面板数据截距固定和随机效应的判断
面板数据的F检验,固定效应检验

面板数据的F检验,固定效应检验面板数据模型(PANEL DATA)F检验,固定效应检验1.面板数据定义。
时间序列数据或截面数据都是一维数据。
例如时间序列数据是变量按时间得到的数据;截面数据是变量在截面空间上的数据。
面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。
面板数据是同时在时间和截面空间上取得的二维数据。
面板数据示意图见图1。
面板数据从横截面(cross section)上看,是由若干个体(entity, unit, individual)在某一时刻构成的截面观测值,从纵剖面(longitudinal section)上看是一个时间序列。
面板数据用双下标变量表示。
例如y i t, i = 1, 2, …, N; t = 1, 2, …, TN表示面板数据中含有N个个体。
T表示时间序列的最大长度。
若固定t不变,y i ., ( i = 1, 2, …, N)是横截面上的N个随机变量;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列(个体)。
图1 N=7,T=50的面板数据示意图例如1990-2000年30个省份的农业总产值数据。
固定在某一年份上,它是由30个农业总产总值数字组成的截面数据;固定在某一省份上,它是由11年农业总产值数据组成的一个时间序列。
面板数据由30个个体组成。
共有330个观测值。
对于面板数据y i t, i = 1, 2, …, N; t = 1, 2, …, T来说,如果从横截面上看,每个变量都有观测值,从纵剖面上看,每一期都有观测值,则称此面板数据为平衡面板数据(balanced panel data)。
若在面板数据中丢失若干个观测值,则称此面板数据为非平衡面板数据(unbalanced panel data)。
注意:EViwes 3.1、4.1、5.0既允许用平衡面板数据也允许用非平衡面板数据估计模型。
固定效应面板数据模型

– 所以,在建立Panel Data模型时必须控制不可观察的 个体和(或)时间的特征以避免模型设定的偏差并改 进参数估计的有效性。
• Panel Data是来自经济活动的复杂过程。
– 若假设经济变量在每个时点上都是由参数化的概率分 布函数生成的,实际上是不现实的。 – 忽视这种在横截面或时间上参数的本质上的差异可能 会导致参数估计不是一致估计或估计出的参数值无意 义。
• 检验假设1的F统计量
(S 2 S1 ) /[(n 1) K ] F1 ~ F[(n 1) K , n(T K 1)] S1 /[nT n( K 1)]
•从直观上看,如S2-S1很小,F1则很小,低于临界值,接受 H1。 S2为截距变化、系数不变的模型的残差平方和,S1为截 距、系数都变化的模型的残差平方和。
• 模型6:截面个体和时点变截距模型。
Yit i t Xit β it
i 1,, n t 1,, T
该模型表示,在横截面个体之间,存在个体影响,同时 在不同的时点之间,存在个体影响,但是不存在变化的 经济结构,因而结构参数在不同横截面个体上是相同的。 这是一类在实际应用中常见的模型。从应用的角度,人们 希望既控制截面个体影响,也控制时点影响,然后求得平 均意义上的不变的结构参数。 该模型的估计方法与模型2并无大的差别。
– 如果n充分小,此模型可以当作具有(n+K)个参数的 多元回归,参数可由普通最小二乘进行估计。
ˆ α ˆ D X D X β
1
D X y
– 当n很大,甚至成千上万,OLS计算可能超过任何计算 机的存储容量。可用分块回归的方法进行计算。
– 分块回归的思路是:首先设法消去参数αi,估计参数β; 然后再在每个截面个体上利用变量的观测值和参数β的 估计值,计算参数αi的估计量。
互助问答第31期:固定效应与随机效应选择和面板数据处理

互助问答第31期:固定效应与随机效应选择和面板数据处理样本描述:各位老师好,我的论文采用的是微观面板非平衡数据(合并了3波数据,总观测值6万左右),每波观测之间约有20%的样本不同(约10%的样本流失,10%的新样本补入),因变量是连续变量,核心自变量是虚拟变量。
经由列联表分析,发现对重复观测的样本而言,约有8%左右样本的核心控制变量状态(0或1)会在两次观测时间中发生变异。
加入协变量后,经过多次模型比较,均发现个体效应不容忽视,固定效应显著优于随机效应和混和估计。
