面板数据的F检验固定效应检验
面板数据模型估计一般要做哪些步骤?

协整检验方法的文献综述:(1)Kao(1999)、Kao and Chiang(2000)利用推广的DF和ADF检验提出了检验面板协整 的方法,这种方法零假设是没有协整关系,并且利用静态面板回归的残差来构建统计量。(2)Pedron(1999)在零假 设是在动态多元面板回归中没有协整关系的条件下给出了七种基于残差的面板协整检验方法。和Kao的方法不同 的是,Pedroni的检验方法允许异质面板的存在。(3)Larsson et al(2001)发展了基于Johansen(1995)向量自回归 的似然检验的面板协整检验方法,这种检验的方法是检验变量存在共同的协整的秩。我们主要采用的是 Pedroni、Kao、Johansen的方法。通过了协整检验,说明变量之间存在着长期稳定的均衡关系,其方程回归残差 是平稳的。因此可以在此基础上直接对原方程进行回归,此时的回归结果是较精确的。这时,我们或许还想进一 步对面板数据做格兰杰因果检验(因果检验的前提是变量协整)。但如果变量之间不是协整(即非同阶单整)的 话,是不能进行格兰杰因果检验的,不过此时可以先对数据进行处理。引用张晓峒的原话,“如果y和x不同阶, 不能做格兰杰因果检验,但可通过差分序列或其他处理得到同阶单整序列,并且要看它们此时有无经济意义。” 下面简要介绍一下因果检验的含义:这里的因果关系是从统计角度而言的,即是通过概率或者分布函数的角度体 现出来的:在所有其它事件的发生情况固定不变的条件下,如果一个事件X的发生与不发生对于另一个事件Y的发 生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又有先后顺 序(A前B后),那么我们便可以说X是Y的原因。考虑最简单的形式,Granger检验是运用F-统计量来检验X的滞后 值是否显著影响Y(在统计的意义下,且已经综合考虑了Y的滞后值;如果影响不显著,那么称X不是Y 的“Granger原因”(Granger cause);如果影响显著,那么称X是Y的“Granger原因”。同样,这也可以用于 检验Y是X的“原因”,检验Y的滞后值是否影响X(已经考虑了X 的滞后对X自身的影响)。 Eviews好像没有在 POOL窗口中提供Granger causality test,而只有unit root test和cointegration test。说明Eviews是无法对 面板数据序列做格兰杰检验的,格兰杰检验只能针对序列组做。也就是说格兰杰因果检验在Eviews中是针对普通 的序列对(pairwise)而言的。你如果想对面板数据中的某些合成序列做因果检验的话,不妨先导出相关序列到一 个组中(POOL窗口中的Proc/Make Group),再来试试。
面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)

面板数据分析简要步骤与注意事项(面板单位根检验—面板协整—回归分析)面板数据分析方法:面板单位根检验—若为同阶—面板协整—回归分析—若为不同阶—序列变化—同阶建模随机效应模型与固定效应模型的区别不体现为R2的大小,固定效应模型为误差项和解释变量是相关,而随机效应模型表现为误差项和解释变量不相关。
先用hausman检验是fixed 还是random,面板数据R-squared值对于一般标准而言,超过0.3为非常优秀的模型。
不是时间序列那种接近0.8为优秀。
另外,建议回归前先做stationary。
很想知道随机效应应该看哪个R方?很多资料说固定看within,随机看overall,我得出的overall非常小0.03,然后within是53%。
fe和re输出差不多,不过hausman检验不能拒绝,所以只能是re。
该如何选择呢?步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归(spurious regression)。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993)很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
342面板数据的F检验固定效应检验【zj】

面板数据模型( )检验,固定效应检验.面板数据定义。
进度序列数据或截面数据都是一维数据。
例如进度序列数据是变量按进度得到的数据。
