发公钥实现安全通信,但速度较慢,且密钥管理较为复杂。

3.哈希函数算法哈希函数算法将任意长度的输入数据映射为固定长度的哈希值,常用于验证数据完整性。

- MD5(Message Digest Algorithm-5): 生成128位哈希值,安全性较弱,已被广泛攻破,主要应用于校验文件完整性;- SHA-2(Secure Hash Algorithm-2): 包括SHA-224、SHA-256、SHA-384和SHA-512,安全性较高,被广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档