关于模型方法选择和样本处理方面有三个问题请教。
问题1: 由于组内变异不足,固定效应在进行组内离差时是否已经抹去了大部分核心变量的信息,导致结果实际上并不具有代表性和可信度?这种情况下是否只能抛开豪斯曼检验结果而使用随机效应?答案1:个体固定效应在你说的情形中确实吸收了核心自变量许多信息,可能导致核心自变量系数估计统计不显著,但这不意味着结果是错误或不可信的。
此时用固定效应还是随机效应是需要权衡的。
如果用固定效应,回归结果未必如你所想;如果用随机效应,回归结果可能是不一致的——这是更严重的问题,即使结果显著,也不可信。
我个人的建议是:继续使用固定效应模型,然后多看一些异质性。
虽然平均意义上系数不显著,但可能对某些特定群体是显著的。
问题2: 由于这一核心虚拟变量可能存在一定样本自选择现象,如果使用倾向值得分匹配,如何结合面板数据的特征?(PS:在理论上,由于存在“前处理效应”,因而不能使用did或did-psm)答案2:不知道你的核心虚拟变量是怎样的变量。
如果该变量是诸如“是否有工作”这种可能因时而异的变量,那便无法在面板数据架构下应用匹配方法(如果非要用匹配法,只能一年一年分开做)。
如果核心虚拟变量是事先确定了的变量(比如在政策评估领域常见的“是否受到某项政策的影响”),就可能可以利用DID Matching的方法去做(也就是常说的P SM-DID)。
固定效应和随机效应

方差分析主要有三种模型:即固定效应模型(fixed effects model),随机效应模型(random effects model),混合效应模型(mixed effects model)。
所谓的固定、随机、混合,主要是针对分组变量而言的。
固定效应模型,表示你打算比较的就是你现在选中的这几组。
例如,我想比较3种药物的疗效,我的目的就是为了比较这三种药的差别,不想往外推广。
这三种药不是从很多种药中抽样出来的,不想推广到其他的药物,结论仅限于这三种药。
“固定”的含义正在于此,这三种药是固定的,不是随机选择的。
随机效应模型,表示你打算比较的不仅是你的设计中的这几组,而是想通过对这几组的比较,推广到他们所能代表的总体中去。
例如,你想知道是否名牌大学的就业率高于普通大学,你选择了北大、清华、北京工商大学、北京科技大学4所学校进行比较,你的目的不是为了比较这4所学校之间的就业率差异,而是为了说明他们所代表的名牌和普通大学之间的差异。
你的结论不会仅限于这4所大学,而是要推广到名牌和普通这样的一个更广泛的范围。
“随机”的含义就在于此,这4所学校是从名牌和普通大学中随机挑选出来的。
混合效应模型就比较好理解了,就是既有固定的因素,也有随机的因素。
一般来说,只有固定效应模型,才有必要进行两两比较,随机效应模型没有必要进行两两比较,因为研究的目的不是为了比较随机选中的这些组别。
固定效应和随机效应的选择是大家做面板数据常常要遇到的问题,一个常见的方法是做huasman检验,即先估计一个随机效应,然后做检验,如果拒绝零假设,则可以使用固定效应,反之如果接受零假设,则使用随机效应。
但这种方法往往得到事与愿违的结果。
另一个想法是在建立模型前根据数据性质确定使用那种模型,比如数据是从总体中抽样得到的,则可以使用随机效应,比如从N个家庭中抽出了M个样本,则由于存在随机抽样,则建议使用随机效应,反之如果数据是总体数据,比如31个省市的Gdp,则不存在随机抽样问题,可以使用固定效应。
面板数据中固定效应和随机效应的选择及其应用之欧阳语创编

面板数据中固定效应和随机效应的选择及其应用韩雪亮(暨南大学管理学院,广州510632)摘要:在面板数据中,固定效应模型和随机效应模型的选择问题一直存有很大争论。
本文通过比较,认为具体研究中选择固定效应模型还是随机效应模型,应该结合研究需要,而不是Hausman检验结果。
Hausman检验在某种程度上来说,是没有任何意义的,因为无论结果如何,选择固定效应模型总不会错。
Hausman检验与Breusch-Pagan检验存在本质上的区别,不能因为Hausman检验结果拒绝随机效应模型而否定Breusch-Pagan检验结果。
本文还通过一个实证分析,更直观的表达了这种思想。
实证分析结果表明,尽管所选择的变量在整体上能够影响到企业商业信用融资,但不同行业内的企业商业信用融资受到的影响因素不同。