截面数据是变量在截面空间上的数据。
面板数据()也称进度序列截面数据()或混合数据()。
面板数据是同时在进度和截面空间上取得的二维数据。
面板数据示意图见图。
面板数据从横截面()上看,是由若干个体(, , )在某一时刻构成的截面观测值,从纵剖面()上看是一个进度序列。
.面板数据用双下标变量表示。
例如, , , …, ; , , …,表示面板数据中含有个个体。
表示进度序列的最大长度。
若固定不变, ., ( , , …, )是横截面上的个随机变量。
若固定不变,. , ( , , …, )是纵剖面上的一个进度序列(个体)。
.图,的面板数据示意图例如年个省份的农业总产值数据。
固定在某一年份上,它是由个农业总产总值数字组成的截面数据。
固定在某一省份上,它是由年农业总产值数据组成的一个进度序列。
面板数据由个个体组成。
共有个观测值。
.对于面板数据, , , …, ; , , …, 来说,如果从横截面上看,每个变量都有观测值,从纵剖面上看,每一期都有观测值,则称此面板数据为平衡面板数据()。
若在面板数据中丢失若干个观测值,则称此面板数据为非平衡面板数据()。
.注意:、、既允许用平衡面板数据也允许用非平衡面板数据估计模型。
例():年中国东北、华北、华东个省级地区的居民家庭人均消费(不变价格)和人均收入数据见表和表。
数据是年的,每一年都有个数据,共组观测值。
.人均消费和收入两个面板数据都是平衡面板数据,各有个个体。
人均消费和收入的面板数据从纵剖面观察分别见图和图。
从横截面观察分别见图和图。
横截面数据散点图的表现与观测值顺序有关。
图和图中人均消费和收入观测值顺序是按地区名的汉语拼音字母顺序排序的。
. 表年中国东北、华北、华东个省级地区的居民家庭人均消费数据(不变价格)地区人均消费(安徽)(北京)(福建)(河北)(黑龙江)(吉林)(江苏)(江西)(辽宁)(内蒙古)(山东)(上海)(山西)(浙江)资料来源:《中国统计年鉴》。
stata面板数据固定效应的异方差检验结果

标题:Stata面板数据固定效应的异方差检验结果在进行面板数据分析时,固定效应模型是一种常用的方法,它可以帮助研究者控制个体间的不可观测的异质性,并更准确地估计变量间的关系。
然而,在使用固定效应模型进行面板数据分析时,我们也需要关注异方差的存在,因为异方差的存在会影响到模型的稳健性和准确性。
本文将使用Stata软件对固定效应模型进行异方差检验,并共享检验结果。
1. 异方差的定义让我们来了解一下异方差的概念。
异方差是指误差项的方差不是恒定的,而是随着自变量或其他因素的变化而变化。
在面板数据分析中,由于不同个体或单位之间的特征差异,误差项的方差可能存在异方差的情况。
2. Stata软件中固定效应模型的异方差检验方法在Stata软件中,我们可以使用“xttest3”命令来进行固定效应模型的异方差检验。
这个命令可以帮助我们检验面板数据中误差项的异方差性质。
3. Stata命令示例下面是一个在Stata中进行固定效应模型异方差检验的示例:```stataxtset id timextreg y x1 x2, fexttest3```在这个示例中,我们首先使用“xtset”命令来指定面板数据的格式,然后使用“xtreg, fe”命令来拟合固定效应模型,最后使用“xttest3”命令来进行异方差检验。
4. 异方差检验的结果在进行了上述命令后,Stata会输出异方差检验的结果。
我们需要关注的主要指标包括LM统计量、Chisq统计量、以及对应的p值。
5. 结果分析对于LM统计量和Chisq统计量,它们的值越大,对应的p值越小,就越表明存在异方差。
通常情况下,我们会根据LM统计量和Chisq统计量的显著性水平来判断是否存在异方差。
如果p值小于0.05,我们就可以拒绝存在异方差的原假设,即面板数据中存在异方差。
6. 结论通过Stata软件对固定效应模型进行异方差检验,我们可以得出面板数据中是否存在异方差的结论。
如果存在异方差,我们需要在后续分析中进行相应的修正,以确保模型估计的准确性和稳健性。
面板数据模型理论知识

1.Panel Data 模型简介Panel Data 即面板数据,是截面数据及时间序列数据综合起来一种数据类型,是截面上个体在不同时点重复观测数据。
相对于一维截面数据和时间序列数据进行经济分析而言,面板数据有很多优点。
(1)由于观测值增多,可以增加自由度并减少了解释变量间共线性,提高了估计量抽样精度。
(2)面板数据建模比单截面数据建模可以获得更多动态信息,可以构建并检验更复杂行为模型。