关键词:固定效应;随机效应;Hausman检验;Breusch-Pagan检验;商业信用融资中图分类号:F064.1,F275.5文献标识码:AFixed Effects Model and Random Effects ModelSelection in Panel Data and its ApplicationHAN XueliangManagement School of Jinan University,Guangzhou 510632Abstract:In panel data analysis, there has been arguing on fixed effects model and random effects model selection. In this paper, we compared these two models and consider that choose fixed effects model or random effects model should depend on your research need/theory, rather than Hausman test. To some extent, Hausman test doesnot work, since whatever the outcome, choose fixed effects model is always right. Like the difference between the fixed effects model and random effects model, there isessential difference between Hausman test and Breusch-Pagan test. We cannot reject the Breusch-Pagan test when Hausman test rejects the random effects model. We also use one empirical analysis to convey this opinion. The empirial analysis results show that, in general the selected variables do have effect on the dependent variable, but when come into the different industries, the effect is differ.Key words:Fixed Effects Model;Random Effects Model;Hausman Test;Breusch-Pagan Test;Trade Credit0 引言面板数据(Panel Data)综合了时间序列数据和截面数据的特点,提供了更多与客观现实相关的信息,并控制了个体的异质性,增大了自由度和减小了变量间的多重共线性。
面板数据分析

面板数据分析在社会科学研究中,面板数据是一种重要的数据类型,它包含了多个观测单位在不同时间点上的观测结果。
通过对面板数据进行分析,可以更全面地了解变量之间的关系、监测变量的变化趋势以及探究变量之间的因果关系。
面板数据分析主要包括面板数据描述统计、面板数据回归分析和面板数据固定效应模型等内容。
一、面板数据描述统计面板数据描述统计是对面板数据的基本特征进行统计描述,以便更好地理解面板数据的组成和分布情况。
首先,我们可以对面板数据进行平衡性检验,即检验在观测期内是否每个观测单位都有相同数量的观测值。
通过检验平衡性,可以确保面板数据的可靠性和有效性。
其次,可以计算面板数据的均值、方差和协方差等统计指标,以揭示变量在时间和观测单位之间的差异。
还可以进行面板数据的描述性图表分析,例如折线图、柱状图和散点图等,以便更直观地观察变量的变化趋势和分布特征。
二、面板数据回归分析面板数据回归分析是利用面板数据进行经济、金融等领域的模型估计和推断的重要方法。
在面板数据回归分析中,常用的方法有固定效应模型、随机效应模型和混合效应模型等。
这些模型可以通过最小二乘法、广义最小二乘法和似然比方法等进行估计,以得到变量之间的关系、影响因素以及参数的显著性检验。
此外,面板数据回归分析还可以通过引入时间和观测单位的固定效应或者随机效应,控制那些对变量关系产生影响的固定和随机因素,从而提高模型的准确性和有效性。
三、面板数据固定效应模型面板数据固定效应模型是一种针对时间不变的变量的固定效应进行建模的方法。
该模型假设每个观测单位都有一个固定不变的效应对因变量产生影响。
面板数据固定效应模型的估计方法通常使用OLS(Ordinary Least Squares)法。
在估计过程中,固定效应会通过在模型中引入虚拟变量或者截距项来进行控制。
面板数据固定效应模型的优点在于能够控制个体特征的固定影响,使得模型结果更为准确和可靠。
同时,还可以通过固定效应模型进行因果推断,从而揭示变量之间的因果关系。
面板数据分析方法
面板数据分析方法
面板数据是指多个观察对象在同一时间序列下的数据。
面板数据分析方法可以帮助我们更好地理解时间序列数据,并进一步得出结论,这些数据通常用于经济学研究和社会科学研究。
以下是一些常用的面板数据分析方法:
1. 固定效应模型(Fixed Effects Model):固定效应模型是一种广泛应用于分析面板数据的方法。
它可以帮助我们控制可能影响结果的变量,并提高模型的可靠性和准确性。
2. 随机效应模型(Random Effects Model):随机效应模型与固定效应模型类似,但是它假设未观测到的变量对结果有影响,并对这种影响进行建模。
3. 差分法(Differences-in-Differences):差分法是一种比较两个实验组之间差异的方法。
在差分法中,我们比较一个实验组的结果与一个对照组的结果,以确定实验组的结果是否受到实验的影响。
4. 面板单位根检验(Panel Unit Root Test):面板单位根检验可以帮助我们确定一个时间序列是否具有单位根,这在面板数据分析中十分有用。
如果一个序列具有单位根,这意味着它是非平稳的,需要进行差分或其他方法来消除这种影响。
5. 面板数据模型选择(Model Selection):在进行面板数据分析时,我们需要选择一个合适的模型来准确地描述数据。
面板数据模型选择方法包括信息准则法、比较误差方差分解和Hausman检验等。
这些方法可以帮助我们更好地理解面板数据,并从中得出有意义的结论。
固定效应和随机效应
方差分析主要有三种模型:即固定效应模型(fixed effects model),随机效应模型(random effects model),混合效应模型(mixed effects model)。
所谓的固定、随机、混合,主要是针对分组变量而言的。
固定效应模型,表示你打算比较的就是你现在选中的这几组。
例如,我想比较3种药物的疗效,我的目的就是为了比较这三种药的差别,不想往外推广。
这三种药不是从很多种药中抽样出来的,不想推广到其他的药物,结论仅限于这三种药。
“固定”的含义正在于此,这三种药是固定的,不是随机选择的。
随机效应模型,表示你打算比较的不仅是你的设计中的这几组,而是想通过对这几组的比较,推广到他们所能代表的总体中去。
例如,你想知道是否名牌大学的就业率高于普通大学,你选择了北大、清华、北京工商大学、北京科技大学4所学校进行比较,你的目的不是为了比较这4所学校之间的就业率差异,而是为了说明他们所代表的名牌和普通大学之间的差异。
你的结论不会仅限于这4所大学,而是要推广到名牌和普通这样的一个更广泛的范围。
“随机”的含义就在于此,这4所学校是从名牌和普通大学中随机挑选出来的。
混合效应模型就比较好理解了,就是既有固定的因素,也有随机的因素。
一般来说,只有固定效应模型,才有必要进行两两比较,随机效应模型没有必要进行两两比较,因为研究的目的不是为了比较随机选中的这些组别。
固定效应和随机效应的选择是大家做面板数据常常要遇到的问题,一个常见的方法是做huasman检验,即先估计一个随机效应,然后做检验,如果拒绝零假设,则可以使用固定效应,反之如果接受零假设,则使用随机效应。
但这种方法往往得到事与愿违的结果。
另一个想法是在建立模型前根据数据性质确定使用那种模型,比如数据是从总体中抽样得到的,则可以使用随机效应,比如从N个家庭中抽出了M个样本,则由于存在随机抽样,则建议使用随机效应,反之如果数据是总体数据,比如31个省市的Gdp,则不存在随机抽样问题,可以使用固定效应。
面板数据的模型(panel data model)
面板数据的模型(panel data model)王志刚 2004年11月11日一. 混合数据模型和面板数据模型如果扰动项it ε服从独立同分布假定,而且和解释变量不相关,那么就可以采用混合最小二乘法估计(Pooled OLS ),但是这里要注意POLS 暗含着一个假定就是,截距项和解释变量的系数是相同的,不随着个体和时间而变化。
我们一般采用单因子(one-way effects )模型,假定截距项具有个体异质性,也就是:这种模型是最常见的面板模型(又称为纵列数据longitudinal data ),因为面板数据往往要求个体纬度 N>>T(时间纬度),下面我们基本上以这种模型为例。