(3)面板数据可以识别、衡量单使用一维数据模型所不能观测和估计影响,可以从多方面对同一经济现象进行更加全面解释。
Panel Data 模型一般形式为it K k kit kit it it x y μβα++=∑=1其中it y 为被解释变量,it x 为解释变量, i =1,2,3……N ,表示N 个个体;t=1,2,3……T ,表示已知T 个时点。
参数it α表示模型截距项,k 是解释变量个数,kit β是相对应解释变量待估计系数。
随机误差项it μ相互独立,且满足零均值,等方差为2δ假设。
面板数据模型可以构建三种形式(以截面估计为例):形式一: 不变参数模型 i K k ki k i x y μβα++=∑=1,又叫混合回归模型,是指无论从时间上还是截面上观察数据均不存在显著差异,故可以将面板数据混合在一起,采用普通最小二乘估计法(OLS )估计参数即可。
形式二:变截距模型i K k ki k i i x y μβαα+++=∑=1*,*α为每个个体方程共同截距项,i α是不同个体之间异质性差异。
对于不同个体或时期而言,截距项不同而解释变量斜率相同,说明存在不可观测个体异质影响但基本结构是相同,可以通过截距项不同而体现出来个体之间差异。
当i α及i x 相关时,那就说明模型为固定效应模型,当i α及i x 不相关时,说明模型为随机效应模型。
形式三:变参数模型 i K k ki ki i i x y μβαα+++=∑=1* ,对于不同个体或时期而言,截距项(i αα+*)和每个解释变量斜率ki β都是不相同,表明不同个体之间既存在个体异质影响也存在不同结构影响,即每个个体或时期都对应一个互不相同方程。
STATA面板数据回归(固定效应-随机效应-Hausman检验)

静态面板数据模型
我们一般所说的静态面板数据模型,是指解释变量中不包含被解释变量的滞后项(通
常为一阶滞后项)的情形。但严格地讲,随机干扰项服从某种序列相关(如 AR(1), AR(2), MA(1)等)的模型也不是静态模型。动态模型和静态模型在处理方法上往往有较大的差异。本 节中我们重点介绍两种最为常用的静态模型—固定效应模型和随机效应模型。 考虑如下模型: yit u it = xit β + u it = ai + εit (8.1) (8.2)
假设 1 表明干扰项 ε 与解释变量 x 的当期观察值、前期观察值以及未来的观察值均不相关,也 就是说我们的模型中所有的解释变量都是严格外生的。假设 2 就是一般的同方差假设,在此假 设下模型 (8.1) 的 OLS 估计是 BLUE 的。当此假设无法满足时,我们就需要处理异方差或序列 相关以便得到稳健性估计量。 组内估计量 上面我们已经提到,在假设 1 和假设 2 同时成立的情况下,模型 (8.1) 的 OLS 估计是 BLUE 的。但在实际操作的过程中,如果 N 比较大,那么我们的模型中将包含 (N+K) 个解释变 量,4 计算的工作量往往很大,对于 N 相当大的情况(如 N=10000 ),一般的计算机都无法胜
非均齐方差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.1 8.3.2 8.3.3 8.3.4 异方差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 序列相关 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 方差形式未知时的稳健性估计 . . . . . . . . . . . . . . . . . . . . . . . . . . STATA 实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)

面板数据分析简要步骤与注意事项(面板单位根检验—面板协整—回归分析)面板数据分析方法:面板单位根检验—若为同阶—面板协整—回归分析—若为不同阶—序列变化—同阶建模随机效应模型与固定效应模型的区别不体现为R2的大小,固定效应模型为误差项和解释变量是相关,而随机效应模型表现为误差项和解释变量不相关。
先用hausman检验是fixed 还是random,面板数据R-squared值对于一般标准而言,超过0.3为非常优秀的模型。
不是时间序列那种接近0.8为优秀。
另外,建议回归前先做stationary。
很想知道随机效应应该看哪个R方?很多资料说固定看within,随机看overall,我得出的overall非常小0.03,然后within是53%。
fe和re输出差不多,不过hausman检验不能拒绝,所以只能是re。
该如何选择呢?步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归(spurious regression)。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993)很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
面板数据模型的检验方法研究

面板数据模型的检验方法研究一、本文概述在统计学和经济学的实证研究中,面板数据模型已经成为了一种非常重要的工具。
由于其能够同时考虑时间序列和横截面数据的信息,使得模型设定更加丰富,能够更好地刻画现实世界的复杂性。
然而,随着面板数据模型应用的广泛,如何对其进行准确且有效的检验,确保模型的适用性和预测准确性,成为了亟待解决的问题。
本文旨在探讨面板数据模型的检验方法,以期为相关领域的实证研究提供有益的参考。
具体而言,本文首先将对面板数据模型的基本理论进行梳理,明确其特点和适用场景。
然后,将详细介绍面板数据模型的常见检验方法,包括但不限于单位根检验、协整检验、模型设定检验等。
这些检验方法不仅能够检验模型的内在稳定性和一致性,还能为模型参数的估计和预测提供重要依据。
本文还将对面板数据模型检验方法的最新研究进展进行综述,以期为读者提供全面的视角。
本文将通过实际案例分析,演示面板数据模型检验方法的应用,从而增强文章的实用性和操作性。
总体而言,本文期望通过对面板数据模型检验方法的深入研究,为相关领域的研究者提供一套系统、完整的检验方法体系,以推动面板数据模型在实证研究中的应用和发展。
二、面板数据模型理论基础面板数据模型(Panel Data Model)是计量经济学中一个重要的分析工具,它能够同时处理横截面和时间序列两个维度的数据。
面板数据模型不仅能够控制不可观测的异质性,提高估计效率,还能更好地捕捉数据的动态特征。
因此,面板数据模型在经济、金融、社会学等领域得到了广泛的应用。
面板数据模型的理论基础主要建立在三大类别之上:固定效应模型、随机效应模型和混合效应模型。
固定效应模型假设每个个体的截距项是固定的,不同个体之间的截距项存在差异,但不随时间变化。
随机效应模型则假设截距项是随机的,并且与解释变量不相关。
混合效应模型则假设所有个体的截距项都相同,没有考虑个体差异。
在实际应用中,研究者通常需要根据样本数据和研究目的选择合适的模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面板数据模型(P A N E L D A T A)F检验,固定效应检验1.面板数据定义。
时间序列数据或截面数据都是一维数据。
例如时间序列数据是变量按时间得到的数据;截面数据是变量在截面空间上的数据。
面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。
面板数据是同时在时间和截面空间上取得的二维数据。
面板数据示意图见图1。
面板数据从横截面(cross section)上看,是由若干个体(entity, unit, individual)在某一时刻构成的截面观测值,从纵剖面(longitudinal section)上看是一个时间序列。
面板数据用双下标变量表示。
例如y i t, i= 1, 2, …, N; t= 1, 2, …, TN表示面板数据中含有N个个体。
T表示时间序列的最大长度。
若固定t不变,y i ., ( i= 1, 2, …, N)是横截面上的N个随机变量;若固定i不变,y. t, (t= 1, 2, …, T)是纵剖面上的一个时间序列(个体)。
图1 N=7,T=50的面板数据示意图例如1990-2000年30个省份的农业总产值数据。
固定在某一年份上,它是由30个农业总产总值数字组成的截面数据;固定在某一省份上,它是由11年农业总产值数据组成的一个时间序列。
面板数据由30个个体组成。
共有330个观测值。
对于面板数据y i t, i= 1, 2, …, N; t= 1, 2, …, T来说,如果从横截面上看,每个变量都有观测值,从纵剖面上看,每一期都有观测值,则称此面板数据为平衡面板数据(balanced panel data)。