it u 是独立同分布,而且均值为0,方差为2u σ。
如对截距项和解释变量系数均有个体的异质性,那么要采用随机系数模型(Random coefficient model ),stata 的xtrchh 过程提供了相应的估计。
双因子模型(two-way ):it t i it u ++=γαε二. 固定效应(Fixed effects ) vs 随机效应(Random effects)如果个体效应i α是一个均值为0,方差为2ασ的独立同分布的随机变量,也就是()0,cov =it i x α,该模型就称为随机效应模型(又称为error component model );如果相关,则称为固定效应模型。
1.在随机效应模型中,it ε在每个个体内部存在着一阶自相关,因为他们都包含着相同的个体效应;此时OLS 无效,而且标准差也失真,应该采用广义最小二乘估计(GLS)其中:是个体按时间的均值;有待估计;我们可以通过对组内和组间估计得到相应的残差,从而可以计算出方差;T k n e e e e nnk nT ubetween between between between within within u 22222,,ˆˆ1σσσσσα-=-'='--=;组间估计:εβ+=..i i x y ;组内估计如下;2.如果个体效应和解释变量相关,OLS 和GLS 都将失效,此时要采用固定效应模型。
Eviews面板数据之随机效应模型
随机效应模型的估计原理说明与豪斯曼检验在面板数据的计量分析中,如果解释变量对被解释变量的效应不随个体和时间变化,并且解释被解释变量的信息不够完整,即解释变量中不包含一些影响被解释变量的不可观测的确定性因素,可以将模型设定为固定效应模型,采用反映个体特征或时间特征的虚拟变量(即知随个体变化或只随时间变化)或者分解模型的截距项来描述这些缺失的确定性信息。
但是,固定效应模型也存在一定的不足。
例如固定效应模型模型中包含许多虚拟变量时,减少了模型估计的自由度;实际应用中,固定效应模型的随机误差项难以满足模型的基本假设,易于导致参数的非有效估计。
更为重要的是,它只考虑了不完整的确定性信息对被解释变量的效应,而未包含不可观测的随机信息的效应。
为了弥补这一不足,Maddala(1971)将混合数据回归的随机误差项分解为截面随机误差分量、时间随机误差分量和个体时间随机误差分量三部分,讨论如下随机效应模型或双分量误差分解模型(1):12Kit k kit i t it k y x u v w ββ==++++∑ (1)2~(0,)i u u N σ表示个体随机误差分量; 2~(0,)t v v N σ表示时间随机误差分量;2~(0,)it w w N σ表示个体时间(或混合)随机误差分量。
如果模型(1)中只存在截面随机误差分量i u 而不存在时间随机误差分量t v ,则称为个体随机效应模型,否则称为个体时间小于模型。
或者称为但分了误差分解模型。
下面来介绍这两种模型:1.个体随机效应模型当利用面板数据研究拥有拥有充分多个体的总体经济特征时,若利用总体数据的固定效应模型就会损失巨大的自由度,使得个体截距项的估计不具有有效性。
这时,可以在总体中随机抽取N 个样本,利用这N 个样本的个体随机效应模型:12Kit k kit i itk y x u w ββ==+++∑ (2)推断总体的经济规律。
其中,个体随机误差项i u 是属于第i 个个体的随机干扰分量,并在整个时间范围(t=1,2,…,T)保持不变,其反映了不随时间变化的不可观测随机信息的效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 固定效应模型。 在面板数据散点图中,如果对于不同的截面或不同的时间序列,模型的截距是不同的,则可以采用在模型中加虚拟变量的方法估计回归参数,称此种模型为固定效应模型(fixed effects regression model)。 固定效应模型分为3种类型,即个体固定效应模型(entity fixed effects regression model)、时刻固定效应模型(time fixed effects regression model)和时刻个体固定效应模型(time and entity fixed effects regression model)。下面分别介绍。 (1)个体固定效应模型。 个体固定效应模型就是对于不同的个体有不同截距的模型。如果对于不同的时间序列(个体)截距是不同的,但是对于不同的横截面,模型的截距没有显著性变化,那么就应该建立个体固定效应模型,表示如下,