若在面板数据中丢失若干个观测值,则称此面板数据为非平衡面板数据(unbalanced panel data)。
注意:EViwes 、、既允许用平衡面板数据也允许用非平衡面板数据估计模型。
例1(file:panel02):1996-2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(不变价格)和人均收入数据见表1和表2。
数据是7年的,每一年都有15个数据,共105组观测值。
人均消费和收入两个面板数据都是平衡面板数据,各有15个个体。
人均消费和收入的面板数据从纵剖面观察分别见图2和图3。
从横截面观察分别见图4和图5。
横截面数据散点图的表现与观测值顺序有关。
图4和图5中人均消费和收入观测值顺序是按地区名的汉语拼音字母顺序排序的。
表1 1999-2002年中国东北、华北、华东15个省级地区的居民家庭人均消费数据(不变价格)地区人均消费1996 1997 1998 1999 2000 2001 2002 CP-AH(安徽)CP-BJ(北京)CP-FJ(福建)CP-HB(河北)CP-JL(吉林)CP-JS(江苏)CP-JX(江西)CP-LN(辽宁)CP-NMG(内蒙古)CP-SD(山东)CP-SH(上海)CP-SX(山西)CP-TJ(天津)CP-ZJ(浙江)资料来源:《中国统计年鉴》1997-2003。
表2 1999-2002年中国东北、华北、华东15个省级地区的居民家庭人均收入数据(不变价格)地区人均收入1996 1997 1998 1999 2000 2001 2002 IP-AH(安徽)IP-BJ(北京)IP-FJ(福建)IP-HB(河北)IP-JL(吉林)IP-JS(江苏)IP-JX(江西)IP-LN(辽宁)IP-NMG(内蒙古)IP-SD(山东)IP-SH(上海)IP-SX(山西)IP-TJ(天津)IP-ZJ(浙江)资料来源:《中国统计年鉴》1997-2003。
图2 15个省级地区的人均消费序列(纵剖面)图3 15个省级地区的人均收入序列(file:4panel02)图4 15个省级地区的人均消费散点图图5 15个省级地区的人均收入散点图(7个横截面叠加)(每条连线表示同一年度15个地区的消费值) (每条连线表示同一年度15个地区的收入值)用CP表示消费,IP表示收入。
AH, BJ, FJ, HB, HLJ, JL, JS, JX, LN, NMG, SD, SH, SX, TJ, ZJ分别表示安徽省、北京市、福建省、河北省、黑龙江省、吉林省、江苏省、江西省、辽宁省、内蒙古自治区、山东省、上海市、山西省、天津市、浙江省。
15个地区7年人均消费对收入的面板数据散点图见图6和图7。
图6中每一种符号代表一个省级地区的7个观测点组成的时间序列。
相当于观察15个时间序列。
图7中每一种符号代表一个年度的截面散点图(共7个截面)。
相当于观察7个截面散点图的叠加。
图6 用15个时间序列表示的人均消费对收入的面板数据图7 用7个截面表示的人均消费对收入的面板数据(7个截面叠加)为了观察得更清楚一些,图8给出北京和内蒙古1996-2002年消费对收入散点图。
从图中可以看出,无论是从收入还是从消费看内蒙古的水平都低于北京市。
内蒙古2002年的收入与消费规模还不如北京市1996年的大。
图9给出该15个省级地区1996和2002年的消费对收入散点图。
可见6年之后15个地区的消费和收入都有了相应的提高。
图8 北京和内蒙古1996-2002年消费对收入时序图图9 1996和2002年15个地区的消费对收入散点图2.面板数据的估计。
用面板数据建立的模型通常有3种。
即混合估计模型、固定效应模型和随机效应模型。
混合估计模型。
如果从时间上看,不同个体之间不存在显着性差异;从截面上看,不同截面之间也不存在显着性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。
如果从时间和截面看模型截距都不为零,且是一个相同的常数,以二变量模型为例,则建立如下模型,y it = a +b1 x it +e it, i= 1, 2, …, N; t= 1, 2, …, T (1)a 和b1不随i,t变化。
称模型(1)为混合估计模型。
以例1中15个地区1996和2002年数据建立关于消费的混合估计模型,得结果如下:图10EViwes估计方法:在打开工作文件窗口的基础上,点击主功能菜单中的Objects键,选New Object功能,从而打开New Object(新对象)选择窗。