yit = 1 xit +1 W1 + 2 W2 + … +N WN +it, t = 1, 2, …, T (3) 其中
Wi =其他个个体如果属于第。,,0,...,2,1,1Nii
it, i = 1, 2, …, N; t = 1, 2, …, T,表示随机误差项。yit, xit, i = 1, 2, …, N; t = 1, 2, …, T分别表示被解释变量和解释变量。 模型(3)或者表示为
y1t = 1 +1 x1t +1t, i = 1(对于第1个个体,或时间序列),t = 1, 2, …, T y2t = 2 +1 x2t +2 t, i = 2(对于第2个个体,或时间序列),t = 1, 2, …, T … yN t = N +1 xN t + N t, i = N(对于第N个个体,或时间序列),t = 1, 2, …, T
写成矩阵形式,
y1 = (1 x1)1+1 = 1 + x1 +1
… yN = (1 xN)N+N = N + xN +N
上式中yi,i,i,xi都是N1阶列向量。为标量。当模型中含有k个解释变量时,为k1阶列向量。进一步写成矩阵形式,
121NNyyy= NN100010001121NN
+Nxxx21 + 121NN
上式中的元素1,0都是T1阶列向量。 面板数据模型用OLS方法估计时应满足如下5个假定条件: (1)E(it|xi1, xi2, …, xiT, i) = 0。以xi1, xi2, …, xiT, i为条件的it的期望等于零。 (2)(xi1, xi2, …, xiT), ( yi1, yi2, …, yiT), i = 1, 2, …, N分别来自于同一个联合分布总体,并相互独立。 (3)(xit, it)具有非零的有限值4阶矩。 (4)解释变量之间不存在完全共线性。 (5)Cov(it is|xit,xis, i) = 0, t s。在固定效应模型中随机误差项it在时间上是非自相关的。其中xit代表一个或多个解释变量。 对模型(1)进行OLS估计,全部参数估计量都是无偏的和一致的。模型的自由度是N T –1–N。 当模型含有k个解释变量,且N很大,相对较小时,因为模型中含有k + N个被估参数,一般软件执行OLS运算很困难。在计量经济学软件中是采用一种特殊处理方式进行OLS估计。 估计原理是,先用每个变量减其组内均值,把数据中心化(entity-demeaned),然后用变换的数据先估计个体固定效应模型的回归系数(不包括截距项),然后利用组内均值等式计算截距项。这种方法计算起来速度快。具体分3步如下。 (1)首先把变量中心化(entity-demeaned)。 仍以单解释变量模型(3)为例,则有
iy= i + 1ix+i, i = 1, 2, …, N (4)
其中iy=TtityT11,ix=TtitxT11,i=TtitT11, i = 1, 2, …, N。公式(1)、(4)相减得, (yit -iy) = 1(xit -ix) + (it -i) (5) 令(yit -iy) =ity~,(xit -ix) =itx~,(it -i) =it~,上式写为
ity~ = 1itx~+it~ (6) 用OLS法估计(1)、(6)式中的1,结果是一样的,但是用(6)式估计,可以减少被估参数个数。 (2)用OLS法估计回归参数(不包括截距项,即固定效应)。
在k个解释变量条件下,把itx~用向量形式X~表示,则利用中心化数据,按OLS法估计公式计算个体固定效应模型中回归参数估计量的方差协方差矩阵估计式如下, Var(ˆ) = 2ˆ(X~'X~)-1 (7)
其中2ˆ=kΝΝΤˆ~ˆ~,ˆ~是相对于~的残差向量。 (3)计算回归模型截距项,即固定效应参数i。 iˆ=iY-iXˆ
相对于混合估计模型来说,是否有必要建立个体固定效应模型可以通过F检验来完成。 原假设H0:不同个体的模型截距项相同(建立混合估计模型)。 备择假设H1:不同个体的模型截距项不同(建立个体固定效应模型)。 F统计量定义为: F=)1/()]1()2/[()(NNTSSENNTNTSSESSEuur=)1/()1/()(NNTSSENSSESSEuur (9) (8) (2)时刻固定效应模型。
yit = 1 xit +1 + 2 D2 + … +T DT +it, i = 1, 2, …, N (10) 其中