在Type of Object选择区选择Pool(混合数据库),点击OK键,从而打开Pool(混合数据)窗口。
在窗口中输入15个地区标识AH(安徽)、BJ(北京)、…、ZJ(浙江)。
工具栏中点击Sheet键,从而打开Series List(列写序列名)窗口,定义变量CP和IP,点击OK键,Pool(混合或合并数据库)窗口显示面板数据。
在Pool窗口的工具栏中点击Estimate键,打开Pooled Estimation(混合估计)窗口如下图。
图11在Dependent Variable(相依变量)选择窗填入CP;在Common coefficients (系数相同)选择窗填入IP;Cross section specific coefficients(截面系数不同)选择窗保持空白;在Intercept(截距项)选择窗点击Common;在Weighting(权数)选择窗点击No weighting。
点击Pooled Estimation (混合估计)窗口中的OK键。
得输出结果如图10。
相应表达式是= +IP itR2 = , SSE r = 4824588, (103) =15个省级地区的人均支出平均占收入的76%。
如果从时间和截面上看模型截距都为零,就可以建立不含截距项的(a = 0)的混合估计模型。
以二变量模型为例,建立混合估计模型如下,y it = b1 x it +e it, i= 1, 2, …, N; t= 1, 2, …, T (2)对于本例,因为上式中的截距项有显着性(t = > (103) = ),所以建立截距项为零的混合估计模型是不合适的。
EViwes估计方法:在Pooled Estimation(混合估计)对话框中Intercept (截距项)选择窗中选None,其余选项同上。
固定效应模型。
在面板数据散点图中,如果对于不同的截面或不同的时间序列,模型的截距是不同的,则可以采用在模型中加虚拟变量的方法估计回归参数,称此种模型为固定效应模型(fixed effects regression model)。
固定效应模型分为3种类型,即个体固定效应模型(entity fixed effects regression model)、时刻固定效应模型(time fixed effects regression model)和时刻个体固定效应模型(time and entity fixed effects regression model)。
下面分别介绍。
(1)个体固定效应模型。
个体固定效应模型就是对于不同的个体有不同截距的模型。
如果对于不同的时间序列(个体)截距是不同的,但是对于不同的横截面,模型的截距没有显着性变化,那么就应该建立个体固定效应模型,表示如下,y it = b1 x it +g1 W1 + g2W2 + … +g N W N+e it, t= 1, 2, …, T (3)其中W i=e it, i= 1, 2, …, N; t= 1, 2, …, T,表示随机误差项。
y it, x it, i = 1, 2, …, N; t= 1, 2, …, T分别表示被解释变量和解释变量。
模型(3)或者表示为y1t= g1+b1 x1t+e1t, i= 1(对于第1个个体,或时间序列),t= 1, 2, …, Ty2t= g2+b1 x2t+e2 t, i= 2(对于第2个个体,或时间序列),t= 1, 2, …, T…y N t= g N+b1 x N t+e N t, i= N(对于第N个个体,或时间序列),t= 1, 2, …, T写成矩阵形式,y1 = (1x1) +e1 = g1 +x1 b +e1…y N = (1x N) +e N = g N + x N b+e N上式中y i,g i,e i,x i都是N′1阶列向量。
b为标量。
当模型中含有k个解释变量时,b为k′1阶列向量。
进一步写成矩阵形式,= + b+上式中的元素1,0都是T′1阶列向量。
面板数据模型用OLS方法估计时应满足如下5个假定条件:(1)E(e it|x i1, x i2, …, x iT, a i) = 0。
以x i1, x i2, …, x iT, a i为条件的e it 的期望等于零。
(2)(x i1, x i2, …, x iT), ( y i1, y i2, …, y iT), i= 1, 2, …, N分别来自于同一个联合分布总体,并相互独立。