Dt =)(,0,...,2,1个截面其他个截面。,ttTt不属于第如果属于第
it, i = 1, 2, …, N; t = 1, 2, …, T,表示随机误差项。yi t, xit, i = 1, 2, …, N; t = 1, 2, …, T分别表示被解释变量和解释变量。模型(10)也可表示为
yi1 = 1 +1 xi1 + i1, t = 1,(对于第1个截面),i = 1, 2, …, N yi2 = (1 +2) +1 xi2 + i2, t = 2,(对于第2个截面),i = 1, 2, …, N …
yiT = (1 +T) +1 xiT + iT, t = T,(对于第T个截面),i = 1, 2, …, N 如果满足上述模型假定条件,对模型(2)进行OLS估计,全部参数估计量都具有无偏性和一致性。模型的自由度是N T –T-1。
F=)1/()]1()2/[()(TNTSSETNTNTSSESSEuur=)1/()1/()(TNTSSETSSESSEuur (11) 其中SSEr,SSEu分别表示约束模型(混合估计模型的)和非约束模型(时刻固定效应模型的)的残差平方和。非约束模型比约束模型多了T-1个被估参数。 注意:当模型中含有k个解释变量时,F统计量的分母自由度是NT-T- k。
(3)时刻个体固定效应模型。 时刻个体固定效应模型就是对于不同的截面(时刻点)、不同的时间序列(个体)都有不同截距的模型。如果确知对于不同的截面、不同的时间序列(个体)模型的截距都显著地不相同,那么应该建立时刻个体效应模型,表示如下, yit = 1 xit +1+2D2 +…+T DT +1W1+2W2 +…+N WN+it, i=1,2,…,N,t = 1, 2, …,
T (12) 其中虚拟变量
Dt =其他个截面如果属于第。,,0,...,2,1Ttt (注意不是从1开始)
Wi =其他个个体如果属于第。,,0,...,2,1,1Nii (注意是从1开始)
it, i = 1, 2, …, N; t = 1, 2, …, T,表示随机误差项。yi t, xit, (i = 1, 2, …, N;
t = 1, 2, …, T)分别表示被解释变量和解释变量。模型也可表示为 y11 = 1 +1 +1 x11 + 11, t = 1,i = 1(对于第1个截面、第1个个体) y21 = 1 +2 +1 x21 + 21, t = 1,i = 2(对于第1个截面、第2个个体) … yN1 = 1 +N +1 xN1 + N1, t = 1,i = N(对于第1个截面、第N个个体)
y12 = (1 +2) +1 +1 x12 + 12, t = 2,i = 1(对于第2个截面、第1个个体)
y22 = (1 +2) +2 +1 x22 + 22, t = 2,i = 2(对于第2个截面、第2个个体) … yN2 = (1 +2) +N +1 xN2 + N2, t = 2,i = N(对于第2个截面、第N个个体) … y1T = (1 +T) +1 +1 x12 + 1T, t = T,i = 1(对于第T个截面、第1个个体) y2T = (1 +T) +2 +1 x22 + 2T, t = T,i = 2(对于第T个截面、第2个个体) … yNT = (1 +T) +N +1 xNT + NT, t = T,i = N(对于第T个截面、第N个个体)
如果满足上述模型假定条件,对模型(12)进行OLS估计,全部参数估计量都是无偏的和一致的。模型的自由度是N T– N–T。注意:当模型中含有k个解释变量时,F统计量的分母自由度是NT– N -T- k+1。 相对于混合估计模型来说,是否有必要建立时刻个体固定效应模型可以通过F检验来完成。
F=)/()]()2/[()(TNNTSSETNNTNTSSESSEuur=)/()2/()(TNNTSSETNSSESSEuur (13) 其中SSEr,SSEu分别表示约束模型(混合估计模型的)和非约束模型(时刻个体固定效应模型的)的残差平方和。非约束模型比约束模型多了N+T个被估参数。 注意:当模型中含有k个解释变量时,F统计量的分母自由度是NT-N-T- k-1。
(4)随机效应模型
其中ui N(0, u2)表示截面随机误差分量;vt N(0, v2)表示时间随机误差分量;wit N(0, w2)表示混和随机误差分量。同时还假定ui,vt,wit之间互不相关,各自分别不存在截面自